Articles | Volume 17, issue 13
https://doi.org/10.5194/bg-17-3643-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-3643-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling biological nitrogen fixation in global natural terrestrial ecosystems
Tong Yu
Earth, Atmospheric, and Planetary Sciences, Purdue University, West
Lafayette, IN 47907, USA
Earth, Atmospheric, and Planetary Sciences, Purdue University, West
Lafayette, IN 47907, USA
Department of Agronomy, Purdue University, West Lafayette, IN 47907,
USA
Related authors
No articles found.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Yiming Xu, Qianlai Zhuang, Bailu Zhao, Michael Billmire, Christopher Cook, Jeremy Graham, Nancy French, and Ronald Prinn
EGUsphere, https://doi.org/10.5194/egusphere-2024-1324, https://doi.org/10.5194/egusphere-2024-1324, 2024
Preprint archived
Short summary
Short summary
We use a process-based model to simulate the fire impacts on soil thermal and hydrological dynamics and carbon budget of forest ecosystems in Northern Eurasia based on satellite-derived burn severity data. We find that fire severity generally increases in this region during the study period. Simulations indicate that fires increase soil temperature and water runoff. Fires lead the forest ecosystems to lose 2.3 Pg C, shifting the forests from a carbon sink to a source in this period.
Ye Yuan, Qianlai Zhuang, Bailu Zhao, and Narasinha Shurpali
EGUsphere, https://doi.org/10.5194/egusphere-2023-1047, https://doi.org/10.5194/egusphere-2023-1047, 2023
Preprint archived
Short summary
Short summary
We use a biogeochemistry model to calculate the regional N2O emissions considering the effects of N2O uptake, thawing permafrost, and N deposition. Our simulations show there is an increasing trend in regional net N2O emissions from 1969 to 2019. Annual N2O emissions exhibited big spatial variabilities. Nitrogen deposition leads to a significant increase in emission. Our results suggest that in the future, the pan-Arctic terrestrial ecosystem might act as an even larger N2O.
Xiangyu Liu and Qianlai Zhuang
Biogeosciences, 20, 1181–1193, https://doi.org/10.5194/bg-20-1181-2023, https://doi.org/10.5194/bg-20-1181-2023, 2023
Short summary
Short summary
We are among the first to quantify methane emissions from inland water system in the pan-Arctic. The total CH4 emissions are 36.46 Tg CH4 yr−1 during 2000–2015, of which wetlands and lakes were 21.69 Tg yr−1 and 14.76 Tg yr−1, respectively. By using two non-overlap area change datasets with land and lake models, our simulation avoids small lakes being counted twice as both lake and wetland, and it narrows the gap between two different methods used to quantify regional CH4 emissions.
Bailu Zhao and Qianlai Zhuang
Biogeosciences, 20, 251–270, https://doi.org/10.5194/bg-20-251-2023, https://doi.org/10.5194/bg-20-251-2023, 2023
Short summary
Short summary
In this study, we use a process-based model to simulate the northern peatland's C dynamics in response to future climate change during 1990–2300. Northern peatlands are projected to be a C source under all climate scenarios except for the mildest one before 2100 and C sources under all scenarios afterwards.
We find northern peatlands are a C sink until pan-Arctic annual temperature reaches −2.09 to −2.89 °C. This study emphasizes the vulnerability of northern peatlands to climate change.
Junrong Zha and Qianlai Zhuang
Biogeosciences, 18, 6245–6269, https://doi.org/10.5194/bg-18-6245-2021, https://doi.org/10.5194/bg-18-6245-2021, 2021
Short summary
Short summary
This study incorporated moss into an extant biogeochemistry model to simulate the role of moss in carbon dynamics in the Arctic. The interactions between higher plants and mosses and their competition for energy, water, and nutrients are considered in our study. We found that, compared with the previous model without moss, the new model estimated a much higher carbon accumulation in the region during the last century and this century.
Junrong Zha and Qianla Zhuang
Biogeosciences, 17, 4591–4610, https://doi.org/10.5194/bg-17-4591-2020, https://doi.org/10.5194/bg-17-4591-2020, 2020
Short summary
Short summary
This study incorporated microbial dormancy into a detailed microbe-based biogeochemistry model to examine the fate of Arctic carbon budgets under changing climate conditions. Compared with the model without microbial dormancy, the new model estimated a much higher carbon accumulation in the region during the last and current century. This study highlights the importance of the representation of microbial dormancy in earth system models to adequately quantify the carbon dynamics in the Arctic.
