Articles | Volume 17, issue 20
https://doi.org/10.5194/bg-17-5097-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5097-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interactive impacts of meteorological and hydrological conditions on the physical and biogeochemical structure of a coastal system
Institute for Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
Yoana G. Voynova
Institute for Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
Fatemeh Chegini
Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
now at: Max Planck Institute for Meteorology, Hamburg, Germany
Holger Brix
Institute for Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
Ulrich Callies
Institute for Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
Richard Hofmeister
Institute for Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
Knut Klingbeil
Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
Corinna Schrum
Institute for Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
Justus E. E. van Beusekom
Institute for Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
Related authors
Onur Kerimoglu, Markus Pahlow, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 16, 95–108, https://doi.org/10.5194/gmd-16-95-2023, https://doi.org/10.5194/gmd-16-95-2023, 2023
Short summary
Short summary
In classical models that track the changes in the elemental composition of phytoplankton, additional state variables are required for each element resolved. In this study, we show how the behavior of such an explicit model can be approximated using an
instantaneous acclimationapproach, in which the elemental composition of the phytoplankton is assumed to adjust to an optimal value instantaneously. Through rigorous tests, we evaluate the consistency of this scheme.
Onur Kerimoglu, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 14, 6025–6047, https://doi.org/10.5194/gmd-14-6025-2021, https://doi.org/10.5194/gmd-14-6025-2021, 2021
Short summary
Short summary
In large-scale models, variations in cellular composition of phytoplankton are often insufficiently represented. Detailed modeling approaches exist, but they require additional state variables that increase the computational costs. In this study, we test an instantaneous acclimation model in a spatially explicit setup and show that its behavior is mostly similar to that of a variant with an additional state variable but different from that of a fixed composition variant.
Vlad A. Macovei, Louise C. V. Rewrie, Rüdiger Röttgers, and Yoana G. Voynova
Biogeosciences, 22, 3375–3396, https://doi.org/10.5194/bg-22-3375-2025, https://doi.org/10.5194/bg-22-3375-2025, 2025
Short summary
Short summary
We found that biogeochemical variability at the land–sea interface (LSI) in two major temperate estuaries is modulated by the 14 d spring–neap tidal cycle, with large effects on dissolved inorganic and organic carbon concentrations and distribution. As this effect increases the strength of the carbon source to the atmosphere by up to 74 % during spring tide, it should be accounted for in regional models, which aim to resolve biogeochemical processing at the LSI.
Gaziza Konyssova, Vera Sidorenko, Alexey Androsov, Sabine Horn, Sara Rubinetti, Ivan Kuznetsov, Karen Helen Wiltshire, and Justus van Beusekom
EGUsphere, https://doi.org/10.5194/egusphere-2025-2135, https://doi.org/10.5194/egusphere-2025-2135, 2025
Short summary
Short summary
This study explores how winds, tides, and biological activity influence suspended particle concentrations in a tidal basin of the Wadden Sea. Combining long-term measurements, ocean modelling, and machine learning, we found that wind dominates in winter, while biological processes like algae growth gain importance in spring and summer. The results also reveal contrasting short-term dynamics at shallow and deep stations, identifying the drivers of variability in coastal waters.
Andreas Neumann, Justus E. E. van Beusekom, Alexander Bratek, Jana Friedrich, Jürgen Möbius, Tina Sanders, Hendrik Wolschke, and Kirstin Dähnke
EGUsphere, https://doi.org/10.5194/egusphere-2025-1803, https://doi.org/10.5194/egusphere-2025-1803, 2025
Short summary
Short summary
The North-Western shelf of the Black Sea is substantially influenced by the discharge of nutrients from River Danube. We have sampled the sediment there and measured particulate carbon and nitrogen to reconstruct the variability of nitrogen sources to the NW shelf. Our results demonstrate that the balance of riverine nitrogen input and marine nitrogen fixation is sensitive to climate changes. Nitrogen from human activities is detectable in NW shelf sediment since the 12th century.
Mona Norbisrath, Justus E. E. van Beusekom, and Helmuth Thomas
Ocean Sci., 20, 1423–1440, https://doi.org/10.5194/os-20-1423-2024, https://doi.org/10.5194/os-20-1423-2024, 2024
Short summary
Short summary
We present an observational study investigating total alkalinity (TA) in the Dutch Wadden Sea. Discrete water samples were used to identify the TA spatial distribution patterns and locate and shed light on TA sources. By observing a tidal cycle, the sediments and pore water exchange were identified as local TA sources. We assumed metabolically driven CaCO3 dissolution as the TA source in the upper, oxic sediments and anaerobic metabolic processes as TA sources in the deeper, anoxic ones.
