Articles | Volume 16, issue 23
https://doi.org/10.5194/bg-16-4719-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-4719-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Experimental tests of water chemistry response to ornithological eutrophication: biological implications in Arctic freshwaters
Heather L. Mariash
CORRESPONDING AUTHOR
Wildlife Research Division, Environment and Climate Change Canada,
Ottawa, Ontario, K1A 0H3, Canada
Milla Rautio
Centre d'études nordiques and Département des sciences
fondamentales, Université du Québec à Chicoutimi, Chicoutimi,
Quebec, G7H 2B1, Canada
Mark Mallory
Biology Department, Acadia University, Wolfville, Nova Scotia, B4P
2R6, Canada
Paul A. Smith
Wildlife Research Division, Environment and Climate Change Canada,
Ottawa, Ontario, K1A 0H3, Canada
Related authors
No articles found.
Flora Mazoyer, Isabelle Laurion, and Milla Rautio
Biogeosciences, 19, 3959–3977, https://doi.org/10.5194/bg-19-3959-2022, https://doi.org/10.5194/bg-19-3959-2022, 2022
Short summary
Short summary
Dissolved organic matter collected at the end of winter from a peatland thermokarst lake was highly transformed and degraded by sunlight, leading to bacterial stimulation and CO2 production, but a fraction was also potentially lost by photoflocculation. Over 18 days, 18 % of the incubated dissolved organic matter was lost under sunlight, while dark bacterial degradation was negligible. Sunlight could have a marked effect on carbon cycling in organic-rich thermokarst lakes after ice-off.
J. E. Vonk, S. E. Tank, W. B. Bowden, I. Laurion, W. F. Vincent, P. Alekseychik, M. Amyot, M. F. Billet, J. Canário, R. M. Cory, B. N. Deshpande, M. Helbig, M. Jammet, J. Karlsson, J. Larouche, G. MacMillan, M. Rautio, K. M. Walter Anthony, and K. P. Wickland
Biogeosciences, 12, 7129–7167, https://doi.org/10.5194/bg-12-7129-2015, https://doi.org/10.5194/bg-12-7129-2015, 2015
Short summary
Short summary
In this review, we give an overview of the current state of knowledge regarding how permafrost thaw affects aquatic systems. We describe the general impacts of thaw on aquatic ecosystems, pathways of organic matter and contaminant release and degradation, resulting emissions and burial, and effects on ecosystem structure and functioning. We conclude with an overview of potential climate effects and recommendations for future research.
Related subject area
Biodiversity and Ecosystem Function: Freshwater
Environmental drivers of spatio-temporal dynamics in floodplain vegetation: grasslands as habitat for megafauna in Bardia National Park (Nepal)
Geodiversity influences limnological conditions and freshwater ostracode species distributions across broad spatial scales in the northern Neotropics
Arctic aquatic graminoid tundra responses to nutrient availability
Stable isotopic composition of top consumers in Arctic cryoconite holes: revealing divergent roles in a supraglacial trophic network
Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?
Significance of climate and hydrochemistry on shape variation – a case study on Neotropical cytheroidean Ostracoda
Assembly processes of gastropod community change with horizontal and vertical zonation in ancient Lake Ohrid: a metacommunity speciation perspective
Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard
Unusual biogenic calcite structures in two shallow lakes, James Ross Island, Antarctica
Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes
Constant diversification rates of endemic gastropods in ancient Lake Ohrid: ecosystem resilience likely buffers environmental fluctuations
Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forested stream
Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes
Explosive demographic expansion by dreissenid bivalves as a possible result of astronomical forcing
Phytoplankton community structure in the Lena Delta (Siberia, Russia) in relation to hydrography
Lacustrine mollusc radiations in the Lake Malawi Basin: experiments in a natural laboratory for evolution
DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages
Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe
Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa
Spatially explicit analysis of gastropod biodiversity in ancient Lake Ohrid
A freshwater biodiversity hotspot under pressure – assessing threats and identifying conservation needs for ancient Lake Ohrid
Stratigraphic analysis of lake level fluctuations in Lake Ohrid: an integration of high resolution hydro-acoustic data and sediment cores
Sediment core fossils in ancient Lake Ohrid: testing for faunal change since the Last Interglacial
Testing the spatial and temporal framework of speciation in an ancient lake species flock: the leech genus Dina (Hirudinea: Erpobdellidae) in Lake Ohrid
Native Dreissena freshwater mussels in the Balkans: in and out of ancient lakes
Jitse Bijlmakers, Jasper Griffioen, and Derek Karssenberg
Biogeosciences, 20, 1113–1144, https://doi.org/10.5194/bg-20-1113-2023, https://doi.org/10.5194/bg-20-1113-2023, 2023
Short summary
Short summary
At the foot of the Himalayas in Nepal, land cover time series and data of environmental drivers show changes in disturbance-dependent grasslands that serve as habitat for endangered megafauna. The changes in surface area and heterogeneity of the grassland patches are attributed to a relocation of the dominant river channel of the Karnali River and associated decline of hydromorphological disturbances and a decrease in anthropogenic disturbances after its establishment as conservation area.