Cited articles
Adams, M. A. and Attiwill, P. M.: Role of Acacia spp. in nutrient balance and cycling
in regenerating Eucalyptus regnans F. Muell. forests, I. Temporal changes in
biomass and nutrient content, Aust. J. Bot., 32, 205–215, 1984.
Alexander, V. and Billington, M. M.: Nitrogen fixation in the Alaskan taiga, Forest
ecosystems in the Alaskan taiga, Springer, New York, NY, 112–120, 1986.
Baker, T. G., Oliver, G. R., and Hodgkiss, P. D.: Distribution and cycling of nutrients
in Pinus radiata as affected by past lupin growth and fertiliser, Forest
Ecol. Manage., 17, 169–187, 1986.
Barron, A. R., Purves, D. W., and Hedin, L. O.: Facultative nitrogen fixation by canopy
legumes in a lowland tropical forest, Oecologia, 165, 511–520, 2011.
Bate, G. C. and Gunton, C.: Nitrogen in the Burkea savanna, in: Ecology of
Tropical Savannas, edited by: Huntley, B. J. and Walker, B. H.,
Springer-Verlag, New York, 498–513, 1982.
Batjes, N. H.: Global Data Set of Derived Soil Properties, 0.5-Degree Grid (ISRIC-WISE), ORNL DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/546, 2000.
Belnap, J.: Nitrogen fixation in biological soil crusts from southeast Utah, USA, Biol. Fertil. Soils, 35, 128–135, 2002.
Blundon, D. J. and Dale, M. R. T.: Dinitrogen fixation (acetylene reduction) in
primary succession near Mount Robson, British Columbia, Canada, Arct.
Alp. Res., 22, 255–263, 1990.
Boote, K. J., Jones, J. W., and Hoogenboom, G.: Simulation of crop growth:
CROPGRO model, Agr. Syst. Model. Simul., 18, 651–692,
1998.
Boote, K. J., Hoogenboom, G., Jones, J. W., and Ingram, K. T.: Modeling nitrogen
fixation and its relationship to nitrogen uptake in the in the CROPGRO
model, in: Quantifying and
Understanding Plant Nitrogen Uptake for Systems Modeling, edited by: Ma, L., Ahuja, L. R., and Bruulsema, T. W., CRC Press,
Florence, USA, 13–46, 2008.
Boring, L. R. and Swank, W. T.: The role of black locust (Robinia pseudo-acacia) in
forest succession, J. Ecol., 71, 749–766, 1984.
Bouniols, A., Cabelguenne, M., Jones, C. A., Chalamet, A., Charpenteau, J. L., and
Marty, J. R.: Simulation
of Soybean Nitrogen Nutrition for a Silty Clay Soil in Southern France,
Field Crops Res., 26, 19–34, 1991.
Bowman, W. D., Schardt, J. C., and Schmidt, S. K.: Symbiotic N 2-fixation in alpine
tundra: ecosystem input and variation in fixation rates among communities,
Oecologia, 108, 345–350, 1996.
Breitbarth, E., Oschlies, A., and LaRoche, J.: Physiological constraints on the global distribution of Trichodesmium – effect of temperature on diazotrophy, Biogeosciences, 4, 53–61, https://doi.org/10.5194/bg-4-53-2007, 2007.
Bruijnzeel, L. A.: Nutrient input–output budgets of tropical forest
ecosystems: a review, J. Trop. Ecol., 7, 1–24, 1991.
Bustamante, M. M. C., Medina, E., Asner, G. P., Nardoto, G. B., and Garcia-Montiel, D. C.: Nitrogen cycling in tropical and temperate savannas. Biogeochemistry, 79, 209–237, 2006.
Cabelguenne, M., Debaeke, P., and Bouniols, A.: EPICphase, A Version of the
EPIC Model Simulating the Effects of Water and Nitrogen Stress on Biomass
and Yield, Taking Account of Developmental Stages: Validation on Maize,
Sunflower, Sorghum, Soybean, and Winter Wheat, Agric. Syst., 60, 175–196,
1999.
Cannell, M. G. R. and Thornley, J. H. M.: Modelling the components of plant
respiration: some guiding principles, Ann. Bot.-Lond., 85, 45–54, 2000.