Julia Meyer, Yoana G. Voynova, Bryce Van Dam, Lara Luitjens, Dagmar Daehne, and Helmuth Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3048, https://doi.org/10.5194/egusphere-2024-3048, 2024
Short summary
Short summary
The study highlights the inter-seasonal variability of the carbonate dynamics of the East Frisian Wadden Sea, the world's largest intertidal area. During spring, increased biological activity leads to lower CO2 and nitrate levels, while total alkalinity (TA) rises slightly. In summer, TA increases, enhancing the ocean's ability to absorb CO2. Our research emphasizes the vital role of these intertidal regions in regulating carbon, contributing to a better understanding of carbon storage.
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024, https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Short summary
In this paper we propose a new alternative to one of the functionalities of the sea ice model FESOM2. The alternative we propose allows the model to capture and simulate fast changes in quantities like sea surface elevation more accurately. We also demonstrate that the new alternative is faster and more adept at taking advantages of highly parallelized computing infrastructure. We therefore show that this new alternative is a great addition to the sea ice model FESOM2.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Louise C. V. Rewrie, Burkard Baschek, Justus E. E. van Beusekom, Arne Körtzinger, Gregor Ollesch, and Yoana G. Voynova
Biogeosciences, 20, 4931–4947, https://doi.org/10.5194/bg-20-4931-2023, https://doi.org/10.5194/bg-20-4931-2023, 2023
Short summary
Short summary
After heavy pollution in the 1980s, a long-term inorganic carbon increase in the Elbe Estuary (1997–2020) was fueled by phytoplankton and organic carbon production in the upper estuary, associated with improved water quality. A recent drought (2014–2020) modulated the trend, extending the water residence time and the dry summer season into May. The drought enhanced production of inorganic carbon in the estuary but significantly decreased the annual inorganic carbon export to coastal waters.
Mona Norbisrath, Andreas Neumann, Kirstin Dähnke, Tina Sanders, Andreas Schöl, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 20, 4307–4321, https://doi.org/10.5194/bg-20-4307-2023, https://doi.org/10.5194/bg-20-4307-2023, 2023
Short summary
Short summary
Total alkalinity (TA) is the oceanic capacity to store CO2. Estuaries can be a TA source. Anaerobic metabolic pathways like denitrification (reduction of NO3− to N2) generate TA and are a major nitrogen (N) sink. Another important N sink is anammox that transforms NH4+ with NO2− into N2 without TA generation. By combining TA and N2 production, we identified a TA source, denitrification, occurring in the water column and suggest anammox as the dominant N2 producer in the bottom layer of the Ems.
Gesa Schulz, Tina Sanders, Yoana G. Voynova, Hermann W. Bange, and Kirstin Dähnke
Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, https://doi.org/10.5194/bg-20-3229-2023, 2023
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas. However, N2O emissions from estuaries underlie significant uncertainties due to limited data availability and high spatiotemporal variability. We found the Elbe Estuary (Germany) to be a year-round source of N2O, with the highest emissions in winter along with high nitrogen loads. However, in spring and summer, N2O emissions did not decrease alongside lower nitrogen loads because organic matter fueled in situ N2O production along the estuary.
Johannes J. Rick, Mirco Scharfe, Tatyana Romanova, Justus E. E. van Beusekom, Ragnhild Asmus, Harald Asmus, Finn Mielck, Anja Kamp, Rainer Sieger, and Karen H. Wiltshire
Earth Syst. Sci. Data, 15, 1037–1057, https://doi.org/10.5194/essd-15-1037-2023, https://doi.org/10.5194/essd-15-1037-2023, 2023
Short summary
Short summary
The Sylt Roads (Wadden Sea) time series is illustrated. Since 1984, the water temperature has risen by 1.1 °C, while pH and salinity decreased by 0.2 and 0.3 units. Nutrients (P, N) displayed a period of high eutrophication until 1998 and have decreased since 1999, while Si showed a parallel increase. Chlorophyll did not mirror these changes, probably due to a switch in nutrient limitation. Until 1998, algae were primarily limited by Si, and since 1999, P limitation has become more important.
Onur Kerimoglu, Markus Pahlow, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 16, 95–108, https://doi.org/10.5194/gmd-16-95-2023, https://doi.org/10.5194/gmd-16-95-2023, 2023
Short summary
Short summary
In classical models that track the changes in the elemental composition of phytoplankton, additional state variables are required for each element resolved. In this study, we show how the behavior of such an explicit model can be approximated using an
instantaneous acclimationapproach, in which the elemental composition of the phytoplankton is assumed to adjust to an optimal value instantaneously. Through rigorous tests, we evaluate the consistency of this scheme.
