Articles | Volume 16, issue 3
https://doi.org/10.5194/bg-16-769-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-769-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?
Gwenaël Abril
CORRESPONDING AUTHOR
Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR
7208, Muséum National d'Histoire Naturelle, CNRS, SU, UCN, UR, IRD, 61
rue Buffon, 75231, Paris CEDEX 05, France
Programa de Biologia Marinha e Ambientes Costeiros, Universidade
Federal Fluminense, Outeiro São João Batista s/n, 24020015,
Niterói, RJ, Brazil
Alberto V. Borges
Université de Liège, Unité d'Océanographie Chimique,
Institut de Physique (B5a), 4000 Liège, Belgium
Related authors
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Jérémy Guilhen, Ahmad Al Bitar, Sabine Sauvage, Marie Parrens, Jean-Michel Martinez, Gwenael Abril, Patricia Moreira-Turcq, and José-Miguel Sánchez-Pérez
Biogeosciences, 17, 4297–4311, https://doi.org/10.5194/bg-17-4297-2020, https://doi.org/10.5194/bg-17-4297-2020, 2020
Short summary
Short summary
The quantity of greenhouse gases (GHGs) released to the atmosphere by human industries and agriculture, such as carbon dioxide (CO2) and nitrous oxide (N2O), has been constantly increasing for the last few decades.
This work develops a methodology which makes consistent both satellite observations and modelling of the Amazon basin to identify and quantify the role of wetlands in GHG emissions. We showed that these areas produce non-negligible emissions and are linked to land use.
Alberto V. Borges, Gwenaël Abril, and Steven Bouillon
Biogeosciences, 15, 1093–1114, https://doi.org/10.5194/bg-15-1093-2018, https://doi.org/10.5194/bg-15-1093-2018, 2018
Short summary
Short summary
The Mekong River is among the largest on Earth and is vital for the economy of Vietnam and South East Asia and the livelihood of the local population (70 million across six countries). Numerous dams for hydropower are planned, which will affect the delivery of water and sediments to the Mekong delta, with numerous possible consequences. We report the dynamics of two greenhouse gases (CO2 and CH4) in the Mekong delta that can be used as a reference state to evaluate future changes.
R. L. Sobrinho, M. C. Bernardes, G. Abril, J.-H. Kim, C. I Zell, J.-M. Mortillaro, T. Meziane, P. Moreira-Turcq, and J. S. Sinninghe Damsté
Biogeosciences, 13, 467–482, https://doi.org/10.5194/bg-13-467-2016, https://doi.org/10.5194/bg-13-467-2016, 2016
Short summary
Short summary
The principal objective of the present work is to quantify the fractions of the principal sources of sedimentary organic matter (SOM) in floodplain lakes of the central Amazon basin. The results indicate that the main source of SOM is not the riverine particulate material, as postulated by the literature, but the macrophytes and the forests.
L. C. Cotovicz Jr., B. A. Knoppers, N. Brandini, S. J. Costa Santos, and G. Abril
Biogeosciences, 12, 6125–6146, https://doi.org/10.5194/bg-12-6125-2015, https://doi.org/10.5194/bg-12-6125-2015, 2015
Short summary
Short summary
Air-water CO2 fluxes were monitored in Guanabara Bay (Brazil), a tropical eutrophic coastal embayment. In contrast to other estuaries worldwide, Guanabara Bay behaves as an annual CO2 sink (-9.6 to -18.3 molC m2 yr) due to the concomitant effects of strong radiation, thermal stratification, and high availability of nutrients, which promotes huge phytoplankton development and autotrophy. Our results show that CO2 budget assertions still lack information on tropical marine-dominated estuaries.
F. S. Pacheco, M. C. S. Soares, A. T. Assireu, M. P. Curtarelli, F. Roland, G. Abril, J. L. Stech, P. C. Alvalá, and J. P. Ometto
Biogeosciences, 12, 147–162, https://doi.org/10.5194/bg-12-147-2015, https://doi.org/10.5194/bg-12-147-2015, 2015
Short summary
Short summary
CO2 fluxes in Funil Reservoir (FR) is driven by primary production and river inflow dynamics. Our findings suggest that the lack of spatial data in reservoir C budget calculations can affect regional and global estimates. Our results support the idea that the FR is a dynamic system where the hydrodynamics represented by changes in the river inflow and retention time are potentially a more important force driving both the Chl and pCO2 spatial variability than the in-system ecological factors.
G. Abril, S. Bouillon, F. Darchambeau, C. R. Teodoru, T. R. Marwick, F. Tamooh, F. Ochieng Omengo, N. Geeraert, L. Deirmendjian, P. Polsenaere, and A. V. Borges
Biogeosciences, 12, 67–78, https://doi.org/10.5194/bg-12-67-2015, https://doi.org/10.5194/bg-12-67-2015, 2015
Short summary
Short summary
We compared pCO2 data calculated from pH and alkalinity from those measured directly in a large array of temperate and tropical freshwaters. This revealed a large overestimation (up to 300%) of calculated pCO2 in the case of acidic and organic-rich waters, due to a contribution of organic acids anions to alkalinity and a lower buffering capacity of the carbonate system at acidic pH. Given the widespread distribution of acidic freshwaters, direct measurements of water pCO2 are encouraged.
Vao Fenotiana Razanamahandry, Alberto Borges, Liesa Brosens, Cedric Morana, Tantely Razafimbelo, Tovonarivo Rafolisy, Gerard Govers, and Steven Bouillon
EGUsphere, https://doi.org/10.5194/egusphere-2024-2213, https://doi.org/10.5194/egusphere-2024-2213, 2024
Short summary
Short summary
A comprehensive survey of the biogeochemistry of the lake Alaotra system showed that the lake and surrounding wetlands acted as a substantial source of new organic carbon (OC), which was exported downstream. Marsh vegetation is the main source of dissolved OC, while phytoplankton contributes to particulate OC pool. The biogeochemical functioning of Lake Alaotra differs from most East African lakes studied, likely due to its large surface area, shallow water depth, and surrounding wetlands.
Thomas Bauduin, Nathalie Gypens, and Alberto V. Borges
EGUsphere, https://doi.org/10.5194/egusphere-2024-1315, https://doi.org/10.5194/egusphere-2024-1315, 2024
Short summary
Short summary
Greenhouse gases (GHG) emissions from ponds can vary depending on the state of ponds (clear-water with macrophytes or turbid-water with phytoplankton). We studied CO2, CH4, and N2O emissions in clear and turbid urban ponds (June 2021 to December 2023) in Brussels. We observed seasonal differences in methanogenesis pathways, in CH4 emissions between clear and turbid ponds, and annual differences in total emissions of GHG, likely from intense El Niño event in 2023.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Cédric Morana, Steven Bouillon, Vimac Nolla-Ardèvol, Fleur A. E. Roland, William Okello, Jean-Pierre Descy, Angela Nankabirwa, Erina Nabafu, Dirk Springael, and Alberto V. Borges
Biogeosciences, 17, 5209–5221, https://doi.org/10.5194/bg-17-5209-2020, https://doi.org/10.5194/bg-17-5209-2020, 2020
Short summary
Short summary
A growing body of studies challenges the paradigm that methane (CH4) production occurs only under anaerobic conditions. Our field experiments revealed that oxic CH4 production is closely related to phytoplankton metabolism and is indeed a common feature in five contrasting African lakes. Nevertheless, we found that methanotrophic activity in surface waters and CH4 emissions to the atmosphere were predominantly fuelled by CH4 generated in sediments and physically transported to the surface.
Jérémy Guilhen, Ahmad Al Bitar, Sabine Sauvage, Marie Parrens, Jean-Michel Martinez, Gwenael Abril, Patricia Moreira-Turcq, and José-Miguel Sánchez-Pérez
Biogeosciences, 17, 4297–4311, https://doi.org/10.5194/bg-17-4297-2020, https://doi.org/10.5194/bg-17-4297-2020, 2020
Short summary
Short summary
The quantity of greenhouse gases (GHGs) released to the atmosphere by human industries and agriculture, such as carbon dioxide (CO2) and nitrous oxide (N2O), has been constantly increasing for the last few decades.