Cech, P. G., Kuster, T., Edwards, P. J., and Olde Venterink, H.: Effects of herbivory, fire and N
2-fixation on nutrient limitation in a humid African savanna, Ecosystems,
11, 991–1004, 2008.
Chapin, D., Bliss, I. C., and Bledsoe, I. J:. Environmental regulation of nitrogen
fixation in a high arctic lowland ecosystem, Can J. Bot., 69, 2744–2755,
1991.
Chen, M. and Zhuang, Q.: Modelling temperature acclimation effects on the carbon dynamics of forest ecosystems in the conterminous United States, Tellus B, 65, 19156, https://doi.org/10.3402/tellusb.v65i0.19156, 2013.
Christie, P.: Nitrogen in two contrasting Antarctic bryophyte communities, J.
Ecol., 75, 73–93, 1987
Clayton, J. L. and Kennedy, D. A.: Nutrient Losses from Timber Harvest in the Idaho
Batholith 1, Soil. Sci. Soc. Am. J., 49, 1041–1049, 1985.
Cleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher, H., Howarth, R. W., Hedin, L. O., Perakis, S. S., Latty, E. F., Von Fischer, J. C., Elseroad, A., and Wasson, M. F.: Global patterns of
terrestrial biological nitrogen (N2) fixation in natural ecosystems, Global
Biogeochem. Cy., 13, 623–645, 1999.
Cleveland, C. C., Houlton, B. Z., Neill, C., Reed, S. C., Townsend, A. R., and Wang, Y.: Using indirect methods to constrain symbiotic nitrogen fixation rates: a case study from an Amazonian rain forest, Biogeochemistry, 99, 1–13, 2010.
Cleveland, C. C., Houlton, B. Z., Smith, W. K., Marklein, A. R., Reed, S., Parton, W. J., Del Grosso, S., and Runing, S. W.: Patterns of new versus
recycled primary production in the terrestrial biosphere, P. Natl. Acad. Sci. USA,
110, 12733–12737, 2013.
Corre-Hellou, G., Brisson, N., Launay, M., Fustec, J., and Crozat, Y.: Effect of root depth penetration
on soil nitrogen competitive interactions and dry matter production in
pea–barley intercrops given different soil nitrogen supplies, Field Crop.
Res., 103, 76–85, 2007.
Corre-Hellou, G., Faure, M., Launay, M., Brisson, N., and Crozat, Y.: Adaptation of the STICS intercrop
model to simulate crop growth and N accumulation in pea–barley intercrops,
Field Crop. Res., 113, 72–81, 2009.
Crews, T. E.: The presence of nitrogen fixing legumes in terrestrial
communities: Evolutionary vs ecological considerations, New Perspectives on
Nitrogen Cycling in the Temperate and Tropical Americas, Springer,
Dordrecht, 233–246, 1999.
Crisp, M., Cook, L., and Steane, D.: Radiation of the Australian flora: what can
comparisons of molecular phylogenies across multiple taxa tell us about the
evolution of diversity in present–day communities?, Philos. T. R. Soc.
B, 359, 1551–1571, 2004.
DeLuca, T., Zackrisson, O., Nilsson, M., and Sellstedt, A.: Quantifying nitrogen-fixation in feather moss carpets of boreal forests, Nature, 419, 917–920, 2002.
Doherty, R. M., Hulme, M., and Jones, C. G.: A gridded reconstruction of land and ocean precipitation for the extended tropics from 1974 to 1994, Int. J. Climatol., 19, 119–142, 1999.
DuBois, J. D. and Kapustka, L. A.: Biological nitrogen influx in an Ohio relict
prairie, Am. J. Bot., 70, 8–16, 1983.
Eckersten, H., Geijersstam, L. A., and Torssell, B.: Modelling nitrogen
fixation of pea (Pisum sativum L.), Acta. Agr. Scand. B.-S. P., 56, 129–137,
2006.
Eisele, L., Schimel, D. S., Kapustka, L. A., and Parton, W. J.: Effects of
available P and N:P ratios on non-symbiotic dinitrogen fixation in
tallgrass prairie soils, Oecologia, 79, 471–474, 1989.
Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andreae,
M. O., and Pöschl, U.: Contribution of cryptogamic covers to the global
cycles of carbon and nitrogen, Nat. Geosci., 5, 459–462, 2012.
