Articles | Volume 16, issue 1
https://doi.org/10.5194/bg-16-135-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-135-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biogeochemical response of the Mediterranean Sea to the transient SRES-A2 climate change scenario
LSCE/IPSL, Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
now at: Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK
Jean-Claude Dutay
LSCE/IPSL, Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
Laurent Bopp
Laboratoire de Météorologie Dynamique, LMD/IPSL, Ecole Normale Supérieure – PSL Research Univ.,
CNRS,
Sorbonne Université, Ecole Polytechnique, Paris, France
Briac Le Vu
Laboratoire de Météorologie Dynamique, LMD/IPSL, Ecole Normale Supérieure – PSL Research Univ.,
CNRS,
Sorbonne Université, Ecole Polytechnique, Paris, France
James C. Orr
LSCE/IPSL, Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
Samuel Somot
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
François Dulac
LSCE/IPSL, Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
Related authors
No articles found.
Mathieu Delteil, Marina Lévy, and Laurent Bopp
EGUsphere, https://doi.org/10.5194/egusphere-2025-2805, https://doi.org/10.5194/egusphere-2025-2805, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The ocean is losing oxygen due to climate change, threatening ecosystems, especially in naturally low-oxygen areas called Oxygen Minimum Zones (OMZs). Using the IPSL-CM6A-LR Large Ensemble, this study identifies when climate-driven changes in OMZ volumes and regional deoxygenation emerge from natural variability. We highlight hemispheric asymmetries due to ocean ventilation and provide model-based estimates for the timing of detectable OMZ evolution.
Alex Nalivaev, Francesco d'Ovidio, Laurent Bopp, Maristella Berta, Louise Rousselet, Clara Azarian, and Stéphane Blain
EGUsphere, https://doi.org/10.5194/egusphere-2025-2145, https://doi.org/10.5194/egusphere-2025-2145, 2025
Short summary
Short summary
The Kerguelen region hosts a phytoplankton bloom influenced by several iron sources. In particular, glaciers supply iron to the coastal waters. However, the importance of glacial iron for the bloom is not known. Here we calculate iron transport pathways from glaciers to the open ocean using in situ and satellite data, showing that one third of the offshore bloom is reached by glacial iron. These results are important in the context of the melting of the Kerguelen ice cap under climate change.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Alban Planchat, Laurent Bopp, and Lester Kwiatkowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-523, https://doi.org/10.5194/egusphere-2025-523, 2025
Short summary
Short summary
Disparities in ocean carbon sink estimates derived from observations and models raise questions about our ability to accurately assess its magnitude and trend. Essential for isolating the anthropogenic component of the total air-sea carbon flux estimated from observations, the pre-industrial air-sea carbon flux is a key source of uncertainty. Thus, we take a fresh look at this flux using the alkalinity budget, alongside the carbon budget which had previously been considered alone.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024, https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Timothée Bourgeois, Olivier Torres, Friederike Fröb, Aurich Jeltsch-Thömmes, Giang T. Tran, Jörg Schwinger, Thomas L. Frölicher, Jean Negrel, David Keller, Andreas Oschlies, Laurent Bopp, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2768, https://doi.org/10.5194/egusphere-2024-2768, 2024
Short summary
Short summary
Anthropogenic greenhouse gas emissions significantly impact ocean ecosystems through climate change and acidification, leading to either progressive or abrupt changes. This study maps the crossing of physical and ecological limits for various ocean impact metrics under three emission scenarios. Using Earth system models, we identify when these limits are exceeded, highlighting the urgent need for ambitious climate action to safeguard the world's oceans and ecosystems.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Kazuyo Tachikawa, Camille Risi, and Gilles Ramstein
Geosci. Model Dev., 17, 6627–6655, https://doi.org/10.5194/gmd-17-6627-2024, https://doi.org/10.5194/gmd-17-6627-2024, 2024
Short summary
Short summary
Water isotopes (δ18O, δD) are one of the most widely used proxies in ocean climate research. Previous studies using water isotope observations and modelling have highlighted the importance of understanding spatial and temporal isotopic variability for a quantitative interpretation of these tracers. Here we present the first results of a high-resolution regional dynamical model (at 1/12° horizontal resolution) developed for the Mediterranean Sea, one of the hotspots of ongoing climate change.
Alban Planchat, Laurent Bopp, Lester Kwiatkowski, and Olivier Torres
Earth Syst. Dynam., 15, 565–588, https://doi.org/10.5194/esd-15-565-2024, https://doi.org/10.5194/esd-15-565-2024, 2024
Short summary
Short summary
Ocean acidification is likely to impact all stages of the ocean carbonate pump. We show divergent responses of CaCO3 export throughout this century in earth system models, with anomalies by 2100 ranging from −74 % to +23 % under a high-emission scenario. While we confirm the limited impact of carbonate pump anomalies on 21st century ocean carbon uptake and acidification, we highlight a potentially abrupt shift in CaCO3 dissolution from deep to subsurface waters beyond 2100.
Bertrand Guenet, Jérémie Orliac, Lauric Cécillon, Olivier Torres, Laura Sereni, Philip A. Martin, Pierre Barré, and Laurent Bopp
Biogeosciences, 21, 657–669, https://doi.org/10.5194/bg-21-657-2024, https://doi.org/10.5194/bg-21-657-2024, 2024
Short summary
Short summary
Heterotrophic respiration fluxes are a major flux between surfaces and the atmosphere, but Earth system models do not yet represent them correctly. Here we benchmarked Earth system models against observation-based products, and we identified the important mechanisms that need to be improved in the next-generation Earth system models.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
David T. Ho, Laurent Bopp, Jaime B. Palter, Matthew C. Long, Philip W. Boyd, Griet Neukermans, and Lennart T. Bach
State Planet, 2-oae2023, 12, https://doi.org/10.5194/sp-2-oae2023-12-2023, https://doi.org/10.5194/sp-2-oae2023-12-2023, 2023
Short summary
Short summary
Monitoring, reporting, and verification (MRV) refers to the multistep process to quantify the amount of carbon dioxide removed by a carbon dioxide removal (CDR) activity. Here, we make recommendations for MRV for Ocean Alkalinity Enhancement (OAE) research, arguing that it has an obligation for comprehensiveness, reproducibility, and transparency, as it may become the foundation for assessing large-scale deployment. Both observations and numerical simulations will be needed for MRV.