This work develops a methodology which makes consistent both satellite observations and modelling of the Amazon basin to identify and quantify the role of wetlands in GHG emissions. We showed that these areas produce non-negligible emissions and are linked to land use.
Alberto V. Borges, François Darchambeau, Thibault Lambert, Cédric Morana, George H. Allen, Ernest Tambwe, Alfred Toengaho Sembaito, Taylor Mambo, José Nlandu Wabakhangazi, Jean-Pierre Descy, Cristian R. Teodoru, and Steven Bouillon
Biogeosciences, 16, 3801–3834, https://doi.org/10.5194/bg-16-3801-2019, https://doi.org/10.5194/bg-16-3801-2019, 2019
Short summary
Short summary
Tropical rivers might be strong sources of CO2 and CH4 to the atmosphere, although there is an enormous data gap. The origin of CO2 in lowland tropical rivers is not well characterized and can be from terra firme or from wetlands (flooded forests and aquatic macrophytes). We obtained a large field dataset of CO2, CH4 and N2O in the Congo, the second-largest river in the world, which allows us to quantity the emission of these greenhouse gases to the atmosphere and investigate their origin.
Samuel T. Wilson, Hermann W. Bange, Damian L. Arévalo-Martínez, Jonathan Barnes, Alberto V. Borges, Ian Brown, John L. Bullister, Macarena Burgos, David W. Capelle, Michael Casso, Mercedes de la Paz, Laura Farías, Lindsay Fenwick, Sara Ferrón, Gerardo Garcia, Michael Glockzin, David M. Karl, Annette Kock, Sarah Laperriere, Cliff S. Law, Cara C. Manning, Andrew Marriner, Jukka-Pekka Myllykangas, John W. Pohlman, Andrew P. Rees, Alyson E. Santoro, Philippe D. Tortell, Robert C. Upstill-Goddard, David P. Wisegarver, Gui-Ling Zhang, and Gregor Rehder
Biogeosciences, 15, 5891–5907, https://doi.org/10.5194/bg-15-5891-2018, https://doi.org/10.5194/bg-15-5891-2018, 2018
Short summary
Short summary
To determine the variability between independent measurements of dissolved methane and nitrous oxide, seawater samples were analyzed by multiple laboratories. The results revealed the influences of the different parts of the analytical process, from the initial sample collection to the calculation of the final concentrations. Recommendations are made to improve dissolved methane and nitrous oxide measurements to help preclude future analytical discrepancies between laboratories.
Trent R. Marwick, Fredrick Tamooh, Bernard Ogwoka, Alberto V. Borges, François Darchambeau, and Steven Bouillon
Biogeosciences, 15, 1683–1700, https://doi.org/10.5194/bg-15-1683-2018, https://doi.org/10.5194/bg-15-1683-2018, 2018
Short summary
Short summary
A 2-year biogeochemical record provides annual sediment and element flux estimates for the non-dammed Sabaki River, Kenya, establishing a baseline for future research in light of impending construction of the first major upstream reservoir. Over 80 % of material fluxes occur across the wet season, with annual yields comparable to the adjacent, and dammed, Tana River. Observations at low-flow periods suggest large mammalian herbivores may be vectors of terrestrial subsidies to the water column.
Alberto V. Borges, Gwenaël Abril, and Steven Bouillon
Biogeosciences, 15, 1093–1114, https://doi.org/10.5194/bg-15-1093-2018, https://doi.org/10.5194/bg-15-1093-2018, 2018
Short summary
Short summary
The Mekong River is among the largest on Earth and is vital for the economy of Vietnam and South East Asia and the livelihood of the local population (70 million across six countries). Numerous dams for hydropower are planned, which will affect the delivery of water and sediments to the Mekong delta, with numerous possible consequences. We report the dynamics of two greenhouse gases (CO2 and CH4) in the Mekong delta that can be used as a reference state to evaluate future changes.
Naomi Geeraert, Fred O. Omengo, Fredrick Tamooh, Trent R. Marwick, Alberto V. Borges, Gerard Govers, and Steven Bouillon
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-31, https://doi.org/10.5194/bg-2017-31, 2017
Manuscript not accepted for further review
Short summary
Short summary
We observed that the relationship between the concentrations and the water discharge in the Tana River changed in wet seasons with and without flooding. Detailed sampling in those seasons is required in order to construct several rating curves and to obtain reliable flux estimates. The sediment and carbon fluxes in function of discharge will help us to asses the flux changes that can be expected when the hydrology changes due to climate change or human impact.
Thibault Lambert, Steven Bouillon, François Darchambeau, Philippe Massicotte, and Alberto V. Borges
Biogeosciences, 13, 5405–5420, https://doi.org/10.5194/bg-13-5405-2016, https://doi.org/10.5194/bg-13-5405-2016, 2016
Short summary
Short summary
This paper aims to investigate the spatial variability in dissolved organic matter (DOM) in terms of both concentration and composition in the Congo River network. Stable carbon isotopes and absorption and fluorescent properties of DOM were used as proxies for DOM composition. This study shows that DOM degradation within the Congo Basin results in the transition from aromatic to aliphatic DOM as well as the role of landscape and water residence time on this transition.
Fleur A. E. Roland, François Darchambeau, Cédric Morana, Sean A. Crowe, Bo Thamdrup, and Alberto V. Borges
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-300, https://doi.org/10.5194/bg-2016-300, 2016
Manuscript not accepted for further review
Short summary
Short summary
We studied methane consumption in a tropical Great Lake (Lake Kivu, East Africa). Lake Kivu has huge methane concentrations in its deep anoxic waters, but is a very poor emitter of methane to the atmosphere, which suppose a strong methane consumption in the water column. During this study, we put in evidence high aerobic and anaerobic consumption rates, whose relative importance varied with the season (higher aerobic rates in dry season, when the oxic compartment is wider).
Thibault Lambert, Cristian R. Teodoru, Frank C. Nyoni, Steven Bouillon, François Darchambeau, Philippe Massicotte, and Alberto V. Borges
Biogeosciences, 13, 2727–2741, https://doi.org/10.5194/bg-13-2727-2016, https://doi.org/10.5194/bg-13-2727-2016, 2016
Short summary
Short summary
This manuscript presents a detailed analysis of transport and transformation of dissolved organic matter along the Zambezi River and its largest tributary. A particular focus is put on the effects of floodplains/wetlands and reservoirs as well as low-flow vs. high-flow conditions on the longitudinal patterns in DOM concentration and composition. It is the first study to present such a detailed analysis for a whole, large river system, and in particular for a tropical river other than the Amazon.
R. L. Sobrinho, M. C. Bernardes, G. Abril, J.-H. Kim, C. I Zell, J.-M. Mortillaro, T. Meziane, P. Moreira-Turcq, and J. S. Sinninghe Damsté
Biogeosciences, 13, 467–482, https://doi.org/10.5194/bg-13-467-2016, https://doi.org/10.5194/bg-13-467-2016, 2016
Short summary
Short summary
The principal objective of the present work is to quantify the fractions of the principal sources of sedimentary organic matter (SOM) in floodplain lakes of the central Amazon basin. The results indicate that the main source of SOM is not the riverine particulate material, as postulated by the literature, but the macrophytes and the forests.
L. C. Cotovicz Jr., B. A. Knoppers, N. Brandini, S. J. Costa Santos, and G. Abril
Biogeosciences, 12, 6125–6146, https://doi.org/10.5194/bg-12-6125-2015, https://doi.org/10.5194/bg-12-6125-2015, 2015
Short summary
Short summary
Air-water CO2 fluxes were monitored in Guanabara Bay (Brazil), a tropical eutrophic coastal embayment. In contrast to other estuaries worldwide, Guanabara Bay behaves as an annual CO2 sink (-9.6 to -18.3 molC m2 yr) due to the concomitant effects of strong radiation, thermal stratification, and high availability of nutrients, which promotes huge phytoplankton development and autotrophy. Our results show that CO2 budget assertions still lack information on tropical marine-dominated estuaries.