Fahey, T. J., Yavitt, J. B., Pearson, J. A., and Knight, D. H.: The nitrogen cycle in lodgepole
pine forests, southeastern Wyoming, Biogeochemistry, 1, 257–275, 1985.
Fahey, T. J., Yavitt, J. B., and Joyce, G.: Precipitation and throughfall chemistry in Pinus contorta spp. latifolia ecosystems, southeastern Wyoming, Can. J. Forest Res., 18, 337–345, 1988.
Fisher, J. B., Sitch, S., Malhi, Y., Fisher, R. A., Huntingford, C., and Tan, S.-Y.: Carbon cost of plant nitrogen
acquisition: A mechanistic, globally applicable model of plant nitrogen
uptake, retranslocation, and fixation, Global Biogeochem. Cy., 24, GB1014, https://doi.org/10.1029/2009GB003621, 2010.
Galloway, J. N., Schlesinger, W. H., Levy, H., Michaels, A., and Schnoor, J. L.: Nitrogen fixation:
Anthropogenic enhancement-environmental response, Global Biogeochem. Cy.,
9, 235–252, 1995.
Galloway, J. N., Cowling, E. B., Seitzinger, S. P., and Socolow, R. H.: Reactive nitrogen: too
much of a good thing?, AMBIO: A Journal of the Human Environment, 31,
60–64, 2002.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., and Vorosmarty, C. J: Nitrogen cycles: past,
present, and future, Biogeochemistry, 70, 153–226, 2004.
Gerber, S., Hedin, L. O., Oppenheimer, M., Pacala, S. W., and Shevliakova, E.: Nitrogen cycling and feedbacks in
a global dynamic land model, Global Biochemical. Cy., 24, GB1001, https://doi.org/10.1029/2008GB00333, 2010.
Goosem, S. and Lamb, D.: Measurements of phylloshpere nitrogen fixation in a
tropical and two sub-tropical rainforests, J. Trop. Ecol., 2,
373–376, 1986.
Granhall, U., and Lid-Torsvik, V.: Nitrogen fixation by bacteria and free-living blue-green algae in tundra areas, in: Fennoscandian Tundra Ecosystems, edited by: Wielgolaski, F. E., Part I, Plants and Microorganisms, Spring-Verlag, New York, 305–315, 1975.
Grove, T. S. and Malajczuk, N.: Nodule production and nitrogen fixation (acetylene
reduction) by an understorey legume (Bossiaea laidlawiana) in Eucalyptus
forest, J. Ecol., 80, 303–314, 1992.
Gruber, N. and Galloway, J. N.: An Earth System Perspective of the
Global Nitrogen Cycle, Nature, 451, 293–296, 2008.
Gundale, M. J., Nilsson, M., Bansal, S., and Jaderlund, A.: The interactive effects of
temperature and light on biological nitrogen fixation in boreal forests, New
Phytol., 194, 453–463, 2012.
Hardy, R. W. F., Holsten, R. D., Jackson, E. K., and Burns, R. C.: The acetylene-ethylene assay
for N2 fixation: laboratory and field evaluation, Plant Physiol.,
43, 1185–1207, 1968.
Hardy, R. W. F., Burns, R. C., and Holsten, R. D.: Applications of the acetylene-ethylene
assay for measurement of nitrogen fixation, Soil Biol. Biochem., 5,
47–81, 1973.
Harvey, A. E., Larsen, M. J., Jurgensen, M. F., and Jones, E. A.: Nitrogenase activity
associated with decayed wood of living northern Idaho conifers, Mycologia,
81, 765–771, 1989.
Heath, B., Sollins, P., Perry, D. A., and Cromack Jr., K.: Asymbiotic
nitrogen fixation in litter from Pacific Northwest forests, Can J. Forest
Res., 18, 68–74, 1988.
Hendrickson, O. Q.: Asymbiotic nitrogen fixation and soil metabolism in three
Ontario forests, Soil Biol. Biochem., 22, 967–971, 1990.
Hendrickson, O. Q. and Burgess, D.: Nitrogen-fixing plants in a cut-over lodgepole pine stand of southern British Columbia, Can J. Forest Res., 19, 936–939, 1989.
Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N.
I., McLean, G., and Moore, A. D.: APSIM–evolution towards a new
generation of agricultural systems simulation, Environ. Modell. Softw., 62,
327–350, 2014.