Kirstin Dähnke, Tina Sanders, Yoana Voynova, and Scott D. Wankel
Biogeosciences, 19, 5879–5891, https://doi.org/10.5194/bg-19-5879-2022, https://doi.org/10.5194/bg-19-5879-2022, 2022
Short summary
Short summary
Nitrogen is an important macronutrient that fuels algal production in rivers and coastal regions. We investigated the production and removal of nitrogen-bearing compounds in the freshwater section of the tidal Elbe Estuary and found that particles in the water column are key for the production and removal of water column nitrate. Using a stable isotope approach, we pinpointed regions where additional removal of nitrate or input from sediments plays an important role in estuarine biogeochemistry.
Mona Norbisrath, Johannes Pätsch, Kirstin Dähnke, Tina Sanders, Gesa Schulz, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 19, 5151–5165, https://doi.org/10.5194/bg-19-5151-2022, https://doi.org/10.5194/bg-19-5151-2022, 2022
Short summary
Short summary
Total alkalinity (TA) regulates the oceanic storage capacity of atmospheric CO2. TA is also metabolically generated in estuaries and influences coastal carbon storage through its inflows. We used water samples and identified the Hamburg port area as the one with highest TA generation. Of the overall riverine TA load, 14 % is generated within the estuary. Using a biogeochemical model, we estimated potential effects on the coastal carbon storage under possible anthropogenic and climate changes.
Gesa Schulz, Tina Sanders, Justus E. E. van Beusekom, Yoana G. Voynova, Andreas Schöl, and Kirstin Dähnke
Biogeosciences, 19, 2007–2024, https://doi.org/10.5194/bg-19-2007-2022, https://doi.org/10.5194/bg-19-2007-2022, 2022
Short summary
Short summary
Estuaries can significantly alter nutrient loads before reaching coastal waters. Our study of the heavily managed Ems estuary (Northern Germany) reveals three zones of nitrogen turnover along the estuary with water-column denitrification in the most upstream hyper-turbid part, nitrate production in the middle reaches and mixing/nitrate uptake in the North Sea. Suspended particulate matter was the overarching control on nitrogen cycling in the hyper-turbid estuary.
Vera Fofonova, Tuomas Kärnä, Knut Klingbeil, Alexey Androsov, Ivan Kuznetsov, Dmitry Sidorenko, Sergey Danilov, Hans Burchard, and Karen Helen Wiltshire
Geosci. Model Dev., 14, 6945–6975, https://doi.org/10.5194/gmd-14-6945-2021, https://doi.org/10.5194/gmd-14-6945-2021, 2021
Short summary
Short summary
We present a test case of river plume spreading to evaluate coastal ocean models. Our test case reveals the level of numerical mixing (due to parameterizations used and numerical treatment of processes in the model) and the ability of models to reproduce complex dynamics. The major result of our comparative study is that accuracy in reproducing the analytical solution depends less on the type of applied model architecture or numerical grid than it does on the type of advection scheme.
Onur Kerimoglu, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 14, 6025–6047, https://doi.org/10.5194/gmd-14-6025-2021, https://doi.org/10.5194/gmd-14-6025-2021, 2021
Short summary
Short summary
In large-scale models, variations in cellular composition of phytoplankton are often insufficiently represented. Detailed modeling approaches exist, but they require additional state variables that increase the computational costs. In this study, we test an instantaneous acclimation model in a spatially explicit setup and show that its behavior is mostly similar to that of a variant with an additional state variable but different from that of a fixed composition variant.
Tobias Peter Bauer, Peter Holtermann, Bernd Heinold, Hagen Radtke, Oswald Knoth, and Knut Klingbeil
Geosci. Model Dev., 14, 4843–4863, https://doi.org/10.5194/gmd-14-4843-2021, https://doi.org/10.5194/gmd-14-4843-2021, 2021
Short summary
Short summary
We present the coupled atmosphere–ocean model system ICONGETM. The added value and potential of using the latest coupling technologies are discussed in detail. An exchange grid handles the different coastlines from the unstructured atmosphere and the structured ocean grids. Due to a high level of automated processing, ICONGETM requires only minimal user input. The application to a coastal upwelling scenario demonstrates significantly improved model results compared to uncoupled simulations.
Qing Li, Jorn Bruggeman, Hans Burchard, Knut Klingbeil, Lars Umlauf, and Karsten Bolding
Geosci. Model Dev., 14, 4261–4282, https://doi.org/10.5194/gmd-14-4261-2021, https://doi.org/10.5194/gmd-14-4261-2021, 2021
Short summary
Short summary
Different ocean vertical mixing schemes are usually developed in different modeling framework, making the comparison across such schemes difficult. Here, we develop a consistent framework for testing, comparing, and applying different ocean mixing schemes by integrating CVMix into GOTM, which also extends the capability of GOTM towards including the effects of ocean surface waves. A suite of test cases and toolsets for developing and evaluating ocean mixing schemes is also described.