Laura Macario-González, Sergio Cohuo, Philipp Hoelzmann, Liseth Pérez, Manuel Elías-Gutiérrez, Margarita Caballero, Alexis Oliva, Margarita Palmieri, María Renée Álvarez, and Antje Schwalb
Biogeosciences, 19, 5167–5185, https://doi.org/10.5194/bg-19-5167-2022, https://doi.org/10.5194/bg-19-5167-2022, 2022
Short summary
Short summary
We evaluate the relationships between geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. Geological, limnological, geochemical, and mineralogical characteristics of 76 systems reveal two main limnological regions and seven subregions. Water ionic and sediment composition are the most influential. Geodiversity strongly influences limnological conditions, which in turn influence ostracode composition and distribution.
Christian G. Andresen and Vanessa L. Lougheed
Biogeosciences, 18, 2649–2662, https://doi.org/10.5194/bg-18-2649-2021, https://doi.org/10.5194/bg-18-2649-2021, 2021
Short summary
Short summary
Aquatic tundra plants dominate productivity and methane fluxes in the Arctic coastal plain. We assessed how environmental nutrient availability influences production of biomass and greenness of aquatic tundra. We found phosphorous to be the main nutrient limiting biomass productivity and greenness in Arctic aquatic grasses. This study highlights the importance of nutrient pools and mobilization between terrestrial–aquatic systems and their influence on regional carbon and energy feedbacks.
Tereza Novotná Jaroměřská, Jakub Trubač, Krzysztof Zawierucha, Lenka Vondrovicová, Miloslav Devetter, and Jakub D. Žárský
Biogeosciences, 18, 1543–1557, https://doi.org/10.5194/bg-18-1543-2021, https://doi.org/10.5194/bg-18-1543-2021, 2021
Short summary
Short summary
Cryoconite holes are ponds on the glacier surface that play an important role in glacier nutrient pathways. This paper presents the first description of the carbon and nitrogen isotopic composition of cryoconite consumers (tardigrades and rotifers) and their potential food. We showed that consumers differ in nitrogen isotopes and carbon isotopes vary between taxa and between glaciers. The study contributes to improving knowledge about cryoconite hole functioning and cryoconite trophic networks.
Gwenaël Abril and Alberto V. Borges
Biogeosciences, 16, 769–784, https://doi.org/10.5194/bg-16-769-2019, https://doi.org/10.5194/bg-16-769-2019, 2019
Short summary
Short summary
Based on classical concepts in ecology, and a literature survey, we highlight the importance of flooded land as a preferential source of atmospheric carbon to aquatic systems at the global scale. Studies in terrestrial and aquatic ecosystems could be reconciled by considering the occurrence of an efficient wetland CO2 pump to river systems. New methodological approaches coupling hydrology and ecology are also necessary to improve scientific knowledge on carbon fluxes at the land–water interface.
