Banerjee: A documentation on burrows in hard substrates of ferromanganese
crusts and associated soft sediments from the Central Indian Ocean, Curr.
Sci. India., 79, 517–521, 2000.
Barsanti, M., Delbono, I., Schirone, A., Langone, L., Miserocchi, S., Salvi,
S., and Delfanti, R.: Sediment reworking rates in deep sediments of the
Mediterranean Sea, Sci. Total. Environ., 409, 2959–2970,
https://doi.org/10.1016/j.scitotenv.2011.04.025, 2011.
Berner, R. A. and Westrich, J. T.: Bioturbation and the early diagenesis of
carbon and sulfur, Am. J. Sci., 285, 193–206,
https://doi.org/10.2475/ajs.285.3.193, 1985.
Bernoulli, D., Garrison, R., and McKenzie, J.: Petrology, isotope
geochemistry, and origin of dolomite and limestone associated with basaltic
breccia, Hole 373A, Tyrrhenian Basin, in: Initial Reports of the Deep Sea
Drilling Projec, edited by: Hsü, K. J. and Montadert, L., US
Government Printing Office, Washington, 541–558, 1978.
Cannat, M., Rommevaux-Jestin, C., Sauter, D., Deplus, C., and Mendel, V.:
Formation of the axial relief at the very slow spreading Southwest Indian
Ridge (49 to 69 E), J. Geophys. Res.-Sol. Ea., 104, 2825–2843,
https://doi.org/10.1029/1999JB900195, 1999.
Cook H. E. and Egbert R. M.: Diagenesis of Deep-Sea Carbonates, in:
Developments in Sedimentology, edited by: Larsen, G., Chilingar, G. V.,
Elsevier, the Netherlands, 213–288, 1979.
Cooke, P. J., Nelson, C. S., Crundwell, M. P., Field, B., Elkington, E. S.,
and Stone, H.: Textural variations in Neogene pelagic carbonate ooze at DSDP
Site 593, southern Tasman Sea, and their paleoceanographic implications, New
Zeal. J. Geol. Geop., 47, 787–807,
https://doi.org/10.1080/00288306.2004.9515089, 2004.
Croizé, D., Renard, F., and Gratier, J.-P.: Compaction and porosity
reduction in carbonates: a review of observations, theory, and experiments,
Adv. Geophys., 54, 181–238,
https://doi.org/10.1016/B978-0-12-380940-7.00003-2, 2013.
Damste, J. S. S., Breteler, W. C. M. K., Grice, K., Van Rooy, J., and Schmid,
M.: Stable carbon isotope fractionation in the marine copepod Temora
longicornis: Unexpectedly low
δ13C value of faecal pellets, Mar.
Ecol-Prog. Ser., 240, 195–204, https://doi.org/10.3354/meps240195, 2002.
Dauwe, B., Herman, P. M. J., and Heip, C. H. R.: Community structure and
bioturbation potential of macrofauna at four North Sea stations with
contrasting food supply, Mar. Ecol-Prog. Ser., 173, 67–83,
https://doi.org/10.3354/meps173067, 1998.
De, R., Rao, C. N., and Kaul, I. K.: Implications of diagenesis for the TL
dating of the oceanic carbonate sediments in the Northern Indian ocean, Nucl.
Tracks. Radiat. Meas., 10, 185–192, 1985.
Dick, H. J., Lin, J., and Schouten, H.: An ultraslow-spreading class of ocean
ridge, Nature, 426, 405–412, https://doi.org/10.1038/nature02128, 2003.
Dickens, G. R. and Owen, R. M.: The Latest Miocene–Early Pliocene biogenic
bloom: a revised Indian Ocean perspective, Mar. Geol., 161, 75–91,
https://doi.org/10.1016/S0025-3227(99)00057-2, 1999.
Durney, D. W.: Solution-transfer, an important geological deformation
mechanism, Nature, 235, 315, https://doi.org/10.1038/235315a0, 1972.
Dworschak, P. C., Koller, H., and Abed-Navandi, D.: Burrow structure,
burrowing and feeding behaviour of Corallianassa longiventris and Pestarella
tyrrhena (Crustacea, Thalassinidea, Callianassidae), Mar. Biol., 148,
1369–1382, https://doi.org/10.1007/s00227-005-0161-8, 2006.
Emerson, S. and Bender, M.: Carbon fluxes at the sediment-water interface of
the deep-sea: calcium carbonate preservation, J. Mar. Res., 39, 139–162,
1981.
Emerson, S., Fischer, K., Reimers, C., and Heggie, D.: Organic carbon
dynamics and preservation in deep-sea sediments, Deep-Sea Res. Pt. I, 32,
1–21, 1985.
Flügel, E.: Diagenesis, Porosity, and Dolomitization, in: Microfacies of
Carbonate Rocks: Analysis, Interpretation and Application, Springer, Berlin
Heidelberg, 267–338, https://doi.org/10.1007/978-3-662-08726-8_7, 2004.