Clément Haëck, Marina Lévy, Inès Mangolte, and Laurent Bopp
Biogeosciences, 20, 1741–1758, https://doi.org/10.5194/bg-20-1741-2023, https://doi.org/10.5194/bg-20-1741-2023, 2023
Short summary
Short summary
Phytoplankton vary in abundance in the ocean over large regions and with the seasons but also because of small-scale heterogeneities in surface temperature, called fronts. Here, using satellite imagery, we found that fronts enhance phytoplankton much more where it is already growing well, but despite large local increases the enhancement for the region is modest (5 %). We also found that blooms start 1 to 2 weeks earlier over fronts. These effects may have implications for ecosystems.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023, https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary
Short summary
Gelatinous zooplankton play a key role in the ocean carbon cycle. In particular, pelagic tunicates, which feed on a wide size range of prey, produce rapidly sinking detritus. Thus, they efficiently transfer carbon from the surface to the depths. Consequently, we added these organisms to a marine biogeochemical model (PISCES-v2) and evaluated their impact on the global carbon cycle. We found that they contribute significantly to carbon export and that this contribution increases with depth.
Mohamed Ayache, Jean-Claude Dutay, Kazuyo Tachikawa, Thomas Arsouze, and Catherine Jeandel
Biogeosciences, 20, 205–227, https://doi.org/10.5194/bg-20-205-2023, https://doi.org/10.5194/bg-20-205-2023, 2023
Short summary
Short summary
The neodymium (Nd) is one of the most useful tracers to fingerprint water mass provenance. However, the use of Nd is hampered by the lack of adequate quantification of the external sources. Here, we present the first simulation of dissolved Nd concentration and Nd isotopic composition in the Mediterranean Sea using a high-resolution model. We aim to better understand how the various external sources affect the Nd cycle and particularly assess how it is impacted by atmospheric inputs.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Pradeebane Vaittinada Ayar, Laurent Bopp, Jim R. Christian, Tatiana Ilyina, John P. Krasting, Roland Séférian, Hiroyuki Tsujino, Michio Watanabe, Andrew Yool, and Jerry Tjiputra
Earth Syst. Dynam., 13, 1097–1118, https://doi.org/10.5194/esd-13-1097-2022, https://doi.org/10.5194/esd-13-1097-2022, 2022
Short summary
Short summary
The El Niño–Southern Oscillation is the main driver for the natural variability of global atmospheric CO2. It modulates the CO2 fluxes in the tropical Pacific with anomalous CO2 influx during El Niño and outflux during La Niña. This relationship is projected to reverse by half of Earth system models studied here under the business-as-usual scenario. This study shows models that simulate a positive bias in surface carbonate concentrations simulate a shift in the ENSO–CO2 flux relationship.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Karine Desboeufs, Franck Fu, Matthieu Bressac, Antonio Tovar-Sánchez, Sylvain Triquet, Jean-François Doussin, Chiara Giorio, Patrick Chazette, Julie Disnaquet, Anaïs Feron, Paola Formenti, Franck Maisonneuve, Araceli Rodríguez-Romero, Pascal Zapf, François Dulac, and Cécile Guieu
Atmos. Chem. Phys., 22, 2309–2332, https://doi.org/10.5194/acp-22-2309-2022, https://doi.org/10.5194/acp-22-2309-2022, 2022
Short summary
Short summary
This article reports the first concurrent sampling of wet deposition samples and surface seawater and was performed during the PEACETIME cruise in the remote Mediterranean (May–June 2017). Through the chemical composition of trace metals (TMs) in these samples, it emphasizes the decrease of atmospheric metal pollution in this area during the last few decades and the critical role of wet deposition as source of TMs for Mediterranean surface seawater, especially for intense dust deposition events.
Guillaume Evin, Samuel Somot, and Benoit Hingray
Earth Syst. Dynam., 12, 1543–1569, https://doi.org/10.5194/esd-12-1543-2021, https://doi.org/10.5194/esd-12-1543-2021, 2021
Short summary
Short summary
This research paper proposes an assessment of mean climate change responses and related uncertainties over Europe for mean seasonal temperature and total seasonal precipitation. An advanced statistical approach is applied to a large ensemble of 87 high-resolution EURO-CORDEX projections. For the first time, we provide a comprehensive estimation of the relative contribution of GCMs and RCMs, RCP scenarios, and internal variability to the total variance of a very large ensemble.
Matthieu Bressac, Thibaut Wagener, Nathalie Leblond, Antonio Tovar-Sánchez, Céline Ridame, Vincent Taillandier, Samuel Albani, Sophie Guasco, Aurélie Dufour, Stéphanie H. M. Jacquet, François Dulac, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 6435–6453, https://doi.org/10.5194/bg-18-6435-2021, https://doi.org/10.5194/bg-18-6435-2021, 2021
Short summary
Short summary
Phytoplankton growth is limited by the availability of iron in about 50 % of the ocean. Atmospheric deposition of desert dust represents a key source of iron. Here, we present direct observations of dust deposition in the Mediterranean Sea. A key finding is that the input of iron from dust primarily occurred in the deep ocean, while previous studies mainly focused on the ocean surface. This new insight will enable us to better represent controls on global marine productivity in models.