Ulrich Callies
Ocean Sci., 17, 527–541, https://doi.org/10.5194/os-17-527-2021, https://doi.org/10.5194/os-17-527-2021, 2021
Short summary
Short summary
An analysis of simulated German Bight surface currents reveals linear structures along which water bodies of different origin converge. Identification of these non-stationary structures supports the interpretation of monitoring data; observations gathered at stations that are neighbouring but separated by a line of convergence may substantially differ. The analysis could also be helpful for organizing field campaigns such that new observations do not just duplicate information already available.
Robert Daniel Osinski, Kristina Enders, Ulf Gräwe, Knut Klingbeil, and Hagen Radtke
Ocean Sci., 16, 1491–1507, https://doi.org/10.5194/os-16-1491-2020, https://doi.org/10.5194/os-16-1491-2020, 2020
Short summary
Short summary
This study investigates the impact of the uncertainty in atmospheric data of a storm event on the transport of microplastics and sediments. The model chain includes the WRF atmospheric model, the WAVEWATCH III® wave model, and the GETM regional ocean model as well as a sediment transport model based on the FABM framework. An ensemble approach based on stochastic perturbations of the WRF model is used. We found a strong impact of atmospheric uncertainty on the amount of transported material.
Cited articles
Ahmerkamp, S., Winter, C., Krämer, K., de Beer, D., Janssen, F.,
Friedrich, J., Kuypers, M. M., and Holtappels, M.: Regulation of benthic
oxygen fluxes in permeable sediments of the coastal ocean, Limnol. Oceanogr., 62, 1935–1954, https://doi.org/10.1002/lno.10544, 2017. a, b
Amann, T., Weiss, A., and Hartmann, J.: Carbon dynamics in the freshwater part
of the Elbe estuary, Germany: Implications of improving water quality,
Estuar. Coast. Shelf S., 107, 112–121,
https://doi.org/10.1016/j.ecss.2012.05.012, 2012. a
Androsov, A., Fofonova, V., Kuznetsov, I., Danilov, S., Rakowsky, N., Harig, S., Brix, H., and Wiltshire, K. H.: FESOM-C v.2: coastal dynamics on hybrid unstructured meshes, Geosci. Model Dev., 12, 1009–1028, https://doi.org/10.5194/gmd-12-1009-2019, 2019. a
Backhaus, J. O.: A three-dimensional model for the simulation of shelf sea
dynamics, Deutsche Hydrographische Zeitschrift, 38, 165–187,
https://doi.org/10.1007/BF02328975, 1985. a
Baird, M. E., Adams, M. P., Babcock, R. C., Oubelkheir, K., Mongin, M.,
Wild-allen, K. A., Skerratt, J., Robson, B. J., Petrou, K., Ralph, P. J.,
Brien, K. R. O., Carter, A. B., Jarvis, J. C., and Rasheed, M. A.: A
biophysical representation of seagrass growth for application in a complex
shallow-water biogeochemical model, Ecol. Model., 325, 13–27,
https://doi.org/10.1016/j.ecolmodel.2015.12.011, 2016. a
Baretta, J., Ebenhöh, W., and Ruardij, P.: The European regional seas
ecosystem model, a complex marine ecosystem model, Neth. J.
Sea Res., 33, 233–246, 1995. a
Barthel, K., Daewel, U., Pushpadas, D., Schrum, C., Årthun, M., and Wehde,
H.: Resolving frontal structures: on the payoff using a less diffusive but
computationally more expensive advection scheme, Ocean Dynam., 62,
1457–1470, https://doi.org/10.1007/s10236-012-0578-9, 2012. a
Becker, E. and Burkhardt, U.: Nonlinear Horizontal Diffusion for GCMs,
Mon. Weather Rev., 135, 1439–1454, https://doi.org/10.1175/MWR3348.1, 2007. a
Becker, G., Dick, S., and Dippner, J.: Hydrography of the German Bight,
Mar. Ecol.-Prog. Ser., 91, 9–18, 1992. a
Beckers, J.-M., Burchard, H., Deleersnijder, E., and Mathieu, P.: Numerical
Discretization of Rotated Diffusion Operators in Ocean Models, Mon.