Claudia Wrozyna, Thomas A. Neubauer, Juliane Meyer, Maria Ines F. Ramos, and Werner E. Piller
Biogeosciences, 15, 5489–5502, https://doi.org/10.5194/bg-15-5489-2018, https://doi.org/10.5194/bg-15-5489-2018, 2018
Short summary
Short summary
How environmental change affects a species' phenotype is crucial for taxonomy and biodiversity assessments and for their application as paleoecological indicators. Morphometric data of a Neotropical ostracod species, as well as several climatic and hydrochemical variables, were used to investigate the link between morphology and environmental conditions. Temperature seasonality, annual precipitation, and chloride and sulphate concentrations were identified as drivers for ostracod ecophenotypy.
Torsten Hauffe, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 2901–2911, https://doi.org/10.5194/bg-13-2901-2016, https://doi.org/10.5194/bg-13-2901-2016, 2016
T. R. Vonnahme, M. Devetter, J. D. Žárský, M. Šabacká, and J. Elster
Biogeosciences, 13, 659–674, https://doi.org/10.5194/bg-13-659-2016, https://doi.org/10.5194/bg-13-659-2016, 2016
Short summary
Short summary
The diversity of microalgae and cyanobacteria in cryoconites on three high-Arctic glaciers was investigated. Possible bottom-up controls via nutrient limitation, wind dispersal, and hydrological stability were measured. Grazer populations were quantified to estimate the effect of top-down controls. Nutrient limitation appeared to be the most important control on the diversity and competition outcomes of microalgae and cyanobacteria.
J. Elster, L. Nedbalová, R. Vodrážka, K. Láska, J. Haloda, and J. Komárek
Biogeosciences, 13, 535–549, https://doi.org/10.5194/bg-13-535-2016, https://doi.org/10.5194/bg-13-535-2016, 2016
J. Comte, C. Lovejoy, S. Crevecoeur, and W. F. Vincent
Biogeosciences, 13, 175–190, https://doi.org/10.5194/bg-13-175-2016, https://doi.org/10.5194/bg-13-175-2016, 2016
Short summary
Short summary
Thaw ponds and lakes varied in their bacterial community structure. A small number of taxa occurred in high abundance and dominated many of the communities. Nevertheless, there were taxonomic differences among different valleys implying some degree of habitat selection. Association networks were composed of a limited number of highly connected OTUs. These "keystone species" were not merely the abundant taxa, whose loss would greatly alter the structure and functioning of these aquatic ecosystem.
K. Föller, B. Stelbrink, T. Hauffe, C. Albrecht, and T. Wilke
Biogeosciences, 12, 7209–7222, https://doi.org/10.5194/bg-12-7209-2015, https://doi.org/10.5194/bg-12-7209-2015, 2015
Short summary
Short summary
Based on our molecular data and performed analyses we found that the gastropods studied represent a comparatively old group that most likely evolved with a constant rate of diversification. However, preliminary data of the SCOPSCO deep-drilling program indicate signatures of environmental/climatic perturbations in Lake Ohrid. We therefore propose that the constant rate observed has been caused by a potential lack of catastrophic environmental events and/or a high ecosystem resilience.
S. Bernal, A. Lupon, M. Ribot, F. Sabater, and E. Martí
Biogeosciences, 12, 1941–1954, https://doi.org/10.5194/bg-12-1941-2015, https://doi.org/10.5194/bg-12-1941-2015, 2015
Short summary
Short summary
Terrestrial inputs are considered the major driver of longitudinal patterns of nutrient concentration. Yet we show that longitudinal trends result from hydrological mixing with terrestrial inputs and in-stream processes. We challenge the idea that nutrient concentrations decrease downstream when in-stream net uptake is high. Conversely, in-stream processes can strongly affect stream nutrient chemistry and fluxes even in the absence of consistent longitudinal trends in nutrient concentration.
P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, V. E. Villafañe, and E. W. Helbling
Biogeosciences, 12, 697–712, https://doi.org/10.5194/bg-12-697-2015, https://doi.org/10.5194/bg-12-697-2015, 2015
Short summary
Short summary
Under UVR and stratification,the commensalistic algae-bacteria interaction was strengthened in the high-UVR lake, where excretion of organic carbon rates exceeded the bacterial carbon demand,but did not occur in the low-UVR lake.The greater UVR damage to algae and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates these lakes would be especially vulnerable to UVR. These results have implications for the C cycle in lakes of the Mediterranean region.