Isabelle Chiapello, Paola Formenti, Lydie Mbemba Kabuiku, Fabrice Ducos, Didier Tanré, and François Dulac
Atmos. Chem. Phys., 21, 12715–12737, https://doi.org/10.5194/acp-21-12715-2021, https://doi.org/10.5194/acp-21-12715-2021, 2021
Short summary
Short summary
The Mediterranean atmosphere is impacted by a variety of particle pollution, which exerts a complex pressure on climate and air quality. We analyze the 2005–2013 POLDER-3 satellite advanced aerosol data set over the Western Mediterranean Sea. Aerosols' spatial distribution and temporal evolution suggests a large-scale improvement of air quality related to the fine aerosol component, most probably resulting from reduction of anthropogenic particle emissions in the surrounding European countries.
Damien Couespel, Marina Lévy, and Laurent Bopp
Biogeosciences, 18, 4321–4349, https://doi.org/10.5194/bg-18-4321-2021, https://doi.org/10.5194/bg-18-4321-2021, 2021
Short summary
Short summary
An alarming consequence of climate change is the oceanic primary production decline projected by Earth system models. These coarse-resolution models parameterize oceanic eddies. Here, idealized simulations of global warming with increasing resolution show that the decline in primary production in the eddy-resolved simulations is half as large as in the eddy-parameterized simulations. This stems from the high sensitivity of the subsurface nutrient transport to model resolution.
Thomas Drugé, Pierre Nabat, Marc Mallet, and Samuel Somot
Atmos. Chem. Phys., 21, 7639–7669, https://doi.org/10.5194/acp-21-7639-2021, https://doi.org/10.5194/acp-21-7639-2021, 2021
Short summary
Short summary
This study presents the surface mass concentration and AOD evolution of various aerosols over the Euro-Mediterranean region between the end of the 20th century and the mid-21st century. This study also describes the part of the expected climate change over the Euro-Mediterranean region that can be explained by the evolution of these different aerosols.
Andrea J. Fassbender, James C. Orr, and Andrew G. Dickson
Biogeosciences, 18, 1407–1415, https://doi.org/10.5194/bg-18-1407-2021, https://doi.org/10.5194/bg-18-1407-2021, 2021
Short summary
Short summary
A decline in upper-ocean pH with time is typically ascribed to ocean acidification. A more quantitative interpretation is often confused by failing to recognize the implications of pH being a logarithmic transform of hydrogen ion concentration rather than an absolute measure. This can lead to an unwitting misinterpretation of pH data. We provide three real-world examples illustrating this and recommend the reporting of both hydrogen ion concentration and pH in studies of ocean chemical change.
Cécile Debevec, Stéphane Sauvage, Valérie Gros, Thérèse Salameh, Jean Sciare, François Dulac, and Nadine Locoge
Atmos. Chem. Phys., 21, 1449–1484, https://doi.org/10.5194/acp-21-1449-2021, https://doi.org/10.5194/acp-21-1449-2021, 2021
Short summary
Short summary
This study provides a better characterization of the seasonal variations in VOC sources impacting the western Mediterranean region, based on a comprehensive chemical composition measured over 25 months at a representative receptor site (Ersa) and by determining factors controlling their temporal variations. Some insights into dominant drivers for VOC concentration variations in Europe are also provided, built on comparisons of Ersa observations with the concomitant ones of 17 European sites.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Cécile Guieu, Fabrizio D'Ortenzio, François Dulac, Vincent Taillandier, Andrea Doglioli, Anne Petrenko, Stéphanie Barrillon, Marc Mallet, Pierre Nabat, and Karine Desboeufs
Biogeosciences, 17, 5563–5585, https://doi.org/10.5194/bg-17-5563-2020, https://doi.org/10.5194/bg-17-5563-2020, 2020
Short summary
Short summary
We describe here the objectives and strategy of the PEACETIME project and cruise, dedicated to dust deposition and its impacts in the Mediterranean Sea. Our strategy to go a step further forward than in previous approaches in understanding these impacts by catching a real deposition event at sea is detailed. We summarize the work performed at sea, the type of data acquired and their valorization in the papers published in the special issue.
Cited articles
Adloff, F., Somot, S., Sevault, F., Jordà, G., Aznar, R., Déqué, M.,
Herrmann, M., Marcos, M., Dubois, C., Padorno, E., Alvarez-Fanjul, E., and
Gomis, D.: Mediterranean Sea response to climate change in an ensemble of
twenty first century scenarios, Clim. Dynam., 45, 2775–2802,
https://doi.org/10.1007/s00382-015-2507-3,
2015. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x
Albouy, C., Leprieur, F., Le Loc'h, F., Mouquet, N., Meynard, C. N., Douzery,
E. J. P., and Mouillot, D.: Projected impacts of climate warming on the
functional and phylogenetic components of coastal Mediterranean fish
biodiversity, Ecography, 38, 681–689, https://doi.org/10.1111/ecog.01254, 2015. a
Andrello, M., Mouillot, D., Somot, S., Thuiller, W., and Manel, S.: Additive
effects of climate change on connectivity between marine protected areas and
larval supply to fished areas, Divers. Distrib., 21, 139–150,
https://doi.org/10.1111/ddi.12250, 2015. a
Auger, P. A., Ulses, C., Estournel, C., Stemmann, L., Somot, S., and Diaz, F.:
Interannual control of plankton communities by deep winter mixing and