C. Morana, F. Darchambeau, F. A. E. Roland, A. V. Borges, F. Muvundja, Z. Kelemen, P. Masilya, J.-P. Descy, and S. Bouillon
Biogeosciences, 12, 4953–4963, https://doi.org/10.5194/bg-12-4953-2015, https://doi.org/10.5194/bg-12-4953-2015, 2015
C. R. Teodoru, F. C. Nyoni, A. V. Borges, F. Darchambeau, I. Nyambe, and S. Bouillon
Biogeosciences, 12, 2431–2453, https://doi.org/10.5194/bg-12-2431-2015, https://doi.org/10.5194/bg-12-2431-2015, 2015
Short summary
Short summary
CO2 and CH4 concentrations and fluxes in the Zambezi River basin are well below the median/average values reported previously for tropical rivers, streams and reservoirs, and mainly controlled by the connectivity with floodplains and the presence of waterfalls and man-made reservoirs. The mass balance suggests that carbon transport to the ocean represents the major component (~60%) of the budget, while emissions to the atmosphere account for less than 40% of the total carbon yield.
C. Morana, A. V. Borges, F. A. E. Roland, F. Darchambeau, J.-P. Descy, and S. Bouillon
Biogeosciences, 12, 2077–2088, https://doi.org/10.5194/bg-12-2077-2015, https://doi.org/10.5194/bg-12-2077-2015, 2015
M. Hagens, C. P. Slomp, F. J. R. Meysman, D. Seitaj, J. Harlay, A. V. Borges, and J. J. Middelburg
Biogeosciences, 12, 1561–1583, https://doi.org/10.5194/bg-12-1561-2015, https://doi.org/10.5194/bg-12-1561-2015, 2015
Short summary
Short summary
This study looks at the combined impacts of hypoxia and acidification, two major environmental stressors affecting coastal systems, in a seasonally stratified basin. Here, the surface water experiences less seasonality in pH than the bottom water despite higher process rates. This is due to a substantial reduction in the acid-base buffering capacity of the bottom water as it turns hypoxic in summer. This highlights the crucial role of the buffering capacity as a modulating factor in pH dynamics.
F. S. Pacheco, M. C. S. Soares, A. T. Assireu, M. P. Curtarelli, F. Roland, G. Abril, J. L. Stech, P. C. Alvalá, and J. P. Ometto
Biogeosciences, 12, 147–162, https://doi.org/10.5194/bg-12-147-2015, https://doi.org/10.5194/bg-12-147-2015, 2015
Short summary
Short summary
CO2 fluxes in Funil Reservoir (FR) is driven by primary production and river inflow dynamics. Our findings suggest that the lack of spatial data in reservoir C budget calculations can affect regional and global estimates. Our results support the idea that the FR is a dynamic system where the hydrodynamics represented by changes in the river inflow and retention time are potentially a more important force driving both the Chl and pCO2 spatial variability than the in-system ecological factors.
G. Abril, S. Bouillon, F. Darchambeau, C. R. Teodoru, T. R. Marwick, F. Tamooh, F. Ochieng Omengo, N. Geeraert, L. Deirmendjian, P. Polsenaere, and A. V. Borges
Biogeosciences, 12, 67–78, https://doi.org/10.5194/bg-12-67-2015, https://doi.org/10.5194/bg-12-67-2015, 2015
Short summary
Short summary
We compared pCO2 data calculated from pH and alkalinity from those measured directly in a large array of temperate and tropical freshwaters. This revealed a large overestimation (up to 300%) of calculated pCO2 in the case of acidic and organic-rich waters, due to a contribution of organic acids anions to alkalinity and a lower buffering capacity of the carbonate system at acidic pH. Given the widespread distribution of acidic freshwaters, direct measurements of water pCO2 are encouraged.
P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F.-M. Bréon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.-D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, R. Wang, G. van der Werf, D. Wickland, M. Williams, and C. Zehner
Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, https://doi.org/10.5194/bg-11-3547-2014, 2014
T. R. Marwick, F. Tamooh, B. Ogwoka, C. Teodoru, A. V. Borges, F. Darchambeau, and S. Bouillon
Biogeosciences, 11, 443–460, https://doi.org/10.5194/bg-11-443-2014, https://doi.org/10.5194/bg-11-443-2014, 2014
F. Tamooh, A. V. Borges, F. J. R. Meysman, K. Van Den Meersche, F. Dehairs, R. Merckx, and S. Bouillon
Biogeosciences, 10, 6911–6928, https://doi.org/10.5194/bg-10-6911-2013, https://doi.org/10.5194/bg-10-6911-2013, 2013
Related subject area
Biodiversity and Ecosystem Function: Freshwater
Geochemical and microbial factors driving crustacean assemblages in adjacent groundwater bodies within the same aquifer
Environmental drivers of spatio-temporal dynamics in floodplain vegetation: grasslands as habitat for megafauna in Bardia National Park (Nepal)
Geodiversity influences limnological conditions and freshwater ostracode species distributions across broad spatial scales in the northern Neotropics
Arctic aquatic graminoid tundra responses to nutrient availability
Stable isotopic composition of top consumers in Arctic cryoconite holes: revealing divergent roles in a supraglacial trophic network
Experimental tests of water chemistry response to ornithological eutrophication: biological implications in Arctic freshwaters
Significance of climate and hydrochemistry on shape variation – a case study on Neotropical cytheroidean Ostracoda
Assembly processes of gastropod community change with horizontal and vertical zonation in ancient Lake Ohrid: a metacommunity speciation perspective
Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard
Unusual biogenic calcite structures in two shallow lakes, James Ross Island, Antarctica
Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes
Constant diversification rates of endemic gastropods in ancient Lake Ohrid: ecosystem resilience likely buffers environmental fluctuations
Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forested stream
Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes
Explosive demographic expansion by dreissenid bivalves as a possible result of astronomical forcing
Phytoplankton community structure in the Lena Delta (Siberia, Russia) in relation to hydrography
Lacustrine mollusc radiations in the Lake Malawi Basin: experiments in a natural laboratory for evolution
DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages
Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe
Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa
Spatially explicit analysis of gastropod biodiversity in ancient Lake Ohrid
A freshwater biodiversity hotspot under pressure – assessing threats and identifying conservation needs for ancient Lake Ohrid
Stratigraphic analysis of lake level fluctuations in Lake Ohrid: an integration of high resolution hydro-acoustic data and sediment cores
Sediment core fossils in ancient Lake Ohrid: testing for faunal change since the Last Interglacial
Testing the spatial and temporal framework of speciation in an ancient lake species flock: the leech genus Dina (Hirudinea: Erpobdellidae) in Lake Ohrid
Native Dreissena freshwater mussels in the Balkans: in and out of ancient lakes
Tiziana Di Lorenzo, Stefano Amalfitano, Diana Maria Paola Galassi, Marco Melita, Annamaria Zoppini, Daniele Parrone, Stefano Ghergo, David Rossi, Agostina Tabilio Di Camillo, and Elisabetta Preziosi
EGUsphere, https://doi.org/10.5194/egusphere-2023-2973, https://doi.org/10.5194/egusphere-2023-2973, 2024
Short summary
Short summary
This study examines the effects of geochemistry and microbial communities on crustacean assemblages in a volcanic aquifer. It uncovers that major ions, trace elements, and microbial traits dictate the composition and functionality of crustacean assemblages, revealing variations across adjacent groundwater bodies. The study highlights the importance of approaches that integrate geochemical, microbial, and biological indicators for understanding the dynamics of groundwater ecosystems.
Jitse Bijlmakers, Jasper Griffioen, and Derek Karssenberg
Biogeosciences, 20, 1113–1144, https://doi.org/10.5194/bg-20-1113-2023, https://doi.org/10.5194/bg-20-1113-2023, 2023
Short summary
Short summary
At the foot of the Himalayas in Nepal, land cover time series and data of environmental drivers show changes in disturbance-dependent grasslands that serve as habitat for endangered megafauna. The changes in surface area and heterogeneity of the grassland patches are attributed to a relocation of the dominant river channel of the Karnali River and associated decline of hydromorphological disturbances and a decrease in anthropogenic disturbances after its establishment as conservation area.