M. Harzhauser, O. Mandic, A. K. Kern, W. E. Piller, T. A. Neubauer, C. Albrecht, and T. Wilke
Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, https://doi.org/10.5194/bg-10-8423-2013, 2013
A. C. Kraberg, E. Druzhkova, B. Heim, M. J. G. Loeder, and K. H. Wiltshire
Biogeosciences, 10, 7263–7277, https://doi.org/10.5194/bg-10-7263-2013, https://doi.org/10.5194/bg-10-7263-2013, 2013
D. Van Damme and A. Gautier
Biogeosciences, 10, 5767–5778, https://doi.org/10.5194/bg-10-5767-2013, https://doi.org/10.5194/bg-10-5767-2013, 2013
I. Domaizon, O. Savichtcheva, D. Debroas, F. Arnaud, C. Villar, C. Pignol, B. Alric, and M. E. Perga
Biogeosciences, 10, 3817–3838, https://doi.org/10.5194/bg-10-3817-2013, https://doi.org/10.5194/bg-10-3817-2013, 2013
E. W. Helbling, P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, M. Villar-Argaiz, and V. E. Villafañe
Biogeosciences, 10, 1037–1050, https://doi.org/10.5194/bg-10-1037-2013, https://doi.org/10.5194/bg-10-1037-2013, 2013
C. H. Hsieh, Y. Sakai, S. Ban, K. Ishikawa, T. Ishikawa, S. Ichise, N. Yamamura, and M. Kumagai
Biogeosciences, 8, 1383–1399, https://doi.org/10.5194/bg-8-1383-2011, https://doi.org/10.5194/bg-8-1383-2011, 2011
T. Hauffe, C. Albrecht, K. Schreiber, K. Birkhofer, S. Trajanovski, and T. Wilke
Biogeosciences, 8, 175–188, https://doi.org/10.5194/bg-8-175-2011, https://doi.org/10.5194/bg-8-175-2011, 2011
G. Kostoski, C. Albrecht, S. Trajanovski, and T. Wilke
Biogeosciences, 7, 3999–4015, https://doi.org/10.5194/bg-7-3999-2010, https://doi.org/10.5194/bg-7-3999-2010, 2010
K. Lindhorst, H. Vogel, S. Krastel, B. Wagner, A. Hilgers, A. Zander, T. Schwenk, M. Wessels, and G. Daut
Biogeosciences, 7, 3531–3548, https://doi.org/10.5194/bg-7-3531-2010, https://doi.org/10.5194/bg-7-3531-2010, 2010
C. Albrecht, H. Vogel, T. Hauffe, and T. Wilke
Biogeosciences, 7, 3435–3446, https://doi.org/10.5194/bg-7-3435-2010, https://doi.org/10.5194/bg-7-3435-2010, 2010
S. Trajanovski, C. Albrecht, K. Schreiber, R. Schultheiß, T. Stadler, M. Benke, and T. Wilke
Biogeosciences, 7, 3387–3402, https://doi.org/10.5194/bg-7-3387-2010, https://doi.org/10.5194/bg-7-3387-2010, 2010
T. Wilke, R. Schultheiß, C. Albrecht, N. Bornmann, S. Trajanovski, and T. Kevrekidis
Biogeosciences, 7, 3051–3065, https://doi.org/10.5194/bg-7-3051-2010, https://doi.org/10.5194/bg-7-3051-2010, 2010
Cited articles
Abraham, K. F., Jefferies, R. L., and Alisauskas, R. T.: The dynamics of
landscape change and snow geese in mid-continent North America, Glob. Change
Biol., 11, 841–855, https://doi.org/10.1111/j.1365-2486.2005.00943.x, 2005.