Houlton, B. Z., Morford, S. L., and Dahlgren, R. A.: Convergent evidence for
widespread rock nitrogen sources in Earth's surface environment, Science,
360, 58–62, 2018.
Huss-Danell, K.: Nitrogen fixation by Stereocaulon paschale under field
conditions, Can J. Botany, 55, 585–592, 1977.
Jarrell, W. M. and Virginia, R. A.: Soil cation accumulation in a mesquite
woodland: sustained production and long-term estimates of water use and
nitrogen fixation, J. Arid Environ., 18, 51–58, 1990.
Johnson, H. B. and Mayeux, H. S.: Prosopis glandulosa and the nitrogen
balance of rangelands: extent and occurrence of nodulation, Oecologia,
84, 176–185, 1990.
Jones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M., and Morice, C. P.: Hemispheric and large-scale land surface air temperature variations: an extensive revision and an update to 2010, J. Geophys. Res., 117, D05127, https://doi.org/10.1029/2011JD017139, 2012.
Jordan, C. W., Caskey, W., Escalante, G., Herrera, R., Montagnini, E.,
Todd, R., and Uhl, C.: The nitrogen cycle in a Terra Eirme rain forest on Oxisol in the Amazon Territory of Venezuela, Plant Soil, 67, 325–332, 1983.
Kapustka, L. A. and DuBois, J. D.: Dinitrogen fixation by cyanobacteria and
associative rhizosphere bacteria in the Arapaho Prairie in the Sand Hills of
Nebraska, Am. J. Bot., 74, 107–113, 1987.
Kou-Giesbrecht, S. and Menge, D.: Nitrogen-fixing trees could exacerbate climate change under elevated nitrogen deposition, Nat. Commun., 10, 1493, https://doi.org/10.1038/s41467-019-09424-2, 2019.
Layzell, D. B., Rainbird R. M., Atkins, C. A., and Pate, J. S.: Economy of photosynthate use in N-fixing legume modules: observations on two contracting symbioses, Plant Physiol., 64, 888–891, 1979.
LeBauer, D. S. and Treseder, K. K.: Nitrogen limitation of net primary
productivity in terrestrial ecosystems is globally distributed, Ecology,
89, 371–379, 2008.
Lee, Y. Y. and Son, Y.: Diurnal and seasonal patterns of nitrogen fixation
in analnus hirsuta plantation of central Korea, J. Plant Biol., 48,
332–337, 2005.
Lepper, M. G. and Fleschner, M.: Nitrogen fixation by Cercocarpus
ledifolius (Rosaceae) in pioneer habitats, Oecologia, 27, 333–338, 1977.
Lett, S. and Michelsen, A.: Seasonal variation in nitrogen fixation and
effects of climate change in a subarctic heath, Plant Soil, 379,
193–204, 2014.
Levy, H., Moxim, W. J., and Kasibhatla, P. S.: A global three–dimensional
time–dependent lightning source of tropospheric NOx, J. Geophys. Res.-Atmos.,
101, 22911–22922, 1996.
Ley, R. E. and D'Antonio, C. M.: Exotic grass invasion alters potential rates of
N fixation in Hawaiian woodlands, Oecologia, 113, 179–187, 1998.
Lindemann, W. C. and Glover, C. R.: Nitrogen fixation by legumes. New Mexico State University, Cooperative Extension Service, New Mexico State University, College of Agricultural, Consumer, and Environmental Sciences 2003.
Luken, J. O. and Fonda, R. W.: Nitrogen accumulation in a chronosequence of
red alder communities along the Hoh River, Olympic National Park,
Washington, Can. J. Forest Res., 13, 1228–1237, 1983.
Maheswaran, J. and Gunatilleke, I. A. U. N.: Nitrogenase activity in soil
and litter of a tropical lowland rain forest and an adjacent fernland in Sri
Lanka, J. Trop. Ecol., 6, 281–289, 1990.
Marino, D., Frendo, P., Ladrera, R., Zabalza, A., Puppo, A., Arrese-Igor,
C., and González, E. M.: Nitrogen fixation control under drought stress.
Localized or systemic?, Plant Physiol., 143, 1968–1974, 2007.
May, D. E. and Webber, P. J.: Spatial and temporal variation of vegetation and
its productivity on Niwot Ridge, Colorado, in: Ecological Studies in the
Colorado Alpine, a Festschrift for John W. Mart, edited by: Halfpenny, H.,
35–62, Institute for Arctic and Alpine Research, Univ. of Colorado, Boulder,
Colorado, 1982.
Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore III, B., Vorosmarty, C. J., and Schloss, A. L.: Global climate change and terrestrial net primary production, Nature, 363, 234–240,
https://doi.org/10.1038/363234a0, 1993.
Mitchell, T. D. and Jones, P. D.: An improved method of constructing a
database of monthly climate observations and associated high–resolution
grids, Int. J. Climatol., 25, 693–712, 2005.
Montanez, A., Danso, S. K. A., and Hardarson, G.: The effect of
temperature on nodulation and nitrogen fixation by five Bradyrhizobium
japonicum strains, Appl. Soil Ecol., 2, 165–174, 1995.
Morford, S. L., Houlton, B. Z., and Dahlgren, R. A.: Increased forest
ecosystem carbon and nitrogen storage from nitrogen rich bedrock, Nature,
477, 78–81, https://doi.org/10.1038/nature10415, 2011.
Mus, F., Crook, M. B., Garcia, K., Costas, A. G., Geddes, B. A., Kouri, E.
D., and Udvardi, M. K.: Symbiotic nitrogen fixation and the challenges
to its extension to nonlegumes, Appl. Environ. Microbiol., 82,
3698–3710, 2016.
Nohrstedt, H. Ö.: Biological activity in soil from forest stands in Central
Sweden, as related to site properties, Microb. Ecol., 11, 259–266, 1985.
O'Connel, A. M. and Grove, T. S.: Seasonal variation in C2H2 reduction
(N2-fixation) in the litter layer of eucalypt forests of south-western
Australia, Soil Biol. Biochem., 19, 135–142, 1987.
Permar, T. A. and Fisher, R. F.: Nitrogen fixation and accretion by wax
myrtle (Myrica cerifera) in slash pine (Pinus elliottii) plantations, Forest
Ecol. Manag., 5, 39–46, 1983.
Pons, T. L., Perreijn, K., Van Kessel, C., and Werger, M. J.: Symbiotic
nitrogen fixation in a tropical rainforest: 15N natural abundance
measurements supported by experimental isotopic enrichment, New Phytol.,
173, 154–167, 2007.
Reed, S. C., Cleveland, C. C., and Townsend, A. R. Functional ecology of
free-living nitrogen fixation: a contemporary perspective, Annu. Rev. Ecol.
Evol. S., 42, 489–512, 2011.
Robertson, G. P. and Rosswall, T.: Nitrogen in West Africa: The tropical cycle, Ecol. Monogr., 56, 43–72, 1986.
Rundel, P. W., Nilsen, E. T., Sharifi, M. R., Virginia, R. A., Jarrell, W.
M., Kohl, D. H., and Shearer, G. B.: Seasonal dynamics of nitrogen cycling
for a Prosopis woodland in the Sonoran Desert, in: Nitrogen Cycling in
Ecosystems of Latin America and the Caribbean, Springer,
Dordrecht, 343–353, 1982.
Rylr, G. J. A., Powell, C. E., and Gordon, A. J.: Th respiratory costs of nitrogen fixation in soybean, cowpea and white clover, I. Nitrogen fixation and the respiration of the nodulated root, J. Expt. Bot., 30, 145–153, 1979.
Sánchez-Diaz, M.: Adaptation of legumes to multiple stresses in
Mediterranean-type environments, Options Méditerranéennes, 45,
145–151, 2001.
Schlesinger, W. H., Gray, J. T., Gill, D. S., and Mahall, B. E.: Ceanothus
megacarpus chaparral: a synthesis of ecosystem processes during development
and annual growth, Bot. Rev., 48, 71–117, 1982.
Schrire, B. D., Lewis, G. P., and Lavin, M.: Biogeography of the Leguminosae,
Legumes of the world, 21–54, 2005.
Schwintzer, C. R.: Nonsymbiotic and symbiotic nitrogen fixation in a weakly
minerotrophic peatland, Am. J. Bot., 70, 1071–1078, 1983.
Sharpley, A. N. and Williams, J. R.: EPIC Erosion/Productivity Impact Calculator: 1. Model Documentation, USA Department of Agriculture Technical Bulletin No. 1768, USA Government Printing Office, Washington DC, 1990.