Weather Rev., 128, 2711–2733, 2000. a
Beniston, M., Stephenson, D. B., Christensen, O. B., Ferro, C. a. T., Frei, C.,
Goyette, S., Halsnaes, K., Holt, T., Jylhä, K., Koffi, B., Palutikof,
J., Schöll, R., Semmler, T., and Woth, K.: Future extreme events in
European climate: an exploration of regional climate model projections,
Climatic Change, 81, 71–95, https://doi.org/10.1007/s10584-006-9226-z, 2007. a
Blackford, J. C. and Radford, P. J.: A structure and methodology for marine
ecosystem modelling, Neth. J. Sea Res., 33, 247–260,
https://doi.org/10.1016/0077-7579(95)90048-9, 1995. a
Bratek, A., van Beusekom, J. E. E., Neumann, A., Sanders, T., Friedrich, J., Emeis, K.-C., and Dähnke, K.: Spatial variations in sedimentary N-transformation rates in the North Sea (German Bight), Biogeosciences, 17, 2839–2851, https://doi.org/10.5194/bg-17-2839-2020, 2020. a
Breitbach, G.: COSYNA Data web portal, re3data.org, https://doi.org/10.17616/R3K02T, last access: 19 October 2020. a
Breitbach, G., Krasemann, H., Behr, D., Beringer, S., Lange, U., Vo, N., and Schroeder, F.: Accessing diverse data comprehensively – CODM, the COSYNA data portal, Ocean Sci., 12, 909–923, https://doi.org/10.5194/os-12-909-2016, 2016. a
Bruggeman, J. and Bolding, K.: A general framework for aquatic biogeochemical
models, Environ. Model. Softw., 61, 249–265,
https://doi.org/10.1016/j.envsoft.2014.04.002, 2014. a, b
Burchard, H. and Badewien, T. H.: Thermohaline residual circulation of the
Wadden Sea, Ocean Dynam., 65, 1717–1730, https://doi.org/10.1007/s10236-015-0895-x,
2015. a, b, c
Burchard, H. and Bolding, K.: GETM: A general estuarine transport model,
Tech. rep., Joint Research Centre, Ispra, Italy, 2002. a
Burchard, H. and Hetland, R. D.: Quantifying the Contributions of Tidal
Straining and Gravitational Circulation to Residual Circulation in
Periodically Stratified Tidal Estuaries, J. Phys. Oceanogr.,
40, 1243–1262, https://doi.org/10.1175/2010JPO4270.1, 2010. a
Burchard, H. and Rennau, H.: Comparative quantification of physically and
numerically induced mixing in ocean models, Ocean Model., 20, 293–311,
https://doi.org/10.1016/j.ocemod.2007.10.003, 2008. a, b
Burchard, H., Flöser, G., Staneva, J. V., Badewien, T. H., and
Riethmüller, R.: Impact of Density Gradients on Net Sediment Transport
into the Wadden Sea, J. Phys. Oceanogr., 38, 566–587,
https://doi.org/10.1175/2007JPO3796.1, 2008. a
Burchard, H., Schuttelaars, H. M., and Ralston, D. K.: Sediment Trapping in
Estuaries, Annu. Rev. Mar. Sci., 10, 371–395,
https://doi.org/10.1146/annurev-marine-010816-060535, 2018. a
Burson, A., Stomp, M., Akil, L., Brussaard, C. P. D., and Huisman, J.:
Unbalanced reduction of nutrient loads has created an offshore gradient from
phosphorus to nitrogen limitation in the North Sea, Limnol. Oceanogr., 61, 869–888, https://doi.org/10.1002/lno.10257, 2016. a
Callies, U. and Scharfe, M.: Mean spring conditions at Helgoland Roads, North
Sea: Graphical modeling of the influence of hydro-climatic forcing and Elbe
River discharge, J. Sea Res., 101, 1–11,
https://doi.org/10.1016/j.seares.2014.06.008, 2015. a
Callies, U.: CoastDat-2 Hydrodynamic Model TRIM-NP Principal Component Analysis Residual
Currents, World Data Center for Climate (WDCC) at DKRZ, https://doi.org/10.1594/WDCC/TRIM-NP-2d-PCA_ResCurr, 2016. a
Callies, U., Gaslikova, L., Kapitza, H., and Scharfe, M.: German Bight
residual current variability on a daily basis: principal components of
multi-decadal barotropic simulations, Geo-Mar. Lett., 37, 151–162,
https://doi.org/10.1007/s00367-016-0466-2, 2017. a, b, c
Carpenter, J. R., Merckelbach, L., Callies, U., Clark, S., Gaslikova, L., and
Baschek, B.: Potential Impacts of Offshore Wind Farms on North Sea
Stratification, PloS one, 11, e0160830, https://doi.org/10.1371/journal.pone.0160830,
2016. a
Chegini, F., Holtermann, P., Kerimoglu, O., Becker, M., Kreus, M., Klingbeil,
K., Gräwe, U., Winter, C., and Burchard, H.: Processes of
stratification and de-stratification during an extreme river discharge event
in the German Bight in a model study, J. Geophys. Res.-Oceans, 125, e2019JC015987, https://doi.org/10.1029/2019JC015987, 2020. a, b
Christianen, M., Middelburg, J., Holthuijsen, S., Jouta, J., Compton, T.,
van der Heide, T., Piersma, T., Sinninghe Damste, J., van der Veer, H.,
Schouten, S., and Olff, H.: Benthic primary producers are key to sustain the
Wadden Sea food web: stable carbon isotope analysis at landscape scale,
Ecology, 98, 1498–1512, https://doi.org/10.1002/ecy.1837, 2017. a
Clark, N., Eber, L., Laurs, R., Renner, J., and Saur, J.: Heat exchange
between ocean and atmosphere in the Eastern North Pacific for 1961–1971,
Tech. rep., NOAA, Washington, DC, USA, 1974. a
Cloern, J. E., Foster, S. Q., and Kleckner, A. E.: Phytoplankton primary production in the world's estuarine-coastal ecosystems, Biogeosciences, 11, 2477–2501, https://doi.org/10.5194/bg-11-2477-2014, 2014. a
Cook, P. L., Veuger, B., Böer, S., and Middelburg, J. J.: Effect of
nutrient availability on carbon and nitrogen incorporation and flows through
benthic algae and bacteria in near-shore sandy sediment, Aquat. Microb.