Abraham, K. F., Jefferies, R. L., Alisauskas, R. T., and Rockwell, R. F.:
Evaluation of special management measures for midcontinent lesser snow geese
and Ross's geese, in: Northern wetland ecosystems and their response to high
densities of lesser snow geese and Ross's geese, edited by: Leafloor, J. O., Moser,
T. J., and Batt, B. D., pp. 9–45, Arctic Goose Joint Venture
publication, US Fish and WIldlife Service and Canadian Wildlife Service,
Washington, D.C. and Ottawa, Ontario, 2012.
Anderson, J. N., Saros, J. E., Bullard, J. E., Cahoon, S. M., McGowan, S.,
Bagshaw, E. A., Barry, C. D., Bindler, R., Burpee, B. T., Carrivick, J.,
Fowler, R. A., Fox, A. D., Fritz, S. C., Hamerlik, L., Ingeman-Nielsen, T.,
Law, A. C., Mernild, S. H., Northington, R. M., Osburn, C. L., Pla-Rabes,
S., Post, E., Telling, J., Stroud, D. A., Whiteford, E. J., Yallop, M. L.,
and Yde, J. C.: The Arctic in the Twenty-First Century?: Changing
Biogeochemical Linkages across a Paraglacial Landscape of Greenland,
Bioscience, 67, 118–133, https://doi.org/10.1093/biosci/biw158, 2017.
Ask, J., Karlsson, J., Persson, L., and Ask, P.: Terrestrial organic matter
and light penetration: Effects on bacterial and primary production in
lakes, Limnol. Oceanogr., 54, 2034–2040, 2009.
Atkinson, K.: Experiments in dispersal of phytoplankton by ducks, British Phycological Journal, 15, 49–58,
https://doi.org/10.1080/00071618000650061, 1980.
Buij, R., Melman, T. C. P., Loonen, M. J. J. E., and Fox, A. D.: Balancing
ecosystem function, services and disservices resulting from expanding goose
populations, Ambio, 46, 301–318, https://doi.org/10.1007/s13280-017-0902-1, 2017.
Cadieux, A. M., Gauthier, G., Hughes, R. J., Auk, S. T., and Jan, N.: Feeding
Ecology of Canada Geese (Branta canadensis interior) in Sub-Arctic Inland
Tundra during Brood-Rearing, Am. Ornithol. Union, 122, 144–157, 2005.
Côté, G., Pienitz, R., Velle, G., and Wang, X.: Impact of Geese on
the Limnology of Lakes and Ponds from Bylot Island (Nunavut, Canada), Int.
Rev. Hydrobiol., 95, 105–129, https://doi.org/10.1002/iroh.200911151, 2010.
Cox, E. J.: Identification of freshwater diatoms from live material, Chapman
& Hall, London, UK, 1996.
Dessborn, L., Hessel, R., and Elmberg, J.: Geese as vectors of nitrogen and
phosphorous to freshwater systems, Inl. Waters, 6, 111–122,
https://doi.org/10.5268/IW-6.1.897, 2016.
Fanesi, A., Wagner, H., Becker, A., and Wilhelm, C.: Temperature affects the
partitioning of absorbed light energy in freshwater phytoplankton, Freshw.
Biol., 61, 1365–1378, https://doi.org/10.1111/fwb.12777, 2016.
Figuerola, J. and Green, A. J.: Dispersal of aquatic organisms by
waterbirds: A review of past research and priorities for future studies,
Freshw. Biol., 47, 483–494, https://doi.org/10.1046/j.1365-2427.2002.00829.x, 2002.
Findlay, D. L., Hecky, R. E., Hendzel, L. L., Stainton, M. P., and Regehr, G.
W.: Relationship between N2-fixation and heterocyst abundance and its
relevance to the nitrogen budget of lake 227, Can. J. Fish. Aquat. Sci.,
51, 2254–2266, https://doi.org/10.1139/f94-229, 1994.
Flemming, S. A., Nol, E., Kennedy, L. V., and Smith, P. A.: Hyperabundant
herbivores limit habitat availability and influence nest site selection of
Arctic-breeding birds, J. Appl. Ecol., 5, 1–12,
https://doi.org/10.1111/1365-2664.13336, 2019.