Shearer, G. and Kohl, D. H.: N2-fixation in field settings: estimations
based on natural 15N abundance, Funct. Plant Biol., 13, 699–756, 1986.
Sheridan, R. P.: Nitrogenase activity by Hapalosiphon flexuosus associated
with Sphagnum erythrocalyx mats in the cloud forest on the volcano La
Soufriere, Guadeloupe, French West Indies, Biotropica, 23, 134–140, 1991.
Skujinš, J., Tann, C. C., and Börjesson, I.: Dinitrogen fixation in
a montane forest sere determined by 15N2 assimilation and in situ
acetylene-reduction methods, Soil Biol. Biochem., 19, 465–471, 1987.
Sobota, D. J., Compton, J. E., and Harrison, J. A.: Reactive nitrogen inputs
to US lands and waterways: how certain are we about sources and fluxes?,
Front. Ecol. Environ., 11, 82–90, 2013.
Sonesson, M., Jonsson, S., Rosswall, T., and Rydén, B. E.: The Swedish
IBP/PT Tundra Biome Project Objectives-Planning-Site, Ecol. Bull., 30, 7–25,
1980.
Sprent, J. I.: The effects of water stress on nitrogen–fixing root nodules,
New Phytol., 71, 443–450, 1972.
Sprent, J. I., Ardley, J., and James, E. K.: Biogeography of nodulated
legumes and their nitrogen–fixing symbionts, New Phytol., 215, 40–56,
2017.
Srivastava, A. K. and Ambasht, R. S.: Soil moisture control of nitrogen
fixation activity in dry tropical Casuarina plantation forest, J. Environ.
Manage., 42, 49–54, 1994.
Stedman, D. H. and Shetter, R.: The global budget of atmosphere nitrogen
species, in: Trace Atmospheric Constituent: Properties, Transformations and
Fates, edited by: Schwartz, S. S., John Wiley, New York, 411–454, 1983.
Stewart, W. D. P., Sampaio, M. J., Isichei, A. O., and Sylvester-Bradley, R.:
Nitrogen fixation by soil algae of temperate and tropical soils, in:
Limitation and potentials for
biological nitrogen fixation in the tropics, edited by: Dobreiner, J., Burris, R. H., and Hollaender, A., Basic Life Sciences,
Plenum Press, New York,Vol. 10, 41–63, 1978.
Sutton, M. A., Mason, K. E., Sheppard, L. J., Sverdrup, H., Haeuber, R., and Hicks, W. K.: Nitrogen deposition, critical loads and biodiversity, Springer Science and Business Media, https://doi.org/10.1007/978-94-007-7939-6, 2014.
Sullivan, B. W., Smith, W. K., Townsend, A. R., Nasto, M. K., Reed, S. C.,
Chazdon, R. L., and Cleveland, C. C.: Spatially robust estimates of
biological nitrogen (N) fixation imply substantial human alteration of the
tropical N cycle, P. Natl. Acad. Sci. USA, 111, 8101–8106, 2014.
Sylvester-Bradley, R., Oloveira, L. A., Podesta Filho, J. A., and St John, T. V.: Nodulation of legumes, nitrogenase activity-fixing Azospirillum app. in representative soils of Central Amazonia, Proc. Int. Lupin Conf., 157–173, 1980.
Thornley, J. H. M.: Simulating grass-legume dynamics: a phenomenological
submodel, Ann. Bot.-Lond., 88, 905–913, 2001.
Vitousek, P. M.: Potential nitrogen fixation during primary succession in
Hawaii Volcanoes National Park, Biotropica, 26, 234–240, 1994.
Vitousek, P. M. and FIeld, C. B.: Ecosystem constraints to symbiotic nitrogen fixers: A simple model and its implications, Biogeochemistry, 46, 179–202, 1999.
Vitousek, P. M., Menge, D. N., Reed, S. C., and Cleveland, C. C.: Biological
nitrogen fixation: rates, patterns and ecological controls in terrestrial
ecosystems, Philos. T. R. Soc. B, 368, 20130119, https://doi.org/10.1098/rstb.2013.0119, 2013.
Voisin, A. S., Salon, C., Jeudy, C., and Warembourg, F. R.: Symbiotic N2
fixation activity in relation to C economy of Pisum sativum L. as a function
of plant phenology, J. Exp. Bot., 54, 2733–2744, 2003.