prey/predator interactions in the NW Mediterranean: Results from a
30-year 3D modeling study, Prog. Oceanogr., 124, 12–27,
https://doi.org/10.1016/j.pocean.2014.04.004, 2014. a
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron
fertilization studies: GLOBALIZING IRON FERTILIZATION, Global
Biogeochem. Cy., 20, 15 pp., https://doi.org/10.1029/2005GB002591, 2006. a, b, c
Beuvier, J., Sevault, F., Herrmann, M., Kontoyiannis, H., Ludwig, W., Rixen,
M., Stanev, E., Béranger, K., and Somot, S.: Modeling the Mediterranean
Sea interannual variability during 1961–2000: Focus on the Eastern
Mediterranean Transient, J. Geophys. Res.-Ocean., 115,
C08017, https://doi.org/10.1029/2009JC005950, 2010. a, b
Béthoux, J. P. and Copin-Montégut, G.: Biological fixation of
atmospheric
nitrogen in the Mediterranean Sea, Limnol. Oceanogr., 31,
1353–1358, https://doi.org/10.4319/lo.1986.31.6.1353, 1986. a
Béthoux, J. P., Morin, P., Chaumery, C., Connan, O., Gentili, B., and
Ruiz-Pino, D.: Nutrients in the Mediterranean Sea, mass balance and
statistical analysis of concentrations with respect to environmental change,
Mar. Chem., 63, 155–169, https://doi.org/10.1016/S0304-4203(98)00059-0, 1998. a
Bonnet, S., Grosso, O., and Moutin, T.: Planktonic dinitrogen fixation along
a longitudinal gradient across the Mediterranean Sea during the stratified
period (BOUM cruise), Biogeosciences, 8, 2257–2267,
https://doi.org/10.5194/bg-8-2257-2011, 2011. a
Bosc, E., Bricaud, A., and Antoine, D.: Seasonal and interannual variability in
algal biomass and primary production in the Mediterranean Sea, as derived
from 4 years of SeaWiFS observations: Mediterranean Sea biomass and
production, Global Biogeochem. Cy., 18, 17 pp.,
https://doi.org/10.1029/2003GB002034, 2004. a, b
Christodoulaki, S., Petihakis, G., Kanakidou, M., Mihalopoulos, N., Tsiaras,
K., and Triantafyllou, G.: Atmospheric deposition in the Eastern
Mediterranean. A driving force for ecosystem dynamics, J. Mar.
Syst., 109/110, 78–93, https://doi.org/10.1016/j.jmarsys.2012.07.007, 2013. a, b, c
Chust, G., Allen, J. I., Bopp, L., Schrum, C., Holt, J., Tsiaras, K.,
Zavatarelli, M., Chifflet, M., Cannaby, H., Dadou, I., Daewel, U., Wakelin,
S. L., Machu, E., Pushpadas, D., Butenschon, M., Artioli, Y., Petihakis, G.,
Smith, C., Garçon, V., Goubanova, K., Vu, B. L., Fach, B. A., Salihoglu, B.,
Clementi, E., and Irigoien, X.: Biomass changes and trophic amplification of
plankton in a warmer ocean, Glob. Change Biol., 20, 2124–2139,
https://doi.org/10.1111/gcb.12562,
2014. a, b
Civitarese, G., Gačić, M., Lipizer, M., and Eusebi Borzelli, G. L.:
On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry
and biology of the Adriatic and Ionian Seas (Eastern Mediterranean),
Biogeosciences, 7, 3987–3997, https://doi.org/10.5194/bg-7-3987-2010, 2010. a, b
Claustre, H., Morel, A., Hooker, S. B., Babin, M., Antoine, D., Oubelkheir, K.,
Bricaud, A., Leblanc, K., Quéguiner, B., and Maritorena, S.: Is desert dust
making oligotrophic waters greener?, Geophys. Res. Lett., 29,
1–4, https://doi.org/10.1029/2001GL014056, 2002. a
Cork, S., Peterson, G., Petschel-Held, G., Alcamo, J., Alder, J., Bennett, E.,
Carr, E., Deane, D., Nelson, G., and Ribeiro, T.: Four scenarios,
Ecosystems and human well-being: Scenarios, 2,
http://www.millenniumassessment.org/documents/document.332.aspx.pdf (last access: 11 January 2019), 2005. a
Crispi, G., Mosetti, R., Solidoro, C., and Crise, A.: Nutrients cycling in
Mediterranean basins: the role of the biological pump in the trophic
regime, Ecol. Model., 138, 101–114,
https://doi.org/10.1016/S0304-3800(00)00396-3, 2001. a
Déqué, M., Dreveton, C., Braun, A., and Cariolle, D.: The
ARPEGE/IFS
atmosphere model: a contribution to the French community climate modelling,
Clim. Dynam., 10, 249–266, 1994. a
Diaz, F., Raimbault, P., Boudjellal, B., Garcia, N., and Moutin, T.: Early
spring phosphorus limitation of primary productivity in a NW
Mediterranean coastal zone (Gulf of Lions), Mar. Ecol. Prog.
Ser., 211, 51–62, https://doi.org/10.3354/meps211051, 2001. a
D'Ortenzio, F. and Ribera d'Alcalà, M.: On the trophic regimes of the
Mediterranean Sea: a satellite analysis, Biogeosciences, 6, 139–148,
https://doi.org/10.5194/bg-6-139-2009, 2009. a
Dubois, C., Somot, S., Calmanti, S., Carillo, A., Déqué, M.,
Dell'Aquilla,
A., Elizalde, A., Gualdi, S., Jacob, D., L'Hévéder, B., Li, L., Oddo, P.,
Sannino, G., Scoccimarro, E., and Sevault, F.: Future projections of the
surface heat and water budgets of the Mediterranean Sea in an ensemble of
coupled atmosphere-ocean regional climate models, Clim. Dynam., 39,
1859–1884, https://doi.org/10.1007/s00382-011-1261-4, 2012. a
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O.,
Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L.,
Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., Noblet, N. d., Duvel, J.-P., Ethé, C., Fairhead, L., Fichefet,
T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi,
E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S.,
Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P.,
Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M.,
Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S.,
Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C.,
Terray, P., Viovy, N., and Vuichard, N.: Climate change projections using the
IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, Clim.