Fox, A. D. and Leafloor, J. O.: A Global Audit of the Status and Trends of
Arctic And Northern Hemisphere Goose Populations, Akureyri, Iceland, 2018.
Gauthier, G., Hughes, R. . J., Reed, A., Beaulieu, J., and Rochefort, L.:
Effect of Grazing by Greater Snow Geese on the Production of Graminoids at
an Arctic Site, Br. Ecol. Soc., 83, 653–664, 1995.
Guildford, S. J. and Hecky, R. E.: Total nitrogen, total phosphorus, and
nutrient limitation in lakes and oceans: Is there a common relationship?,
Limnol. Oceanogr., 45, 1213–1223, https://doi.org/10.4319/lo.2000.45.6.1213, 2000.
Guiry, M. D. and Guiry, G. M.: AlgaeBase. World-wide electronic publication,
National University of Ireland, Galway, available at: https://www.algaebase.org/, last access: 28 November 2017.
Hessen, D. O., Jensen, T. C., and Walseng, B.: Zooplankton Diversity and
Dispersal by Birds; Insights From Different Geographical Scales, Front.
Ecol. Evol., 7, 74, https://doi.org/10.3389/fevo.2019.00074, 2019.
Hillebrand, H., Dürselen, D., Kirschtel, D., Pollingher, U., and
Zohary, T.: Biovolume Calculation For Pelagic And Benthic MicroAlgae,
J. Phycol., 35, 403–424, 1999,
Holm-Hansen, O. and Riemann, B.: Chlorophyll a determination?: improvements
in methodology, Oikos, 30, 438–447, https://doi.org/10.2307/3543338, 1978.
Jefferies, R. L., Jano, A. P., and Abraham, K. F.: A biotic agent promotes
large-scale catastrophic change in the coastal marshes of Hudson Bay, J.
Ecol., 94, 234–242, https://doi.org/10.1111/j.1365-2745.2005.01086.x, 2006.
Jeffrey, S. W., Mantoura, R. F. C., and Wright, S. W.: Spectrophotometric and
fluorometric equations in common use in oceangraphy, in: Phytoplankton
Pigments in Oceanography: Guidelines to Modern Methods, 48,
597–615, UNESC Publishing, Paris, 1997.
John, D. M., Whitton, B. A., and Brook, A. J.: The freshwater algal flora of
the British Isles: an identification guide to freshwater and terrestrial
Algae (Vol. 1), Cambridge University Press, Cambridge, UK, 2002.
Kerbes, R. H., Meeres, K. M., and Alisauskas, R. T.: Surveys of nesting
lesser snow geese and ross's geese in arctic Canada, 2002–2009, Arct.
Goose Jt. Ventur. Spec. Publ. U.S. Fish Wildl. Serv. Washingt. D.D. Can.
Wildl. Serv. Ottawa, Ontario, 2002–2009, 2014.
Kitchell, J. F., Schindler, D. E., Herwig, B. R., Post, D. M., Olson, M. H.,
and Oldham, M.: Nutrient cycling at the landscape scale: The role of diel
foraging migrations by geese at the Bosque del Apache National Wildlife
Refuge, New Mexico, Limnol. Oceanogr., 44, 828–836,
https://doi.org/10.4319/lo.1999.44.3_part_2.0828, 1999.
Komárek, J. and Anagnostidis, K.: Cyanoprokaryota Teil-1, 2, 3:
Chroococcales, Spektrum Akademischer Verlag Heidelberg, Berlin, ISBN
978-3-7482-2111-1, 2000.
Lewis, T. L., Lindberg, M. S., Schmutz, J. A., and Heglund, P. J.: Pronounced
chemical response of Subarctic lakes to climate-driven losses in surface
area, Glob. Change Biol., 21, 1140–1152, https://doi.org/10.1111/gcb.12759, 2015.
Liber, K., Goodfellow, W., den Besten, P., Clements, W., Galloway, T.,
Gerhardt, A., Green, A., and Simpson, S.: In situ-based effects measures:
considerations for improving methods and approaches, Integr. Environ.