Laura Macario-González, Sergio Cohuo, Philipp Hoelzmann, Liseth Pérez, Manuel Elías-Gutiérrez, Margarita Caballero, Alexis Oliva, Margarita Palmieri, María Renée Álvarez, and Antje Schwalb
Biogeosciences, 19, 5167–5185, https://doi.org/10.5194/bg-19-5167-2022, https://doi.org/10.5194/bg-19-5167-2022, 2022
Short summary
Short summary
We evaluate the relationships between geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. Geological, limnological, geochemical, and mineralogical characteristics of 76 systems reveal two main limnological regions and seven subregions. Water ionic and sediment composition are the most influential. Geodiversity strongly influences limnological conditions, which in turn influence ostracode composition and distribution.
Christian G. Andresen and Vanessa L. Lougheed
Biogeosciences, 18, 2649–2662, https://doi.org/10.5194/bg-18-2649-2021, https://doi.org/10.5194/bg-18-2649-2021, 2021
Short summary
Short summary
Aquatic tundra plants dominate productivity and methane fluxes in the Arctic coastal plain. We assessed how environmental nutrient availability influences production of biomass and greenness of aquatic tundra. We found phosphorous to be the main nutrient limiting biomass productivity and greenness in Arctic aquatic grasses. This study highlights the importance of nutrient pools and mobilization between terrestrial–aquatic systems and their influence on regional carbon and energy feedbacks.
Tereza Novotná Jaroměřská, Jakub Trubač, Krzysztof Zawierucha, Lenka Vondrovicová, Miloslav Devetter, and Jakub D. Žárský
Biogeosciences, 18, 1543–1557, https://doi.org/10.5194/bg-18-1543-2021, https://doi.org/10.5194/bg-18-1543-2021, 2021
Short summary
Short summary
Cryoconite holes are ponds on the glacier surface that play an important role in glacier nutrient pathways. This paper presents the first description of the carbon and nitrogen isotopic composition of cryoconite consumers (tardigrades and rotifers) and their potential food. We showed that consumers differ in nitrogen isotopes and carbon isotopes vary between taxa and between glaciers. The study contributes to improving knowledge about cryoconite hole functioning and cryoconite trophic networks.
Heather L. Mariash, Milla Rautio, Mark Mallory, and Paul A. Smith
Biogeosciences, 16, 4719–4730, https://doi.org/10.5194/bg-16-4719-2019, https://doi.org/10.5194/bg-16-4719-2019, 2019
Short summary
Short summary
Across North America and Europe, goose populations have increased exponentially in response to agricultural intensification. By using an experimental approach, we empirically demonstrated that geese act as bio-vectors, making terrestrial nutrients more bioavailable to freshwater systems. The study revealed that the nutrient loading from goose faeces has the potential to change phytoplankton community composition, with a shift toward an increased presence of cyanobacteria.
Claudia Wrozyna, Thomas A. Neubauer, Juliane Meyer, Maria Ines F. Ramos, and Werner E. Piller
Biogeosciences, 15, 5489–5502, https://doi.org/10.5194/bg-15-5489-2018, https://doi.org/10.5194/bg-15-5489-2018, 2018
Short summary
Short summary
How environmental change affects a species' phenotype is crucial for taxonomy and biodiversity assessments and for their application as paleoecological indicators. Morphometric data of a Neotropical ostracod species, as well as several climatic and hydrochemical variables, were used to investigate the link between morphology and environmental conditions. Temperature seasonality, annual precipitation, and chloride and sulphate concentrations were identified as drivers for ostracod ecophenotypy.
Torsten Hauffe, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 2901–2911, https://doi.org/10.5194/bg-13-2901-2016, https://doi.org/10.5194/bg-13-2901-2016, 2016
T. R. Vonnahme, M. Devetter, J. D. Žárský, M. Šabacká, and J. Elster
Biogeosciences, 13, 659–674, https://doi.org/10.5194/bg-13-659-2016, https://doi.org/10.5194/bg-13-659-2016, 2016
Short summary
Short summary
The diversity of microalgae and cyanobacteria in cryoconites on three high-Arctic glaciers was investigated. Possible bottom-up controls via nutrient limitation, wind dispersal, and hydrological stability were measured. Grazer populations were quantified to estimate the effect of top-down controls. Nutrient limitation appeared to be the most important control on the diversity and competition outcomes of microalgae and cyanobacteria.
J. Elster, L. Nedbalová, R. Vodrážka, K. Láska, J. Haloda, and J. Komárek
Biogeosciences, 13, 535–549, https://doi.org/10.5194/bg-13-535-2016, https://doi.org/10.5194/bg-13-535-2016, 2016
J. Comte, C. Lovejoy, S. Crevecoeur, and W. F. Vincent
Biogeosciences, 13, 175–190, https://doi.org/10.5194/bg-13-175-2016, https://doi.org/10.5194/bg-13-175-2016, 2016
Short summary
Short summary
Thaw ponds and lakes varied in their bacterial community structure. A small number of taxa occurred in high abundance and dominated many of the communities. Nevertheless, there were taxonomic differences among different valleys implying some degree of habitat selection. Association networks were composed of a limited number of highly connected OTUs. These "keystone species" were not merely the abundant taxa, whose loss would greatly alter the structure and functioning of these aquatic ecosystem.
K. Föller, B. Stelbrink, T. Hauffe, C. Albrecht, and T. Wilke
Biogeosciences, 12, 7209–7222, https://doi.org/10.5194/bg-12-7209-2015, https://doi.org/10.5194/bg-12-7209-2015, 2015
Short summary
Short summary
Based on our molecular data and performed analyses we found that the gastropods studied represent a comparatively old group that most likely evolved with a constant rate of diversification. However, preliminary data of the SCOPSCO deep-drilling program indicate signatures of environmental/climatic perturbations in Lake Ohrid. We therefore propose that the constant rate observed has been caused by a potential lack of catastrophic environmental events and/or a high ecosystem resilience.
S. Bernal, A. Lupon, M. Ribot, F. Sabater, and E. Martí
Biogeosciences, 12, 1941–1954, https://doi.org/10.5194/bg-12-1941-2015, https://doi.org/10.5194/bg-12-1941-2015, 2015
Short summary
Short summary
Terrestrial inputs are considered the major driver of longitudinal patterns of nutrient concentration. Yet we show that longitudinal trends result from hydrological mixing with terrestrial inputs and in-stream processes. We challenge the idea that nutrient concentrations decrease downstream when in-stream net uptake is high. Conversely, in-stream processes can strongly affect stream nutrient chemistry and fluxes even in the absence of consistent longitudinal trends in nutrient concentration.
P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, V. E. Villafañe, and E. W. Helbling
Biogeosciences, 12, 697–712, https://doi.org/10.5194/bg-12-697-2015, https://doi.org/10.5194/bg-12-697-2015, 2015
Short summary
Short summary
Under UVR and stratification,the commensalistic algae-bacteria interaction was strengthened in the high-UVR lake, where excretion of organic carbon rates exceeded the bacterial carbon demand,but did not occur in the low-UVR lake.The greater UVR damage to algae and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates these lakes would be especially vulnerable to UVR. These results have implications for the C cycle in lakes of the Mediterranean region.