Furukawa, Y.: Biogeochemical consequences of macrofauna burrow ventilation,
Geochem. T., 2, 1–9, https://doi.org/10.1186/1467-4866-2-83, 2001.
Gerino, M., Aller, R. C., Lee, C., Cochran, J. K., Aller, J. Y., Green, M.
A., and Hirschberg, D.: Comparison of different tracers and methods used to
quantify bioturbation during a spring bloom: 234-Thorium, Luminophores and
Chlorophylla, Estuar. Coast. Shelf S., 46, 531–547,
https://doi.org/10.1006/ecss.1997.0298, 1998.
Ghirardelli, L. A.: Endolithic Microorganisms in Live and Dead Thalli of
Coralline Red Algae (Corallinales, Rhodophyta) in the Northern Adriatic Sea,
Acta Geol. Hisp., 37, 53–60, 2002.
Green, M. A., Aller, R. C., and Aller, J. Y.: Experimental evaluation of the
influences of biogenic reworking on carbonate preservation in nearshore
sediments, Mar. Geol., 107, 175–181,
https://doi.org/10.1016/0025-3227(92)90166-F, 1992.
Gupta, A. K., Singh, R. K., Joseph, S., and Thomas, E.: Indian Ocean
high-productivity event (10–8 Ma): Linked to global cooling or to the
initiation of the Indian monsoons?, Geology, 32, 753–756,
https://doi.org/10.1130/g20662.1, 2004.
Hein, J. R. and Koschinsky, A.: Deep-Ocean Ferromanganese Crusts and Nodules
A2 – Holland, Heinrich, D., in: Treatise on Geochemistry,
edited by: Turekian, K. K., Elsevier, Oxford, 273–291, 2014.
Holligan, P. M. and Robertson, J. E.: Significance of ocean carbonate
budgets for the global carbon cycle, Global Change Biol., 2, 85–95,
https://doi.org/10.1111/j.1365-2486.1996.tb00053.x, 1996.
Hydes, D. J.: Animal burrows in deep-sea sediments. Wormley, UK, Institute of
Oceanographic Sciences, Institute of Oceanographic Sciences Report 151, 36
pp., 1982.
Jahnke, R. A. and Jahnke, D. B.: Calcium carbonate dissolution in deep sea
sediments: Reconciling microelectrode, pore water and benthic flux chamber
results, Geochim. Cosmochim. Ac., 68, 47–59,
https://doi.org/10.1016/S0016-7037(03)00260-6, 2004.
Koller, H., Dworschak, P. C., and Abed-Navandi, D.: Burrows of Pestarella
tyrrhena (Decapoda: Thalassinidea): hot spots for Nematoda, Foraminifera and
bacterial densities, J. Mar. Biol. Assoc. UK., 86, 1113–1122,
https://doi.org/10.1017/S0025315406014093, 2006.
Koretsky, C. M., Meile, C., and Van Cappellen, P.: Incorporating Ecological
and Biogeochemical Information into Irrigation Models, in: Interactions
Between Macro- and Microorganisms in Marine Sediments, American Geophysical
Union, 341–350, https://doi.org/10.1029/CE060p0341, 2013.
Kristensen, E.: Organic matter diagenesis at the oxic/anoxic interface in
coastal marine sediments, with emphasis on the role of burrowing animals,
Hydrobiologia, 426, 1–24, https://doi.org/10.1023/a:1003980226194, 2000.
Kristensen, E. and Kostka, J. E.: Macrofaunal Burrows and Irrigation in
Marine Sediment: Microbiological and Biogeochemical Interactions, in:
Interactions Between Macro- and Microorganisms in Marine Sediments, American
Geophysical Union, 125–157, https://doi.org/10.1029/CE060p0125, 2013.
Lalonde, S. V., Dafoe, L. T., Pemberton, S. G., Gingras, M. K., and
Konhauser, K. O.: Investigating the geochemical impact of burrowing animals:
Proton and cadmium adsorption onto the mucus lining of Terebellid polychaete
worms, Chem. Geol., 271, 44–51,
https://doi.org/10.1016/j.chemgeo.2009.12.010, 2010.
Li, J., Peng, X., Zhou, H., Li, J., Sun, Z., and Chen, S.: Microbial
Communities in Semi-consolidated Carbonate Sediments of the Southwest Indian
Ridge, J. Microbiol., 52, 111–119, https://doi.org/10.1007/s12275-014-3133-1,
2014.
Lohrer, A. M., Thrush, S. F., and Gibbs, M. M.: Bioturbators enhance
ecosystem function through complex biogeochemical interactions, Nature, 431,
1092–1095, https://doi.org/10.1038/nature03042, 2004.
Meysman, F. J., Middelburg, J. J., and Heip, C. H.: Bioturbation: a fresh
look at Darwin's last idea, Trends. Ecol. Evol., 21, 688–695,
https://doi.org/10.1016/j.tree.2006.08.002, 2006.