Voisin, A. S., Bourion, V., Duc, G., and Salon, C.: Using an
ecophysiological analysis to dissect genetic variability and to propose an
ideotype for nitrogen nutrition in pea, Ann. Bot.-Lond., 100, 1525–1536,
2007.
Weber, M. G. and Van Cleve, K.: Nitrogen dynamics in the forest floor of interior Alaska black spruce ecosystems, Can J. Forest Res., 11, 743–751, https://doi.org/10.1139/x81-106, 1981.
Wheatley, R. E. and Sprent, J. I.: Legume Nodulation: A Global Perspective, edited by: Sprent, J. I., Chichester, UK, Wiley-Blackwell, ISBN 97818405181754, 200 pp., 2009.
Williams, J. R. and Sharply, A. N.: EPIC-Erosion Productivity Impact Cacalator,
Model Documentation, US Department of Agriculture Technical Bulletin, 235 pp.,
1768.
Woodmansee, R. G. and Wallach, L. S.: Effects of fire regimes on
biogeochemical cycles, Terr. Nitr. Cy. Ecol. Bull.,
33, 649–669, 1981.
Wu, L. and McGechan, M. B.: Simulation of nitrogen uptake, fixation and
leaching in a grass/white clover mixture, Grass Forage Sci., 54, 30–41,
1999.
Xu, X., Thornton, P. E., and Potapov, P.: A Compilation of Global Soil Microbial Biomass Carbon, Nitrogen, and Phosphorus Data, ORNL DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1264, 2014.
Xu-Ri and Prentice, I. C.: Modelling the demand for new nitrogen fixation by terrestrial ecosystems, Biogeosciences, 14, 2003–2017, https://doi.org/10.5194/bg-14-2003-2017, 2017.
Yu, T. and Zhuang, Q.: Quantifying global N2O emissions from natural ecosystem soils using trait-based biogeochemistry models, Biogeosciences, 16, 207–222, https://doi.org/10.5194/bg-16-207-2019, 2019.
Zhuang, Q., Romanovsky, V. E., and McGuire, A. D.: Incorporation of a
permafrost model into a large–scale ecosystem model: Evaluation of temporal
and spatial scaling issues in simulating soil thermal dynamics, J. Geophys.
Res.-Atmos., 106, 33649–33670, 2001.
Zhuang, Q., McGuire, A. D., O'neill, K. P., Harden, J. W., Romanovsky, V.
E., and Yarie, J.: Modeling soil thermal and carbon dynamics of a fire
chronosequence in interior Alaska, J. Geophys. Res.-Atmos., 107, 8147, https://doi.org/10.1029/2001JD001244,
2002.
Zhuang, Q., McGuire, A. D., Melillo, J. M., Clein, J. S., Dargaville, R. J., Kicklighter, D. W., Myneni, R. B., Dong, J., Romanovsky, V. E., Harden, J., and Hobbie, J. E.: Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th Century: A modeling analysis of the influences of soil thermal dynamics, Tellus B, 55, 751–776, 2003.
Zhuang, Q., McGuire, A. D., Melillo, J. M., Clein, J. S., Dargaville, R. J.,
Kicklighter, D. W., and Hobbie, J. E.: Carbon cycling in extratropical
terrestrial ecosystems of the Northern Hemisphere during the 20th century: a
modeling analysis of the influences of soil thermal dynamics, Tellus B,
55, 751–776, 2011.
Zhuang, Q., Lu, Y., and Chen, M.: An inventory of global N2O emissions from
the soils of natural terrestrial ecosystems, Atmos. Environ., 47, 66–75,
2012.
Zhuang, Q., Chen, M., Xu, K., Tang, J., Saikawa, E., Lu, Y., and
McGuire, A. D.: Response of global soil consumption of atmospheric
methane to changes in atmospheric climate and nitrogen deposition, Global
Biogeochem. Cy., 27, 650–663, 2013.
Short summary
Biological nitrogen fixation (BNF) plays an important role in the global nitrogen cycle. However, the fixation rate has usually been measured or estimated at a particular observational site. This study develops a BNF model considering the symbiotic relationship between legume plants and bacteria. The model is extensively calibrated with site-level observational data and then extrapolated to the global terrestrial ecosystems to quantify the fixation rate in the 1990s.
Biological nitrogen fixation (BNF) plays an important role in the global nitrogen cycle....
Altmetrics
Final-revised paper
Preprint