Assess. Manag., 3, 246–258, https://doi.org/10.1897/2006-029FIN.1, 2007.
Liu, Y., Hefting, M. M., Verhoeven, J. T. A., and Klaassen, M.: Nutrient
release characteristics from droppings of grass-foraging waterfowl (Anser
brachyrhynchus) roosting in aquatic habitats, Ecohydrology, 7, 1216–1222, https://doi.org/10.1002/eco.1454, 2014.
MacDonald, L. A., Farquharson, N., Merritt, G., Fooks, S., Medeiros, A. S.,
Hall, R. I., Wolfe, B. B., Macrae, M. L., and Sweetman, J. N.: Limnological
regime shifts caused by climate warming and Lesser Snow Goose population
expansion in the western Hudson Bay Lowlands (Manitoba, Canada), Ecol.
Evol., 5, 921–939, https://doi.org/10.1002/ece3.1354, 2015.
Mallory, M. L., Fontaine, A. J., Smith, P. A., Wiebe Robertson, M. O., and Gilchrist, H. G.: Water chemistry of ponds on Southampton Island, Nunavut, Canada: effects of habitat and ornithogenic inputs, Archiv für Hydrobiologie, 166, 411–432, 2006.
Mariash, H. L., Devlin, S. P., Forsström, L., Jones, R. I., and Rautio,
M.: Benthic mats offer a potential subsidy to pelagic consumers in tundra
pond food webs, Limnol. Oceanogr., 59, 733–744,
https://doi.org/10.4319/lo.2014.59.3.0733, 2014.
Mariash, H. L., Smith, P. A., and Mallory, M.: Decadal Response of Arctic
Freshwaters to Burgeoning Goose Populations, Ecosystems, 21,
1230–1243, https://doi.org/10.1007/s10021-017-0215-z, 2018.
Menden-Deuer, S. and Lessard, E. J.: Carbon to volume relationships for
dinoflagellates, diatoms, and other protist plankton, Limnol. Oceanogr.,
45, 569–579, https://doi.org/10.4319/lo.2000.45.3.0569, 2000.
Michelutti, N., Keatley, B. E., Brimble, S., Blais, J. M., Liu, H., Douglas,
M. S. ., Mallory, M. L., Macdonald, R. W., and Smol, J. P.: Seabird-driven
shifts in Arctic pond ecosystems, Proc. R. Soc. B Biol. Sci., 276,
591–596, https://doi.org/10.1098/rspb.2008.1103, 2009.
Olson, M. H., Hage, M. M., Binkley, M. D., and Binder, J. R.: Impact of
migratory snow geese on nitrogen and phosphorus dynamics in a freshwater
reservoir, Freshw. Biol., 50, 882–890,
https://doi.org/10.1111/j.1365-2427.2005.01367.x, 2005.
Pace, M. L., Cole, J. J., and Carpenter, S. R.: Trophic Cascades and
Compensation: Differential Responses of Microzooplankton in Whole-Lake
Experiments, Ecol. Soc. Am., 79, 138–152, 2010.
Paerl, H. W., Gardner, W. S., Havens, K. E., Joyner, A. R., McCarthy, M. J.,
Newell, S. E., Qin, B., and Scott, J. T.: Mitigating cyanobacterial harmful
algal blooms in aquatic ecosystems impacted by climate change and
anthropogenic nutrients, Harmful Algae, 54, 213–222,
https://doi.org/10.1016/j.hal.2015.09.009, 2016.
Post, D. M., Taylor, J. P., Kitchell, J. F., Olson, M. H., Schindler, D. E.,
and Herwig, B. R.: The Role of Migratory Waterfowl as Nutrient Vectors in a
Managed Wetland, Conserv. Biol., 12, 910–920,
https://doi.org/10.1111/j.1523-1739.1998.97112.x, 1998.
Przytulska, A., Bartosiewicz, M., and Vincent, W. F.: Increased risk of
cyanobacterial blooms in northern high-latitude lakes through climate
warming and phosphorus enrichment, Freshw. Biol., 62, 1986–1996,
https://doi.org/10.1111/fwb.13043, 2017.