Michaud, E., Desrosiers, G., Long, B., De Montety, L., Crémer, J.-F.,
Pelletier, E., Locat, J., Gilbert, F., and Stora, G.: Use of axial tomography
to follow temporal changes of benthic communities in an unstable sedimentary
environment (Baie des Ha! Ha!, Saguenay Fjord), J. Exp. Mar. Biol. Ecol.,
285, 265–282, https://doi.org/10.1016/S0022-0981(02)00532-4, 2003.
Petrash, D. A., Lalonde, S. V., Gingras, M. K., and Konhauser, K. O.: A
Surrogate approach to studying the chemical reactivity of burrow mucous
linings in marine sediments, Palaios, 26, 594–600,
https://doi.org/10.2110/palo.2010.p10-140r, 2011.
Pimm, A., Garrison, R., and Boyce, R.: Sedimentology synthesis: lithology,
chemistry and physical properties of sediments in the northwestern Pacific
Ocean, in: Initial Reports of the Deep Sea Drilling Projec, edited by:
Fischer, A. and Heezen, B., US Government Printing Office, Washington,
1131–1252, 1971.
Plank, T. and Langmuir, C. H.: The chemical composition of subducting
sediment and its consequences for the crust and mantle, Chem. Geol., 145,
325–394, https://doi.org/10.1016/S0009-2541(97)00150-2, 1998.
Qing, H. and Veizer, J.: Oxygen and carbon isotopic composition of
Ordovician brachiopods: Implications for coeval seawater, Geochim. Cosmochim.
Ac., 58, 4429–4442, https://doi.org/10.1016/0016-7037(94)90345-X, 1994.
Rae, J. W. B., Foster, G. L., Schmidt, D. N., and Elliott, T.: Boron isotopes
and
B∕Ca in benthic foraminifera: proxies for the deep ocean carbonate
system, Earth Planet. Sc. Lett., 302, 403–413,
https://doi.org/10.1016/j.epsl.2010.12.034, 2011.
Raghukumar, C., Bharathi, P. A. L., Ansari, Z. A., Nair, S., Ingole, B. S.,
Sheelu, G., Mohandass, C., Nath, B. N., and Rodrigues, N.: Bacterial standing
stock, meiofauna and sediment-nutrient characteristics: Indicators of benthic
disturbance in the Central Indian Basin, Deep-Sea Res. Pt. II, 48, 3381–3399,
https://doi.org/10.1016/S0967-0645(01)00047-9, 2001.
Rai, A. K. and Singh, V. B.: Late Neogene deep-sea benthic foraminifera at
ODP Site 762B, eastern Indian Ocean: diversity trends and palaeoceanography,
Palaeogeogr. Palaeocl., 173, 1–8,
https://doi.org/10.1016/S0031-0182(01)00299-1, 2001.
Schlanger, S. O. and Douglas, R. G.: The Pelagic Ooze-Chalk-Limestone
Transition and its Implications for Marine Stratigraphy, in: Pelagic
Sediments: On Land and under the Sea, Blackwell Publishing Ltd., Oxford,
117–148, 1974.
Singh, R. K., Gupta, A. K., and Das, M.: Paleoceanographic significance of
deep-sea benthic foraminiferal species diversity at southeastern Indian Ocean
Hole 752A during the Neogene, Palaeogeogr. Palaeocl., 361–362, 94–103,
https://doi.org/10.1016/j.palaeo.2012.08.008, 2012.
Thompson, G., Bowen, V., Melson, W., and Cifelli, R.: Lithified carbonates
from the deep-sea of the equatorial Atlantic, J. Sediment. Res., 38,
1305–1312, 1968.
Van de Velde, S. and Meysman, F. J. R.: The influence of bioturbation on
iron and sulphur cycling in marine sediments: a model analysis, Aquat.
Geochem., 22, 469–504, https://doi.org/10.1007/s10498-016-9301-7, 2016.
Wolfe, M. J.: Lithification of a carbonate mud: Senonian chalk in Northern
Ireland, Sediment. Geol., 2, 263–290, 1968.
Xiong, Z., Li, T., Algeo, T., Chang, F., Xuebo, Yin, and Xu, Z.:
Rare earth element geochemistry of laminated diatom mats from tropical West
Pacific: Evidence for more reducing bottomwaters and higher primary
productivity during the Last Glacial Maximum, Chem. Geol., 296–297, 103–118,
https://doi.org/10.1016/j.chemgeo.2011.12.012, 2012.
Xu, H., Peng, X., Chen, S., Li, J., Dasgupta, S., Ta, K., and Du, M.:
Data.xlsx.figshare.Dataset, available at:
https://doi.org/10.6084/m9.figshare.7233149.v1, last access: 21 October 2018.
Zhu, J., Lin, J., Chen, Y. J., Tao, C., German, C. R., Yoerger, D. R., and
Tivey, M. A.: A reduced crustal magnetization zone near the first observed
active hydrothermal vent field on the Southwest Indian Ridge, Geophys. Res.
Lett., 37, L18303, https://doi.org/10.1029/2010GL043542, 2010.