Ecol., 49, 165–180, https://doi.org/10.3354/ame01142, 2007. a
Daewel, U., Schrum, C., and Macdonald, J. I.: Towards end-to-end (E2E) modelling in a consistent NPZD-F modelling framework (ECOSMO E2E_v1.0): application to the North Sea and Baltic Sea, Geosci. Model Dev., 12, 1765–1789, https://doi.org/10.5194/gmd-12-1765-2019, 2019. a
Deek, A., Dähnke, K., Van Beusekom, J., Meyer, S., Voss, M., and Emeis,
K.: N2 fluxes in sediments of the Elbe Estuary and adjacent coastal zones,
Mar. Ecol.-Prog. Ser., 493, 9–21, https://doi.org/10.3354/meps10514, 2013. a, b, c
Dolch, T., Buschbaum, C., and Reise, K.: Persisting intertidal seagrass beds
in the northern Wadden Sea since the 1930s, J. Sea Res., 82,
134–141, https://doi.org/10.1016/j.seares.2012.04.007, 2013. a
Emeis, K. C., van Beusekom, J., Callies, U., Ebinghaus, R., Kannen, A., Kraus,
G., Kröncke, I., Lenhart, H., Lorkowski, I., Matthias, V.,
Möllmann, C., Pätsch, J., Scharfe, M., Thomas, H., Weisse, R.,
and Zorita, E.: The North Sea - A shelf sea in the Anthropocene, J. Marine Syst., 141, 18–33, https://doi.org/10.1016/j.jmarsys.2014.03.012, 2015. a
EMEP: Grid emissions in 0.1∘ × 0.1∘ long-lat resolution, EMEP Centre on Emission Inventories and Projections, available at: https://www.ceip.at/the-emep-grid/gridded-emissions, last access: 19 October 2020. a
EMODnet: Bathymetry, available at: https://portal.emodnet-bathymetry.eu/, last access: 19 October 2020. a
Fasham, M., Ducklow, H., and Mckelvie, S.: A nitrogen-based model of plankton
dynamics in the oceanic mixed layer, J. Mar. Res., 48,
591–639, 1990. a
Feng, Y., Friedrichs, M. A., Wilkin, J., Tian, H., Yang, Q., Hofmann, E. E.,
Wiggert, J. D., and Hood, R. R.: Chesapeake Bay nitrogen fluxes derived from
a land-estuarine ocean biogeochemical modeling system: Model description,
evaluation, and nitrogen budgets, J. Geophys. Res.-Biogeo., 120, 1666–1695, https://doi.org/10.1002/2015JG002931, 2015. a
Fennel, K. and Laurent, A.: N and P as ultimate and proximate limiting nutrients in the northern Gulf of Mexico: implications for hypoxia reduction strategies, Biogeosciences, 15, 3121–3131, https://doi.org/10.5194/bg-15-3121-2018, 2018. a
Fennel, K. and Testa, J. M.: Biogeochemical Controls on Coastal Hypoxia,
Annu. Rev. Mar. Sci., 11, 4.1–4.26,
https://doi.org/10.1146/annurev-marine-010318-095138, 2019. a
Flöser, G., Burchard, H., and Riethmüller, R.: Observational
evidence for estuarine circulation in the German Wadden Sea, Cont.