M. Harzhauser, O. Mandic, A. K. Kern, W. E. Piller, T. A. Neubauer, C. Albrecht, and T. Wilke
Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, https://doi.org/10.5194/bg-10-8423-2013, 2013
A. C. Kraberg, E. Druzhkova, B. Heim, M. J. G. Loeder, and K. H. Wiltshire
Biogeosciences, 10, 7263–7277, https://doi.org/10.5194/bg-10-7263-2013, https://doi.org/10.5194/bg-10-7263-2013, 2013
D. Van Damme and A. Gautier
Biogeosciences, 10, 5767–5778, https://doi.org/10.5194/bg-10-5767-2013, https://doi.org/10.5194/bg-10-5767-2013, 2013
I. Domaizon, O. Savichtcheva, D. Debroas, F. Arnaud, C. Villar, C. Pignol, B. Alric, and M. E. Perga
Biogeosciences, 10, 3817–3838, https://doi.org/10.5194/bg-10-3817-2013, https://doi.org/10.5194/bg-10-3817-2013, 2013
E. W. Helbling, P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, M. Villar-Argaiz, and V. E. Villafañe
Biogeosciences, 10, 1037–1050, https://doi.org/10.5194/bg-10-1037-2013, https://doi.org/10.5194/bg-10-1037-2013, 2013
C. H. Hsieh, Y. Sakai, S. Ban, K. Ishikawa, T. Ishikawa, S. Ichise, N. Yamamura, and M. Kumagai
Biogeosciences, 8, 1383–1399, https://doi.org/10.5194/bg-8-1383-2011, https://doi.org/10.5194/bg-8-1383-2011, 2011
T. Hauffe, C. Albrecht, K. Schreiber, K. Birkhofer, S. Trajanovski, and T. Wilke
Biogeosciences, 8, 175–188, https://doi.org/10.5194/bg-8-175-2011, https://doi.org/10.5194/bg-8-175-2011, 2011
G. Kostoski, C. Albrecht, S. Trajanovski, and T. Wilke
Biogeosciences, 7, 3999–4015, https://doi.org/10.5194/bg-7-3999-2010, https://doi.org/10.5194/bg-7-3999-2010, 2010
K. Lindhorst, H. Vogel, S. Krastel, B. Wagner, A. Hilgers, A. Zander, T. Schwenk, M. Wessels, and G. Daut
Biogeosciences, 7, 3531–3548, https://doi.org/10.5194/bg-7-3531-2010, https://doi.org/10.5194/bg-7-3531-2010, 2010
C. Albrecht, H. Vogel, T. Hauffe, and T. Wilke
Biogeosciences, 7, 3435–3446, https://doi.org/10.5194/bg-7-3435-2010, https://doi.org/10.5194/bg-7-3435-2010, 2010
S. Trajanovski, C. Albrecht, K. Schreiber, R. Schultheiß, T. Stadler, M. Benke, and T. Wilke
Biogeosciences, 7, 3387–3402, https://doi.org/10.5194/bg-7-3387-2010, https://doi.org/10.5194/bg-7-3387-2010, 2010
T. Wilke, R. Schultheiß, C. Albrecht, N. Bornmann, S. Trajanovski, and T. Kevrekidis
Biogeosciences, 7, 3051–3065, https://doi.org/10.5194/bg-7-3051-2010, https://doi.org/10.5194/bg-7-3051-2010, 2010
Cited articles
Abril, G., Etcheber, H., Borges, A. V., and Frankignoulle, M.: Excess
atmospheric carbon dioxide transported by rivers into the Scheldt Estuary, CR
Acad. Sci. II A, 330, 761–768, 2000.
Abril, G., Martinez, J.-M., Artigas, L. F., Moreira-Turcq, P., Benedetti, M.
F., Vidal L., Meziane, T., Kim, J.-H., Bernardes, M. C., Savoye, N., Deborde,
J., Albéric, P., Souza, M. F. L., Souza, E. L., and Roland, F.: Amazon
River Carbon Dioxide Outgassing fuelled by Wetlands, Nature, 505, 395–398,
2014.
Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R.,
Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere,
P., and Borges, A. V.: Technical Note: Large overestimation of
pCO2 calculated from pH and alkalinity in acidic,
organic-rich freshwaters, Biogeosciences, 12, 67–78,
https://doi.org/10.5194/bg-12-67-2015, 2015.
Albéric, P., Pérez, M. A. P., Moreira-Turcq, P., Benedetti, M.,
Bouillon, S., and Abril, G.: Variation of dissolved organic carbon isotopic
composition during the runoff cycle in the Amazon River and floodplains, CR
Geosci., 350, 65–75, 2018.
Allen, G. H. and Pavelsky, T. M.: Global extent of rivers and streams,
Science, 28, eaat0636, https://doi.org/10.1126/science.aat0636, 2018.
Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C.,
Alin, S. R., Aalto, R. E., and Yoo, K.: Rivers key to coupling biogeochemical
cycles between land, oceans and atmosphere, Front. Ecol. Environ., 9, 53–60,
2011.
Bastviken, D., Tranvik, L., Downing, J. A., Crill, P. M., and Enrich-Prast,
A.: Freshwater methane emissions offset the continental carbon sink, Science,
331, 50, https://doi.org/10.1126/science.1196808, 2011.
Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E.,
Packman, A. I., Newbold, J. D., and Sabater, F.: Biophysical controls on
organic carbon fluxes in fluvial networks, Nat. Geosci., 2, 595–595, 2008.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A.,
and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598–600,
2009.
Bedford, B. L., Bouldin, D. R., and Beliveau, B.: Net oxygen and carbon
dioxide balances in solutions bathing roots of wetland plants, J. Ecol., 79,
943–959, 1991.
Billett, M. F., Garnett, M. H., and Harvey, F.: UK peatland streams release
old carbon dioxide to the atmosphere and young dissolved organic carbon to
rivers, Geophys. Res. Lett., 34, L23401, https://doi.org/10.1029/2007GL031797, 2007.
Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D., and Frankenberg, C.:
Methanogenesis Inferred from Methane and Gravity Spaceborne Data, Science,
327, 322–325, 2010.
Bontemps, S., Defourny, P., Van Bogaert, E., Arino, O., Kalogirou, V., Ramos
Perez, J. J.: GLOBCOVER 2009 Products description and validation report.
Université catholique de Louvain (UCL) & European Space Agency (esa),
Vers. 2.2, 53 pp., hdl:10013/epic.39884.d016, 2011.
Borges, A. V., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F.,
Geeraert, N., Omengo, F. O., Guérin, F., Lambert, T., Morana, C., Okuku,
E., and Bouillon, S.: Globally significant greenhouse gas emissions from
African inland waters, Nat. Geosci., 8, 637–642, 2015a.
Borges, A. V., Abril, G., Darchambeau, F., Teodoru, C. R., Deborde, J.,
Vidal, L. O., Lambert, T., and Bouillon, S.: Divergent biophysical controls
of aquatic CO2 and CH4 in the World's two largest rivers,
Sci. Rep.-UK, 5, 15614, https://doi.org/10.1038/srep15614, 2015b.
Bouchez, J., Gaillardet, J., Lupker, M., Louvat, P., France-Lanord, C.,
Maurice, L., Armijos, E., and Moquet, J.-S.: Floodplains of large rivers:
weathering reactors or simple silos?, Chem. Geol., 332–333, 166–184, 2012.
Bridgham, S. D., Moore, T. R., Richardson, C. J., and Roulet, N. T.: Errors
in greenhouse forcing and soil carbon sequestration estimates in freshwater
wetlands: a comment on Mitsch et al. (2013), Landscape Ecol., 29, 1481–1485,
2014.
Butman, D. and Raymond, P. A.: Significant efflux of carbon dioxide from
streams and rivers in the United States, Nat. Geosci., 4, 839–842, 2011.
Byrnes, B. H., Austin, E. R., and Tays, B. K.: Methane emissions from flooded
rice soils and plants under controlled conditions, Soil Biol. Biochem., 27,
331–339, 1995.
Chanton, J. P. and Whiting, G.: Trace gas exchange in freshwater and coastal
marine systems: ebullition and plant transport, in: Methods in Ecology:
Biogenic Trace Gases: Measuring Emissions from Soil and Water, edited by:
Matson, P. and Harriss, R., 98–125, Blackwell Scientific, Cambridge, MA,
1995.
Chapin III, F. S., Woodwell, G. M., Randerson, J. T., Rastetter, E. B.,
Lovett, G. M., Baldocchi, D. D., Clark, D. A., Harmon, M. E., Schimel, D. S.,
Valentini, R., Wirth, C., Aber, J. D., Cole, J. J., Goulden, M. L., Harden,
J. W., Heimann, M., Howarth, R. W., Matson, P. A., McGuire, A. D., Melillo,
J. M., Mooney, H. A., Neff, J. C., Houghton, R. A., Pace, M. L., Ryan, M. G.,
Running, S. W., Sala, O. E., Schlesinger, W. H., and Schulze, E.-D.:
Reconciling Carbon-cycle Concepts, Terminology, and Methods, Ecosystems, 9,
1041–1050, 2006.