Dynam., 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1,
2013. a, b, c
Dunic, N., Vilibic, I., Šepic, J., Somot, S., and Sevault, F.: Dense
water
formation and BiOS-induced variability in the Adriatic Sea simulated
using an ocean regional circulation model, Clim. Dynam., 51, 1211–1236,
https://doi.org/10.1007/s00382-016-3310-5, 2016. a
Faugeras, B., Lévy, M., Mémery, L., Verron, J., Blum, J., and
Charpentier,
I.: Can biogeochemical fluxes be recovered from nitrate and chlorophyll data?
A case study assimilating data in the Northwestern Mediterranean Sea
at the JGOFS-DYFAMED station, J. Marine Syst., 40/41, 99–125,
https://doi.org/10.1016/S0924-7963(03)00015-0, 2003. a, b
Fichaut, M., Garcia, M. J., Giorgetti, A., Iona, A., Kuznetsov, A., Rixen,
M., and Group, M.: MEDAR/MEDATLAS 2002: A Mediterranean and Black Sea
database for operational oceanography, in: Elsevier Oceanography Series, vol.
69 of Building the European Capacity in Operational Oceanography Proceedings
ofthe Third International Conference on EuroGOOS, edited by: Dahlin, H.,
Flemming, N. C., Nittis, K., and Petersson, S. E., Elsevier, 645–648,
https://doi.org/10.1016/S0422-9894(03)80107-1, 2003. a
Gallisai, R., Peters, F., Volpe, G., Basart, S., and Baldasano, J. M.: Saharan
Dust Deposition May Affect Phytoplankton Growth in the
Mediterranean Sea at Ecological Time Scales, PLoS ONE, 9,
e110762, https://doi.org/10.1371/journal.pone.0110762, 2014. a
Gibelin, A.-L. and Déqué, M.: Anthropogenic climate change over the
Mediterranean region simulated by a global variable resolution model,
Clim. Dynam., 20, 327–339, https://doi.org/10.1007/s00382-002-0277-1,
2003. a
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33,
L08707, https://doi.org/10.1029/2006GL025734, 2006. a, b
Giorgi, F. and Lionello, P.: Climate change projections for the Mediterranean
region, Glob. Planet. Change, 63, 90–104,
https://doi.org/10.1016/j.gloplacha.2007.09.005, 2008. a
Gómez, F.: The role of the exchanges through the Strait of Gibraltar
on
the budget of elements in the Western Mediterranean Sea: consequences
of human-induced modifications, Mar. Pollut. Bull., 46, 685–694,
https://doi.org/10.1016/S0025-326X(03)00123-1, 2003. a, b
Guieu, C., Ridame, C., Pulido-Villena, E., Bressac, M., Desboeufs, K., and
Dulac, F.: Impact of dust deposition on carbon budget: a tentative assessment
from a mesocosm approach, Biogeosciences, 11, 5621–5635,
https://doi.org/10.5194/bg-11-5621-2014, 2014. a, b
Harley, C. D. G., Randall Hughes, A., Hultgren, K. M., Miner, B. G., Sorte, C.
J. B., Thornber, C. S., Rodriguez, L. F., Tomanek, L., and Williams, S. L.:
The impacts of climate change in coastal marine systems, Ecol. Lett., 9,
228–241, https://doi.org/10.1111/j.1461-0248.2005.00871.x, 2006. a
Hattab, T., Albouy, C., Lasram, F. B. R., Somot, S., Le Loc'h, F., and
Leprieur, F.: Towards a better understanding of potential impacts of climate
change on marine species distribution: a multiscale modelling approach,
Glob. Ecol. Biogeogr., 23, 1417–1429, https://doi.org/10.1111/geb.12217, 2014. a
Hauglustaine, D. A., Balkanski, Y., and Schulz, M.: A global model simulation
of present and future nitrate aerosols and their direct radiative forcing of
climate, Atmos. Chem. Phys., 14, 11031–11063,
https://doi.org/10.5194/acp-14-11031-2014, 2014. a
Herrmann, M., Sevault, F., Beuvier, J., and Somot, S.: What induced the
exceptional 2005 convection event in the northwestern Mediterranean basin?
Answers from a modeling study, J. Geophys. Res.-Ocean.,
115, C12051, https://doi.org/10.1029/2010JC006162, 2010. a
Herrmann, M., Diaz, F., Estournel, C., Marsaleix, P., and Ulses, C.: Impact of
atmospheric and oceanic interannual variability on the Northwestern
Mediterranean Sea pelagic planktonic ecosystem and associated carbon
cycle, J. Geophys. Res.-Ocean., 118, 5792–5813,
https://doi.org/10.1002/jgrc.20405, 2013. a
Herrmann, M., Estournel, C., Adloff, F., and Diaz, F.: Impact of climate change
on the northwestern Mediterranean Sea pelagic planktonic ecosystem and
associated carbon cycle, J. Geophys. Res.-Ocean., 119,
5815–5836, https://doi.org/10.1002/2014JC010016, 2014. a, b, c, d
Huertas, I. E., Ríos, A. F., García-Lafuente, J., Navarro, G.,
Makaoui, A.,
Sánchez-Romàn, A., Rodriguez-Galvez, S., Orbi, A., Ruíz, J., and Pérez,
F. F.: Atlantic forcing of the Mediterranean oligotrophy, Global
Biogeochem. Cy., 26, GB2022, https://doi.org/10.1029/2011GB004167, 2012. a, b, c, d
Ibello, V., Cantoni, C., Cozzi, S., and Civitarese, G.: First basin-wide
experimental results on N2 fixation in the open Mediterranean Sea,
Geophys. Res. Lett., 37, L03608, https://doi.org/10.1029/2009GL041635, 2010. a
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate
Change Adaptation. A Special Report of Working Groups I and II of the
Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, United Kingdom, and New York, NY, USA, 2012. a
IPCC and Working Group III: Emissions scenarios. a special report of IPCC
Working Group III, Intergovernmental Panel on Climate Change, Geneva,
available at: http://www.grida.no/climate/ipcc/emission/index.htm/
(last access: 11 January 2019), 2000. a
Jordà, G., Marbà, N., and Duarte, C. M.: Mediterranean seagrass
vulnerable to
regional climate warming, Nat. Clim. Change, 2, 821–824,
https://doi.org/10.1038/nclimate1533, 2012. a
Kanakidou, M., Myriokefalitakis, S., Daskalakis, N., Fanourgakis, G., Nenes,
A., Baker, A. R., Tsigaridis, K., and Mihalopoulos, N.: Past, Present, and
Future Atmospheric Nitrogen Deposition, J. Atmos.