Shelf Res., 31, 1633–1639,
https://doi.org/10.1016/j.csr.2011.03.014, 2011. a
Flynn, K. J.: Modelling multi-nutrient interactions in phytoplankton;
balancing simplicity and realism, Prog. Oceanogr., 56, 249–279,
https://doi.org/10.1016/S0079-6611(03)00006-5, 2003. a
Ford, D. A., van der Molen, J., Hyder, K., Bacon, J., Barciela, R., Creach, V., McEwan, R., Ruardij, P., and Forster, R.: Observing and modelling phytoplankton community structure in the North Sea, Biogeosciences, 14, 1419–1444, https://doi.org/10.5194/bg-14-1419-2017, 2017. a, b
Garnier, J., Riou, P., Gendre, R. L., Ramarson, A., Billen, G., Cugier, P.,
Shapira, M., Théry, S., Thieu, V., and Alain, M.: Managing the
Agri-Food System of Watersheds to Combat Coastal Eutrophication: A
Land-to-Sea Modelling Approach to the French Coastal English Channel,
Geosciences, 9, 441, https://doi.org/10.3390/geosciences9100441, 2019. a
Gaslikova, L. and Weisse, R.: coastDat-2 TRIM-NP-2d Tide-Surge North Sea,
Tech. rep., WDCC at DKRZ, https://doi.org/10.1594/WDCC/coastDat-2_TRIM-NP-2d, 2013. a, b
Gayer, G., Dick, S., Pleskachevsky, A., and Rosenthal, W.: Numerical modeling
of suspended matter transport in the North Sea, Ocean Dynam., 56, 62–77,
https://doi.org/10.1007/s10236-006-0070-5, 2006. a
Geider, R., Maclntyre, H., and Kana, T.: A dynamic regulatory model of
phytoplanktonic acclimation to light, nutrients, and temperature, Limnol.
Oceanogr., 43, 679–694, 1998. a
Gent, P. R. and McWilliams, J. C.: Isopycnal mixing in ocean circulation
models, J. Phys. Oceanogr., 20, 150–155, 1990. a
Geyer, B.: High-resolution atmospheric reconstruction for Europe 1948–2012:
coastDat2, Earth System Science Data, 6, 147–164,
https://doi.org/10.5194/essd-6-147-2014, 2014. a, b, c
Geyer, B. and Rockel, B.: coastDat-2 COSMO-CLM Atmospheric Reconstruction, World Data Center for Climate (WDCC) at DKRZ, https://doi.org/10.1594/WDCC/coastDat-2_COSMO-CLM, 2013. a
Geyer, W. R. and Maccready, P.: The Estuarine Circulation, Annu. Rev.
Fluid Mech., 46, 175–197, https://doi.org/10.1146/annurev-fluid-010313-141302,
2014. a
Gräwe, U., Flöser, G., Gerkema, T., Duran-Matute, M., Badewien, T.,
Schulz, E., and Burchard, H.: A numerical model for the entire Wadden Sea:
skill assessment and analysis of hydrodynamics, J. Geophys.
Res.-Oceans, 121, 5231–2551, https://doi.org/10.1002/2016JC011655, 2016. a, b, c
Griffies, S. M. and Hallberg, R. W.: Biharmonic Friction with a
Smagorinsky-Like Viscosity for Use in Large-Scale Eddy-Permitting Ocean
Models, Mon. Weather Rev., 128, 2935–2946, 2000. a
Große, F., Greenwood, N., Kreus, M., Lenhart, H.-J., Machoczek, D., Pätsch, J., Salt, L., and Thomas, H.: Looking beyond stratification: a model-based analysis of the biological drivers of oxygen deficiency in the North Sea, Biogeosciences, 13, 2511–2535, https://doi.org/10.5194/bg-13-2511-2016, 2016. a, b, c, d
Große, F., Kreus, M., Lenhart, H.-J., Pätsch, J., and Pohlmann, T.:
A Novel Modeling Approach to Quantify the Influence of Nitrogen Inputs on
the Oxygen Dynamics of the North Sea, Front. Mar. Sci., 4, 1–21,
https://doi.org/10.3389/fmars.2017.00383, 2017. a, b, c, d
Grover, J.: Stoichiometry, Herbivory and Competition for Nutrients: Simple
Models based on Planktonic Ecosystems, J. Theor. Biol., 214, 599–618,
https://doi.org/10.1006/jtbi.2001.2488, 2002. a
Grunwald, M., Dellwig, O., Kohlmeier, C., Kowalski, N., Beck, M., Badewien,
T. H., Kotzur, S., Liebezeit, G., and Brumsack, H.-J.: Nutrient dynamics in
a back barrier tidal basin of the Southern North Sea: Time-series, model
simulations, and budget estimates, J. Sea Res., 64, 199–212,
https://doi.org/10.1016/j.seares.2010.02.008,
2010. a
Hanlon, A. R., Bellinger, B., Haynes, K., Xiao, G., Hofmann, T. A., Gretz,
M. R., Ball, A. S., Osborn, A. M., and Underwood, G. J.: Dynamics of