Ciais, P., Borges, A. V., Abril, G., Meybeck, M., Folberth, G., Hauglustaine,
D., and Janssens, I. A.: The impact of lateral carbon fluxes on the European
carbon balance, Biogeosciences, 5, 1259–1271,
https://doi.org/10.5194/bg-5-1259-2008, 2008.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A.,
DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B.,
Piao, S., and Thornton, P.: Carbon and Other Biogeochemical Cycles, in: Climate
Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Clark, J. M., Lane, S. N., Chapman, P. J., and Adamson, J. K.: Link between
DOC in near surface peat and stream water in an upland catchment, Sci. Total
Environ., 404, 308–315, 2008.
Cole, J. J. and Caraco, N. F.: Carbon in catchments: connecting terrestrial
carbon losses with aquatic metabolism, Mar. Freshwater Res., 52, 101–110,
2001.
Cole, J. J., Caraco, N. F., Kling, G. W., and Kratz, T. K.: Carbon dioxide
supersaturation in the surface waters of lakes, Science, 265, 1568–1570,
1994.
Cole, J. J., Pace, M. L., Carpenter, S. R., and Kitchell, J. F.: Persistence
of net heterotrophy in lakes during nutrient addition and food web
manipulations, Limnol. Oceanogr., 45, 1718–1730, 2000.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the Global Carbon Cycle: Integrating Inland
Waters into the Terrestrial Carbon Budget, Ecosystems, 10, 171–184, 2007.
Davidson, E. A., Richardson, A. D., Savage, K. E., and Hillinger, D. Y.: A
distinct seasonal pattern of the ratio of soil respiration to total ecosystem
respiration in a spruce-dominated forest, Glob. Change Biol., 12, 230–239,
2006.
Davidson, E. A., Figueiredo, R. O., Markewitz, D., and Aufdenkampe, A. K.:
Dissolved CO2 in small catchment streams of eastern Amazonia: A minor
pathway of terrestrial carbon loss, J. Geophys. Res., 115, G04005,
https://doi.org/10.1029/2009JG001202, 2010.
Deirmendjian, L. and Abril, G.: Carbon dioxide degassing at the
groundwater-stream-atmosphere interface: isotopic equilibration and
hydrological mass balance in a sandy watershed, J. Hydrol., 558, 129–143,
2018.
Deirmendjian, L., Loustau, D., Augusto, L., Lafont, S., Chipeaux, C.,
Poirier, D., and Abril, G.: Hydro-ecological controls on dissolved carbon
dynamics in groundwater and export to streams in a temperate pine forest,
Biogeosciences, 15, 669–691, https://doi.org/10.5194/bg-15-669-2018, 2018.
Del Giorgio, P. A., Cole, J. J., Caraco, N. F., and Peters, R. H.: Linking
planktonic biomass and metabolism to net gas fluxes in northern temperate
lakes, Ecology, 80, 1422–1431, 1999.
Downing, J. A.: Plenary lecture Global limnology: up-scaling aquatic services
and processes to planet Earth, Verh. Int. Verein. Limnol., 30, 1149–1166,
2009.
Engle, D. L., Melack, J. M., Doyle, R. D., and Fisher, T. R.: High rates of
net primary production and turnover of floating grasses on the Amazon
floodplain: implications for aquatic respiration and regional CO2
flux, Glob. Change Biol., 14, 369–381, 2008.
Freeman, C., Evans, C. D., and Monteith, D. T.: Export of organic carbon from
peat soils, Nature, 412, 785, https://doi.org/10.1038/35090628, 2001.
Foster-Martinez, M. R. and Variano, E. A.: Air-water gas exchange by waving
vegetation stems, J. Geophys. Res.-Biogeo., 121, 1916–1923,
https://doi.org/10.1002/2016JG003366, 2016.
Garrels, R. M. and Mackenzie, F. T.: Evolution of Sedimentary Rocks, 397 pp.,
W. W. Norton, New York, 1971.
Geeraert, N., Omengo, F. O., Borges, A. V., Govers, G., and Bouillon, S.:
Shifts in the carbon dynamics in a tropical lowland river system (Tana River,
Kenya) during flooded and non-flooded conditions, Biogeochemistry, 132,
141–163, https://doi.org/10.1007/s10533-017-0292-2, 2017.
Haase, K. and Rätsch, G.: The Morphology and Anatomy of Tree Roots and
Their Aeration Strategies, in: Amazonian Floodplain Forests: Ecophysiology,
Biodiversity and Sustainable Management, edited by: Junk, W. J., Piedade, M.
T. F., Wittmann, F., Schöngart, J., and Parolin, P., 142–160, Springer,
2010.
Hamilton, S. K., Sippel, S. J., and Melack, J. M.: Oxygen depletion and
carbon dioxide and methane production in waters of the Pantanal wetland of
Brazil, Biogeochemistry, 30, 115–141, 1995.
Hartmann, J., Lauerwald, R., and Moosdorf, N.: A Brief Overview of the GLObal
RIver Chemistry Database, GLORICH, Proced. Earth Plan. Sc., 10, 23–27, 2014.
Heimann, M. and Reichstein, M.: Terrestrial ecosystem carbon dynamics and
climate feedbacks, Nature, 451, 289–292, 2008.
Ho, D. T., Engel, V. C., Ferrón, S., Hickman, B., Choi, J., and Harvey,
J. W.: On Factors Influencing Air-Water Gas Exchange in Emergent Wetlands, J.
Geophys. Res.-Biogeo., 123, 178–192, https://doi.org/10.1002/2017JG004299, 2018.
Holgerson, M. A. and Raymond, P. A.: Large contribution to inland water
CO2 and CH4 emissions from very small ponds, Nat. Geosci., 9,
222–226, 2016.
Hotchkiss, E. R., Hall Jr., R. O., Sponseller, R. A., Butman, D., Klaminder,
J., Laudon, H., Rosvall, M., and Karlsson, J.: Sources of and processes
controlling CO2 emissions change with the size of streams and rivers,
Nat. Geosci., 8, 696–699, 2015.
Jenerette, G. D. and Lal, R.: Hydrologic sources of carbon cycling
uncertainty throughout the terrestrial–aquatic continuum, Glob. Change
Biol., 11, 1873–1882, 2005.
Johnson, M. S., Lehmann, J., Riha, S. J., Krusche, A. V., Richey, J. E.,
Ometto, J. P. H. B., and Guimaraes Couto, E.: CO2 efflux from
Amazonian headwater streams represents a significant fate for deep soil
respiration, Geophys. Res. Lett., 35, L17401, https://doi.org/10.1029/2008GL034619,
2008.
Jones, M. B. and Humphries, S. W.: Impacts of the C4 sedge Cyperus papyrus L. on carbon and water fluxes in an African wetland, Hydrobiol.,
488, 107–113, 2002.
Junk, W. J.: The Amazon Floodplain – a sink or source for organic carbon,
in: Mitt. Geol. Paleont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderband Heft 58,
287–293, 1985.
Junk, W. J., Piedade, M. T. F., Parolin, P., Wittmann, F., and Schöngart,
J.: Ecophysiology, Biodiversity and Sustainable Management of Central
Amazonian Floodplain Forests: A Synthesis, in: Amazonian Floodplain Forests:
Ecophysiology, Biodiversity and Sustainable Management, edited by: Junk, W.
J., Piedade, M. T. F., Wittmann, F., Schöngart, J., and Parolin, P.,
511–540, Springer, 2010.
Juutinen, S., Alm, J., Larmola, T., Huttunen, J. T., Morero, M., Martikainen,
P. J., and Silvola, J.: Major implication of the littoral zone for methane
release from boreal lakes, Global Biogeochem. Cy., 17, 1117,
https://doi.org/10.1029/2003GB002105, 2003.