Sci., 73, 2039–2047, https://doi.org/10.1175/JAS-D-15-0278.1,
2016. a
Klein, B., Roether, W., Kress, N., Manca, B. B., Ribera d'Alcala, M.,
Souvermezoglou, E., Theocharis, A., Civitarese, G., and Luchetta, A.:
Accelerated oxygen consumption in eastern Mediterranean deep waters
following the recent changes in thermohaline circulation, J.
Geophys. Res.-Ocean., 108, 8107, https://doi.org/10.1029/2002JC001454,2003. a
Krom, M. D., Herut, B., and Mantoura, R. F. C.: Nutrient budget for the
Eastern Mediterranean: Implications for phosphorus limitation,
Limnol. Oceanogr., 49, 1582–1592, https://doi.org/10.4319/lo.2004.49.5.1582, 2004. a
Krom, M. D., Emeis, K.-C., and Van Cappellen, P.: Why is the Eastern
Mediterranean phosphorus limited?, Prog. Oceanogr., 85, 236–244,
https://doi.org/10.1016/j.pocean.2010.03.003, 2010. a, b
Lascaratos, A., Roether, W., Nittis, K., and Klein, B.: Recent changes in deep
water formation and spreading in the eastern Mediterranean Sea: a review,
Prog. Oceanogr., 44, 5–36, https://doi.org/10.1016/S0079-6611(99)00019-1, 1999. a
Lazzari, P., Mattia, G., Solidoro, C., Salon, S., Crise, A., Zavatarelli, M.,
Oddo, P., and Vichi, M.: The impacts of climate change and environmental
management policies on the trophic regimes in the Mediterranean Sea:
Scenario analyses, J. Marine Syst., 135, 137–149,
https://doi.org/10.1016/j.jmarsys.2013.06.005, 2014. a, b, c
Lefort, S., Aumont, O., Bopp, L., Arsouze, T., Gehlen, M., and Maury, O.:
Spatial and body-size dependent response of marine pelagic communities to
projected global climate change, Glob. Change Biol., 21, 154–164,
https://doi.org/10.1111/gcb.12679, 2015. a
Locarnini, R. A., Garcia, H. E., Boyer, T. P., Antonov, J. I., and Levitus, S.:
World Ocean Atlas 2005, Volume 3: Dissolved Oxygen, Apparent
Oxygen Utilization, and Oxygen Saturation [+DVD], NOAA Atlas
NESDIS, available at: http://www.vliz.be/nl/imis?module=ref&refid=117383&printversion=1&dropIMIStitle=1 (last access: 11 January 2019), 2006. a
Ludwig, W., Bouwman, A. F., Dumont, E., and Lespinas, F.: Water and nutrient
fluxes from major Mediterranean and Black Sea rivers: Past and future
trends and their implications for the basin-scale budgets, Global
Biogeochem. Cy., 24, GB0A13, https://doi.org/10.1029/2009GB003594, 2010. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Luna, G. M., Bianchelli, S., Decembrini, F., Domenico, E. D., Danovaro, R., and
Dell'Anno, A.: The dark portion of the Mediterranean Sea is a bioreactor
of organic matter cycling, Global Biogeochem. Cy., 26,
https://doi.org/10.1029/2011GB004168, 2012. a
Macias, D. M., Garcia-Gorriz, E., and Stips, A.: Productivity changes in the
Mediterranean Sea for the twenty-first century in response to changes in
the regional atmospheric forcing, Front. Mar. Sci., 2, 13 pp.,
https://doi.org/10.3389/fmars.2015.00079, 2015. a, b, c
Madec, G.: NEMO ocean engine,
available at: https://www.nemo-ocean.eu/doc/ (last access: 11 January 2019), 2008. a
Monod, J.: Recherches sur la croissance des cultures bactériennes,
Hermann, 210 pp.,
1958. a
Morel, A. and Gentili, B.: The dissolved yellow substance and the shades of
blue in the Mediterranean Sea, Biogeosciences, 6, 2625–2636,
https://doi.org/10.5194/bg-6-2625-2009, 2009. a
Moutin, T., Van Wambeke, F., and Prieur, L.: Introduction to the
Biogeochemistry from the Oligotrophic to the Ultraoligotrophic Mediterranean
(BOUM) experiment, Biogeosciences, 9, 3817–3825,
https://doi.org/10.5194/bg-9-3817-2012, 2012. a
Nabat, P., Somot, S., Mallet, M., Michou, M., Sevault, F., Driouech, F.,
Meloni, D., di Sarra, A., Di Biagio, C., Formenti, P., Sicard, M., Léon,
J.-F., and Bouin, M.-N.: Dust aerosol radiative effects during summer 2012
simulated with a coupled regional aerosol-atmosphere-ocean model over the
Mediterranean, Atmos. Chem. Phys., 15, 3303–3326,
https://doi.org/10.5194/acp-15-3303-2015,
2015a. a
Nabat, P., Somot, S., Mallet, M., Sevault, F., Chiacchio, M., and Wild, M.:
Direct and semi-direct aerosol radiative effect on the Mediterranean
climate variability using a coupled regional climate system model, Clim.