R Core Team: R: A Language and environment for statistical computing, R version 3.4.3,
available at: http://www.r-project.org/ (last access: 30 November 2017), 2016.
Rautio, M., Dufresne, F., Laurion, I., Bonilla, S., Vincent, W. F., and
Christoffersen, K. S.: Shallow Freshwater Ecosystems of the Circumpolar
Arctic, Ecoscience, 18, 204–222, https://doi.org/10.2980/18-3-3463, 2011.
Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B.
R., Paterson, M. J., Beaty, K. G., Lyng, M., and Kasian, S. E. M.:
Eutrophication of lakes cannot be controlled by reducing nitrogen input:
Results of a 37-year whole-ecosystem experiment, P. Natl. Acad. Sci. USA,
105, 11254–11258, https://doi.org/10.1073/pnas.0805108105, 2008.
Taylor, J. C., Harding, W. R., and Archibald, C. G. M.: An illustrated guide to
some common diatom species from South Africa, Water Research
Commission, Pretoria, 2007.
Unckless, R. L. and Makarewicz, J. C.: The impact of nutrient loading from
Canada Geese (Branta canadensis) on water quality, a mesocosm approach, Hydrobiologia,
586, 393–401, https://doi.org/10.1007/s10750-007-0712-8, 2007.
Utermöhl, H.: Zur Vervollkommung der quantitativen
Phytoplankton-Methodik, Int. Verein Limnol., 9, 1–38, 1958.
Van Geest, G. J., Hessen, D. O., Spierenburg, P., Dahl-Hansen, G. A. P.,
Christensen, G., Faerovig, P. J., Brehm, M., Loonen, M. J. J. E., and Van
Donk, E.: Goose-mediated nutrient enrichment and planktonic grazer control
in arctic freshwater ponds, Oecologia, 153, 653–662,
https://doi.org/10.1007/s00442-007-0770-7, 2007.
Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F., Alekseychik, P., Amyot, M., Billet, M. F., Canário, J., Cory, R. M., Deshpande, B. N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J., MacMillan, G., Rautio, M., Walter Anthony, K. M., and Wickland, K. P.: Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems, Biogeosciences, 12, 7129–7167, https://doi.org/10.5194/bg-12-7129-2015, 2015.
Wauthy, M., Rautio, M., Christoffersen, K. S., Forsström, L., Laurion,
I., Mariash, H. L., Peura, S., and Vincent, W. F.: Increasing dominance of
terrigenous organic matter in circumpolar freshwaters due to permafrost
thaw, Limnol. Oceanogr. Lett., 3, 186–198, https://doi.org/10.1002/lol2.10063, 2018.
Wehr, J. D., Sheath, R. G., and Kociolek, J. P.: Freshwater Algae of North
America: ecology and classification, Elsevier, San Diego, USA, 2015.
Wickham, H.: ggplot2: Elegant Graphics for Data Anaylsis, Springer-Verlag,
New York, 2009.
Wrona, F. J., Johansson, M., Culp, J. M., Jenkins, A., Mard, J.,
Myers-Smith, I. H., Prowse, T. D., Vincent, W. F., and Wookey, P. A.:
Transitions in Arctic ecosystems: Ecological implications of a changing
hydrological regime, J. Geophys. Res.-Biogeo., 121, 650–674,
https://doi.org/10.1002/2015JG003133, 2016.
Zuur, A. F., Ieno, E. N., and Elphick, C. S.: A protocol for data exploration
to avoid common statistical problems, Methods Ecol. Evol., 1, 3–14,
https://doi.org/10.1111/j.2041-210X.2009.00001.x, 2010.
Short summary
Across North America and Europe, goose populations have increased exponentially in response to agricultural intensification. By using an experimental approach, we empirically demonstrated that geese act as bio-vectors, making terrestrial nutrients more bioavailable to freshwater systems. The study revealed that the nutrient loading from goose faeces has the potential to change phytoplankton community composition, with a shift toward an increased presence of cyanobacteria.
Across North America and Europe, goose populations have increased exponentially in response to...
Altmetrics
Final-revised paper
Preprint