Kindler, R., Siemens, J., Kaiser, K., Walmsley, D. C., Bernhofer, C.,
Buchmann, N., Cellier, P., Eugster, W., Gleixner, G., Grünwald, T., Heim,
A., Ibrom, A., Jones, S., Jones, M., Klumpp, K., Kutsch, W. L., Steenberg
Larsen, K., Lehuger, S., Loubet, B., Mckenzie, R., Moors, E., Osborne, B.,
Pilegaard, K., Rebmann, C., Saunders, M., Schmidt, M., Schrumpf, M.,
Seyfferth J., Skiba U. M., Soussana, J.-F., Sutton M. A., Tefs, C.,
Vowinckel, B., Zeeman, M., and Kaupenjohann M.: Dissolved carbon leaching
from soil is a crucial component of the net ecosystem carbon balance, Glob.
Change Biol., 17, 1167–1185, 2011.
Knoll, M. A. and James, W. C.: Effect of the advent and diversification of
vascular land plants on mineral weathering through geologic time, Geology,
15, 1099–1102, 1987.
Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P., and Regnier, P. A.
G.: Spatial patterns in CO2 evasion from the global river network,
Global Biogeochem. Cy., 29, 534–554, https://doi.org/10.1002/2014GB004941, 2015.
Lauerwald, R., Regnier, P., Camino-Serrano, M., Guenet, B., Guimberteau, M.,
Ducharne, A., Polcher, J., and Ciais, P.: ORCHILEAK (revision 3875): a new
model branch to simulate carbon transfers along the terrestrial–aquatic
continuum of the Amazon basin, Geosci. Model Dev., 10, 3821–3859,
https://doi.org/10.5194/gmd-10-3821-2017, 2017.
Lehner, B. and Döll, P.: Development and validation of a global database
of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22, 2004.
Lin, H.: Earth's Critical Zone and hydropedology: concepts, characteristics,
and advances, Hydrol. Earth Syst. Sci., 14, 25–45,
https://doi.org/10.5194/hess-14-25-2010, 2010.
Lovett, G. M., Cole, J. J., and Pace, M. L.: Is Net Ecosystem Production
Equal to Ecosystem Carbon Accumulation?, Ecosystems, 9, 1–4, 2006.
Lu, W., Xiao, J., Liu, F., Zhang, Y., Liu, C., and Lin, G.: Contrasting
ecosystem CO2 fluxes of inland and coastal wetlands: a meta-analysis
of eddy covariance data, Glob. Change Biol., 23, 1180–1198,
https://doi.org/10.1111/gcb.13424, 2016.
Luyssaert, S., Ciais, P., Piao, S., Schulze, E.-D., Jung, M., Zaehle, S.,
Reichstein, M., Churkina, G., Papale, D., Abril, G., Beer, C., Grace, J.,
Loustau, D., Matteucci, G., Magnani, F., Schelhaas, M.-J., Nabuurs, G.-J.,
Verbeeck, H., Sulkava, M., van der Werf, G., and Janssens, I.: The European
carbon balance revisited. Part 3: forests, Glob. Change Biol., 16,
1429–1450, 2010.
Mayorga, E., Aufdenkampe, A. K., Masiello, C. A., Krusche, A. V., Hedges, J.
I., Quay, P. D., Richey, J. E., and Brown, T. A.: Young organic matter as a
source of carbon dioxide outgassing from Amazonian rivers, Nature, 436,
538–541, 2005.
McDonald, C. P., Stets, E. G., and Striegl, R. G. B. D.: Inorganic carbon
loading as a primary driver of dissolved carbon dioxide concentrations in
lakes and reservoirs of the contiguous United States, Global Biogeochem. Cy.,
27, 285–295, 2013.
Melack, J. M. and Hess, L. L.: Remote sensing of the distribution and extent
of wetlands in the Amazon basin, in: Amazonian Floodplain Forests:
Ecophysiology, Biodiversity and Sustainable Management, edited by: Junk, W.
J., Piedade, M. T. F., Wittmann, F., Schöngart, J., and Parolin, P.,
43–59, Springer, 2010.
Melack, J. M., Hess, L. L., Gastil, M., Forsberg, B. R., Hamilton, S. K.,
Lima, I. B. T., and Novo, E. M. L. M.: Regionalization of methane emissions
in the Amazon Basin with microwave remote sensing, Glob. Change Biol., 10,
530–544, 2004.
Meybeck, M.: Carbon, nitrogen, and phosphorus transport by world rivers, Am.
J. Sci., 282, 401–450, 1982.
Meybeck, M., Dürr, H. H., and Vörösmarty, C. J.: Global coastal
segmentation and its river catchment contributors: A new look at land-ocean
linkage, Global Biogeochem. Cy., 20, GB1S90, https://doi.org/10.1029/2005GB002540, 2006.
Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander, Ü., Zhang, L.,
Anderson, C. J., Jørgensen, S. E., and Brix, H.: Wetlands, carbon, and
climate change, Landscape Ecol., 28, 583–597, 2013.
Morison, J. I. L., Piedade, M. T. F., Muller, E., Long, S. P., Junk, W. J.,
and Jones, M. B.: Very high productivity of the C4 aquatic grass
Echinochloa polystachya in the Amazon floodplain confirmed by net ecosystem
CO2 flux measurements, Oecologia, 125, 400–411, 2000.
Mortillaro, J. M., Abril, G., Moreira-Turcq, P., Sobrinho, R., Pérez, M.,
and Meziane, T.: Fatty acid and stables isotopes (δ13C,
δ15N) signatures of particulate organic matter in the Lower
Amazon River: seasonal contrasts and connectivity between floodplain lakes
and the mainstem, Org. Geochem., 42, 1159–1168, 2011.
Mulholland, P. J. and Kuenzler, E. J.: Organic carbon export from upland and
forested wetland watersheds, Limnol. Oceanogr., 24, 960–966, 1979.
Nakhavali, M., Friedlingstein, P., Lauerwald, R., Tang, J., Chadburn, S.,
Camino-Serrano, M., Guenet, B., Harper, A., Walmsley, D., Peichl, M., and
Gielen, B.: Representation of dissolved organic carbon in the JULES land
surface model (vn4.4_JULES-DOCM), Geosci. Model Dev., 11, 593–609,
https://doi.org/10.5194/gmd-11-593-2018, 2018.
Oldham, C. E., Farrow, D. E., and Peiffer, S.: A generalized Damköhler
number for classifying material processing in hydrological systems, Hydrol.
Earth Syst. Sci., 17, 1133–1148, https://doi.org/10.5194/hess-17-1133-2013,
2013.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A.,
Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P.,
Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A.,
Sitch, S., and Hayes, D.: A large and persistent carbon sink in the world's
forests, Science, 333, 988–993, 2011.
Papa, F., Prigent, C., Aires, F., Jimenez, C., Rossow, W. B., and Matthews,
E.: Interannual variability of surface water extent at the global scale,
1993–2004, J. Geophys. Res., 115, D12111, https://doi.org/10.1029/2009JD012674, 2010.
Parolin, P., Junk, W. J., and Piedade, M. T. F.: Gas exchange of six tree
species from Central Amazonian floodplains, Trop. Ecol., 42, 15–24, 2001.
Peixoto, R. B., Marotta, H., Bastviken, D., Enrich-Prast, A.: Floating
Aquatic Macrophytes Can Substantially Offset Open Water CO2 Emissions
from Tropical Floodplain Lake Ecosystems, Ecosystems, 19, 724–736, 2016.
Piedade, M. T. F., Long, S. P., and Junk, W. J.: Leaf and canopy
photosynthetic CO2 uptake of a stand of Echinochloa polystachya on
the Central Amazon floodplain. Are the high potential rates associated with
the C4 syndrome realized under the near-optimal conditions provided by this
exceptional natural habitat?, Oecologia, 97, 193–201, 1994.
Piedade, M. T. F., Ferreira, C. S., de Oliveira Wittmann, A., Buckeridge, M.,
and Parolin, P.: Biochemistry of Amazonian Floodplain Trees. in Amazonian
floodplain forests: ecophysiology, biodiversity and sustainable management,
edited by: Junk, W. J., Piedade, M. T. F., Wittmann, F., Schöngart, J.
and Parolin, P., 127–139, Springer, 2010.