Dynam., 44, 1127–1155, https://doi.org/10.1007/s00382-014-2205-6,
2015b. a, b
Nittis, K., Lascaratos, A., and Theocharis, A.: Dense water formation in the
Aegean Sea: Numerical simulations during the Eastern Mediterranean
Transient, J. Geophys. Res.-Ocean., 108, 8120,
https://doi.org/10.1029/2002JC001352, 2003. a
Palmieri, J., Orr, J. C., Dutay, J.-C., Béranger, K., Schneider, A.,
Beuvier,
J., and Somot, S.: Simulated anthropogenic CO2 storage and acidification of
the Mediterranean Sea, Biogeosciences, 12, 781–802,
https://doi.org/10.5194/bg-12-781-2015, 2015. a, b
Powley, H. R., Dürr, H. H., Lima, A. T., Krom, M. D., and Van Cappellen,
P.:
Direct Discharges of Domestic Wastewater are a Major Source of
Phosphorus and Nitrogen to the Mediterranean Sea, available at:
https://core.ac.uk/display/74234820 (last access: 11 January 2019), 2016. a
Powley, H. R., Krom, M. D., and Cappellen, P. V.: Understanding the unique
biogeochemistry of the Mediterranean Sea: Insights from a coupled
phosphorus and nitrogen model, Global Biogeochem. Cy., 31, 1010–1031,
https://doi.org/10.1002/2017GB005648, 2017. a
Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The influence of
organisms on the composition of sea-water, The sea: ideas and observations on
progress in the study of the seas, available at:
http://www.vliz.be/en/imis?module=ref&refid=28944&printversion=1&dropIMIStitle=1
(last access: 11 January 2019), 1963. a
Richon, C., Dutay, J.-C., Dulac, F., Wang, R., Balkanski, Y., Nabat, P.,
Aumont, O., Desboeufs, K., Laurent, B., Guieu, C., Raimbault, P., and
Beuvier, J.: Modeling the impacts of atmospheric deposition of nitrogen and
desert dust-derived phosphorus on nutrients and biological budgets of the
Mediterranean Sea, Prog. Oceanogr., 163, 21–39,
https://doi.org/10.1016/j.pocean.2017.04.009, 2017. a, b, c, d, e, f, g
Richon, C., Dutay, J.-C., Dulac, F., Wang, R., and Balkanski, Y.: Modeling the
biogeochemical impact of atmospheric phosphate deposition from desert dust
and combustion sources to the Mediterranean Sea, Biogeosciences, 15,
2499–2524, https://doi.org/10.5194/bg-15-2499-2018, 2018. a, b, c, d
Robinson, A. R., Leslie, W. G., Theocharis, A., and Lascaratos, A.:
Mediterranean Sea Circulation, in: Encyclopedia of Ocean Sciences
(Second Edition), edited by: Steele, J. H., Academic Press,
Oxford, 710–725, https://doi.org/10.1016/B978-012374473-9.00376-3, 2001. a
Rodellas, V., Garcia-Orellana, J., Masqué, P., Feldman, M., and
Weinstein, Y.:
Submarine groundwater discharge as a major source of nutrients to the
Mediterranean Sea, P. Natl. Acad. Sci., 112,
3926–3930, https://doi.org/10.1073/pnas.1419049112, 2015. a
Roether, W., Klein, B., and Hainbucher, D.: The Eastern Mediterranean
Transient, in: The Mediterranean Sea, edited by: Borzelli, G. L. E.,
Gacic, M., Lionello, P., and Paolalanotte-Rizzoli, John Wiley
& Sons, Inc., 75–83, 2014. a
Rohling, E. J.: Shoaling of the Eastern Mediterranean Pycnocline due to
reduction of excess evaporation: Implications for sapropel formation,
Paleoceanography, 6, 747–753, https://doi.org/10.1029/91PA02455, 1991. a
Rohling, E. J.: Review and new aspects concerning the formation of eastern
Mediterranean sapropels, Mar. Geol., 122, 1–28,
https://doi.org/10.1016/0025-3227(94)90202-X, 1994. a
Rossignol-Strick, M., Nesteroff, W., Olive, P., and Vergnaud-Grazzini, C.:
After the deluge: Mediterranean stagnation and sapropel formation, Nature,
295, 105–110, https://doi.org/10.1038/295105a0, 1982. a
Royer, J.-F., Cariolle, D., Chauvin, F., Déqué, M., Douville, H., Hu,
R.-M.,
Planton, S., Rascol, A., Ricard, J.-L., Salas Y Melia, D., Sevault, F.,
Simon, P., Somot, S., Tyteca, S., Terray, L., and Valcke, S.: Simulation des
changements climatiques au cours du XXIe siècle incluant l'ozone
stratosphérique, C. R. Geosci., 334, 147–154,
https://doi.org/10.1016/S1631-0713(02)01728-5, 2002. a
Ruti, P. M., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A.,
Dell'Aquila, A., Pisacane, G., Harzallah, A., Lombardi, E., Ahrens, B.,
Akhtar, N., Alias, A., Arsouze, T., Aznar, R., Bastin, S., Bartholy, J.,
Béranger, K., Beuvier, J., Bouffies-Cloché, S., Brauch, J., Cabos, W.,
Calmanti, S., Calvet, J.-C., Carillo, A., Conte, D., Coppola, E., Djurdjevic,
V., Drobinski, P., Elizalde-Arellano, A., Gaertner, M., Galàn, P., Gallardo,
C., Gualdi, S., Goncalves, M., Jorba, O., Jordà, G., L'Heveder, B.,
Lebeaupin-Brossier, C., Li, L., Liguori, G., Lionello, P., Maciàs, D.,
Nabat, P., Önol, B., Raikovic, B., Ramage, K., Sevault, F., Sannino, G.,
Struglia, M. V., Sanna, A., Torma, C., and Vervatis, V.: Med-CORDEX
Initiative for Mediterranean Climate Studies, B.