Pierobon, E., Bolpagni, R., Bartoli, M., and Viaroli, P.: Net primary
production and seasonal CO2 and CH4 fluxes in a Trapa natans
L. meadow, J. Limnol., 69, 225–234, 2010.
Prairie, Y. T., Bird, D. F., and Cole, J. J.: The summer metabolic balance in
the epilimnion of southeastern Quebec lakes, Limnol. Oceanogr., 47, 316–321,
2002.
Prigent, C., Matthews, E., Aires, F., and Rossow, W. B.: Remote sensing of
global wetland dynamics with multiple satellite data sets, Geophys. Res.
Lett., 28, 4631–4634, 2001.
Prigent, C., Papa, F., Aires, F., Rossow, W. B., and Matthews, E.: Global
inundation dynamics inferred from multiple satellite observations,
1993–2000, J. Geophys. Res., 112, D12107, https://doi.org/10.1029/2006JD007847, 2007.
Quay, P. D., Wilbur, D. O., Richey, J. E., Hedges, J. I., Devol, A. H., and
Victoria, R.: Carbon cycling in the Amazon River: Implications from the
13C compositions of particles and solutes, Limnol. Oceanogr., 37,
857–871, 1992.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover,
M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P.,
Dürr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon dioxide
emissions from inland waters, Nature, 503, 355–359, 2013.
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne,
S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D.,
Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A.,
and Wattenbach, M.: Climate extremes and the carbon cycle, Nature, 500,
287–295, 2013.
Ribaudo, C., Bartoli, M., Longhi, D., Castaldi, S., Neubauer, S. C., and
Viaroli, P.: CO2 and CH4 fluxes across a Nuphar lutea (L.)
Sm. Stand., J. Limnol., 71, 200–210, 2012.
Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M., and Hess,
L.: Outgassing from Amazonian rivers and wetlands as a large tropical source
of atmospheric CO2, Nature, 416, 617–620, 2002.
Ryan, M. G. and Law, B. E.: Interpreting, measuring, and modeling soil
respiration, Biogeochemistry, 73, 3–27, 2005.
Saunders, M. J., Jones, M. B., and Kansiime, F.: Carbon and water cycles in
tropical papyrus wetlands, Wetl. Ecol. Manag., 15, 489–498, 2007.
Sawakuchi, H. O., Neu, V., Ward, N. D., Barros, M. L. C., Valerio, A. M.,
Gagne-Maynard, W., Cunha, A. C., Less, D. F. S., Diniz, J. E. M., Brito, D.
C., Krusche, A. V., and Richey, J. E.: Carbon Dioxide Emissions along the
Lower Amazon River, Front. Mar. Sci., 21, 76, https://doi.org/10.3389/fmars.2017.00076,
2017.
Schwalm, C. R., Williams, C. A., Schaefer, K., Anderson, R., Arain M. A.,
Baker, I., Barr, A., Black, T. A., Chen, G., Chen, J. M., Ciais, P., Davis,
K. J., Desai, A., Dietze, M., Dragoni, D., Fischer, M. L., Flanagan, L. B.,
Grant, R., Gu, L., Hollinger, D., Izaurralde, R. C., Kucharik, C., Lafleur,
P., Law, B. E., Li, L., Li, Z., Liu, S., Lokupitiya, E., Luo, Y., Ma, S.,
Margolis, H., Matamala, R., McCaughey, H., Monson, R. K., Oechel, W. C.,
Peng, C., Poulter, B., Price, D. T., Riciutto, D. M., Riley, W., Sahoo, A.
K., Sprintsin, M., Sun, J., Tian, H., Tonitto, C., Verbeeck, H., and Verma,
S. B.: A model-data intercomparison of CO2 exchange across North
America: Results from the North American Carbon Program site synthesis, J.
Geophys. Res., 115, G00H05, https://doi.org/10.1029/2009JG001229, 2010.
Segarra, K. E. A., Schubotz, F., Samarkin, V., Yoshinaga, M. Y., Hinrichs,
K.-U., and Joye, S. B.: High rates of anaerobic methane oxidation in
freshwater wetlands reduce potential atmospheric methane emissions, Nat.
Commun., 6, 7477, https://doi.org/10.1038/ncomms8477, 2015.
Sharifi, A., Kalin, L., Hantush, M. M., Isik, S., and Jordan, T. E.: Carbon
dynamics and export from flooded wetlands: A modeling approach, Ecol. Model.,
263, 196–210, 2013.
Sjögersten, S., Black, C. R., Evers, S., Hoyos-Santillan, J., Wright, E.
L., and Turner, B. L.: Tropical wetlands: A missing link in the global carbon
cycle?, Global Biogeochem. Cy., 28, 1371–1386, 2014.
Sobek, S., Tranvik, L. J., and Cole, J. J.: Temperature independence of
carbon dioxide supersaturation in global lakes, Global Biogeochem. Cy., 19,
GB2003, https://doi.org/10.1029/2004GB002264, 2005.
Stöckli, R., Lawrence, D. M., Niu, G.-Y., Oleson, K. W., Thornton, P. E.,
Yang, Z.-L., Bonan, G. B., Denning, A. S., and Running, S. W.: Use of FLUXNET
in the Community Land Model development, J. Geophys. Res.-Biogeo., 113,
G01025, https://doi.org/10.1029/2007JG000562, 2008.
Tian, H., Lu, C., Yang, J., Banger, K., Huntzinger, D. N., Schwalm, C. R.,
Michalak, A. M., Cook, R., Ciais, P., Hayes, D., Huang, M., Ito, A., Jain, A.
K., Lei, H., Mao, J., Pan, S., Post, W. M., Peng, S., Poulter, B., Ren, W.,
Ricciuto, D., Schaefer, K., Shi, X., Tao, B., Wang, W., Wei, Y., Yang, Q.,
Zhang, B., and Zeng,N.: Global patterns and controls of soil organic carbon
dynamics as simulated by multiple terrestrial biosphere models: Current
status and future directions, Global Biogeochem. Cy. 29, 775–792,
https://doi.org/10.1002/2014GB005021, 2015.
Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R.
G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B.,
Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M.,
McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, E., Porter, J.
A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D.
W., Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., von Wachenfeldt,
E., and Weyhenmeyer, G. A.: Lakes and reservoirs as regulators of carbon
cycling and climate, Limnol. Oceanogr., 54, 2298–2314, 2009.
Tsypin, M. and Macpherson, G. L.: The effect of precipitation events on
inorganic carbon in soil and shallow groundwater, Konza Prairie LTER Site, NE
Kansas, USA, Appl, Geochem., 27, 2356–2369, 2012.
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., and Cushing,
C. E.: River continuum concept, Can. J. Fish. Aquat. Sci., 37, 130–137,
1980.
Villa, P., Pinardi, M., Bolpagni, R., Gillier, J.-M., and Zinked, P.:
Assessing macrophyte seasonal dynamics using dense time series of medium
resolution satellite data, Remote Sens. Environ., 216, 230–244, 2018.
Ward, N. D., Keil, R. G., Medeiros, P. M., Brito, D., Cunha, A. C., Dittmar,
T., Yager, P. L., Krusche, A. V., and Richey J. E.: Degradation of
terrestrially derived macromolecules in the Amazon River, Nat. Geosci., 6,
530–533, 2013.
Wetzel, R. G.: Wetlands as metabolic gates, J. Great Lakes Res., 18,
529–532, 1992.
Short summary
Based on classical concepts in ecology, and a literature survey, we highlight the importance of flooded land as a preferential source of atmospheric carbon to aquatic systems at the global scale. Studies in terrestrial and aquatic ecosystems could be reconciled by considering the occurrence of an efficient wetland CO2 pump to river systems. New methodological approaches coupling hydrology and ecology are also necessary to improve scientific knowledge on carbon fluxes at the land–water interface.
Based on classical concepts in ecology, and a literature survey, we highlight the importance of...
Altmetrics
Final-revised paper
Preprint