Am. Meteorol. Soc., 97, 1187–1208,
https://doi.org/10.1175/BAMS-D-14-00176.1,
2016. a
Sanchez-Gomez, E., Somot, S., and Mariotti, A.: Future changes in the
Mediterranean water budget projected by an ensemble of regional climate
models, Geophys. Res. Lett., 36, L21401,
https://doi.org/10.1029/2009GL040120, 2009. a
Santinelli, C., Ibello, V., Lavezza, R., Civitarese, G., and Seritti, A.: New
insights into C, N and P stoichiometry in the Mediterranean Sea:
The Adriatic Sea case, Cont. Shelf Res., 44, 83–93,
https://doi.org/10.1016/j.csr.2012.02.015, 2012. a
Schaap, D. M. and Lowry, R. K.: SeaDataNet – Pan-European
infrastructure for marine and ocean data management: unified access to
distributed data sets, Int. J. Digit. Earth, 3, 50–69,
https://doi.org/10.1080/17538941003660974,
2010. a
Sevault, F., Somot, S., Alias, A., Dubois, C., Lebeaupin-Brossier, C., Nabat,
P., Adloff, F., Déqué, M., and Decharme, B.: A fully coupled
Mediterranean regional climate system model: design and evaluation of the
ocean component for the 1980–2012 period, Tellus A, 66, 32 pp.,
https://doi.org/10.3402/tellusa.v66.23967,
2014. a
Soto-Navarro, J., Somot, S., Sevault, F., Beuvier, J., Criado-Aldeanueva, F.,
García-Lafuente, J., and Béranger, K.: Evaluation of regional ocean
circulation models for the Mediterranean Sea at the Strait of
Gibraltar: volume transport and thermohaline properties of the outflow,
Clim. Dynam., 44, 1277–1292, https://doi.org/10.1007/s00382-014-2179-4,
2015. a
Spillman, C. M., Imberger, J., Hamilton, D. P., Hipsey, M. R., and Romero,
J. R.: Modelling the effects of Po River discharge, internal nutrient
cycling and hydrodynamics on biogeochemistry of the Northern Adriatic
Sea, J. Marine Syst., 68, 167–200,
https://doi.org/10.1016/j.jmarsys.2006.11.006, 2007. a
Takahashi, T., Broecker, W. S., and Langer, S.: Redfield ratio based on
chemical data from isopycnal surfaces, J. Geophys. Res.-Ocean., 90, 6907–6924, https://doi.org/10.1029/JC090iC04p06907, 1985. a
Tanaka, T., Thingstad, T. F., Christaki, U., Colombet, J., Cornet-Barthaux, V.,
Courties, C., Grattepanche, J.-D., Lagaria, A., Nedoma, J., Oriol, L.,
Psarra, S., Pujo-Pay, M., and Wambeke, F. V.: Lack of P-limitation of
phytoplankton and heterotrophic prokaryotes in surface waters of three
anticyclonic eddies in the stratified Mediterranean Sea, Biogeosciences, 8, 525–538, https://doi.org/10.5194/bg-8-525-2011, 2011. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, B. Am. Meteorol. Soc.,
93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Theocharis, A., Nittis, K., Kontoyiannis, H., Papageorgiou, E., and Balopoulos,
E.: Climatic changes in the Aegean Sea influence the eastern
Mediterranean thermohaline circulation (1986–1997), Geophys. Res.
Lett., 26, 1617–1620, https://doi.org/10.1029/1999GL900320, 1999. a
Thingstad, T. F., Krom, M. D., Mantoura, R. F. C., Flaten, G. a. F., Groom, S.,
Herut, B., Kress, N., Law, C. S., Pasternak, A., Pitta, P., Psarra, S.,
Rassoulzadegan, F., Tanaka, T., Tselepides, A., Wassmann, P., Woodward, E.
M. S., Riser, C. W., Zodiatis, G., and Zohary, T.: Nature of Phosphorus
Limitation in the Ultraoligotrophic Eastern Mediterranean, Science,
309, 1068–1071, https://doi.org/10.1126/science.1112632, 2005. a
Vadsaria, T., Ramstein, G., Li, L., and Dutay, J.-C.: Sensibilité d'un
modèle
océan-atmosphère (LMDz-NEMOMED8) à un flux d'eau douce: cas du
dernier épisode de sapropèle en mer Méditerranée, Quaternaire, 28, 195–200,
2017. a
Velaoras, D. and Lascaratos, A.: North-Central Aegean Sea surface and
intermediate water masses and their role in triggering the Eastern
Mediterranean Transient, J. Marine Syst., 83, 58–66,
https://doi.org/10.1016/j.jmarsys.2010.07.001, 2010.
a
Wang, R., Balkanski, Y., Boucher, O., Ciais, P., Peǹuelas, J., and Tao,
S.:
Significant contribution of combustion-related emissions to the atmospheric
phosphorus budget, Nat. Geosci., 8, 48–54, https://doi.org/10.1038/ngeo2324, 2014. a
Yogev, T., Rahav, E., Bar-Zeev, E., Man-Aharonovich, D., Stambler, N., Kress,
N., Béjà, O., Mulholland, M. R., Herut, B., and Berman-Frank, I.: Is
dinitrogen fixation significant in the Levantine Basin, East
Mediterranean Sea?, Environ. Microbiol. 13, 854–871,
https://doi.org/10.1111/j.1462-2920.2010.02402.x, 2011. a
Short summary
We evaluate the effects of climate change and biogeochemical forcing evolution on the nutrient and plankton cycles of the Mediterranean Sea for the first time. We use a high-resolution coupled physical and biogeochemical model and perform 120-year transient simulations. The results indicate that changes in external nutrient fluxes and climate change may have synergistic or antagonistic effects on nutrient concentrations, depending on the region and the scenario.
We evaluate the effects of climate change and biogeochemical forcing evolution on the nutrient...
Altmetrics
Final-revised paper
Preprint