extracellular polymeric substance (EPS) production and loss in an estuarine,
diatom-dominated, microalgal biofilm over a tidal emersion-immersion period,
Limnol. Oceanogr., 51, 79–93, https://doi.org/10.4319/lo.2006.51.1.0079,
2006. a
Hansen, P., Bjørnsen, P., and Hansen, B.: Zooplankton grazing and growth:
Scaling within the 2–2,000 µm body size range, Limnol. Oceanogr., 42, 687–704, 1997. a
Heip, C. H. R., Goosen, N. K., Herman, P. M. J., Kromkamp, J., Middelburg, J. J., and
Soetaerd, K.: Production and consumption of biological particles in temperate tidal
estuaries, Oceanogr. Mar. Biol., 33, 1–149, 1995. a
Herman, P., Middelburg, J., van de Koppel, J., and Heip, C.: Ecology of
Estuarine Macrobenthos, Adv. Ecol. Res., 29, 195–240,
https://doi.org/10.1016/S0065-2504(08)60194-4, 1999. a
Hickel, W., Mangelsdorf, P., and Berg, J.: The human impact in the German
Bight: Eutrophication during three decades (1962–1991), Helgoländer
Meeresun., 47, 243–263, https://doi.org/10.1007/BF02367167, 1993. a
Hickey, B. M., Kudela, R. M., Nash, J. D., Bruland, K. W., Peterson, W. T.,
MacCready, P., Lessard, E. J., Jay, D. a., Banas, N. S., Baptista, a. M.,
Dever, E. P., Kosro, P. M., Kilcher, L. K., Horner-Devine, a. R., Zaron,
E. D., McCabe, R. M., Peterson, J. O., Orton, P. M., Pan, J., and Lohan,
M. C.: River Influences on Shelf Ecosystems: Introduction and synthesis,
J. Geophys. Res., 115, C00B17, https://doi.org/10.1029/2009JC005452,
2010. a
Hofmeister, R., Beckers, J.-M., and Burchard, H.: Realistic modelling of the
exceptional inflows into the central Baltic Sea in 2003 using
terrain-following coordinates, Ocean Model., 39, 233–247,
https://doi.org/10.1016/j.ocemod.2011.04.007, 2011. a
Hofmeister, R., Flöser, G., and Schartau, M.: Estuary-type circulation
as a factor sustaining horizontal nutrient gradients in freshwater-influenced
coastal systems, Geo-Mar. Lett., 37, 179–192,
https://doi.org/10.1007/s00367-016-0469-z, 2017. a, b, c
Holt, J. T. and James, I. D.: An assessment of the fine-scale eddies in a
high-resolution model of the shelf seas west of Great Britain, Ocean
Model., 13, 271–291, https://doi.org/10.1016/j.ocemod.2006.02.005, 2006. a
ICES/CIEM: ICES Datasets, available at: https://ecosystemdata.ices.dk/, last access: 19 October 2020. a
Irby, I. D., Friedrichs, M. A. M., Da, F., and Hinson, K. E.: The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay, Biogeosciences, 15, 2649–2668, https://doi.org/10.5194/bg-15-2649-2018, 2018. a
Izett, J. G. and Fennel, K.: Estimating the Cross-Shelf Export of Riverine
Materials: Part 2. Estimates of Global Freshwater and Nutrient Export,
Global Biogeochem. Cy., 32, 176–186, https://doi.org/10.1002/2017GB005668, 2018. a
Kantha, L. H. and Clayson, C. A.: Numerical models of oceans and oceanic
processes, Academic Press, USA, https://doi.org/10.1016/s0074-6142(00)x8001-1, 2000. a
Kerimoglu, O.: Parameterization of turbidity in the German Bight, Tech. rep.,
Helmholtz-Zentrum Geesthacht, Geesthacht, available at:
https://www.hzg.de/imperia/md/content/hzg/zentrale_einrichtungen/bibliothek/berichte/hzg_reports_2019/hzg_report_2019_2.pdf (last access: 19 October 2020),
2014. a
Kerimoglu, O.: OnurKerimoglu/FABM-GPM: First major pre-release, https://doi.org/10.5281/zenodo.4016957, Zenodo, 2020. a
Kerimoglu, O., Große, F., Kreus, M., Lenhart, H.-J., and van Beusekom,
J. E.: A model-based projection of historical state of a coastal ecosystem:
relevance of phytoplankton stoichiometry, Sci. Environ.,
639, 1311–1323, https://doi.org/10.1016/j.scitotenv.2018.05.215, 2018. a, b
Klingbeil, K., Mohammadi-Aragh, M., Gräwe, U., and Burchard, H.:
Quantification of spurious dissipation and mixing – Discrete variance
decay in a Finite-Volume framework, Ocean Model., 81, 49–64,
https://doi.org/10.1016/j.ocemod.2014.06.001, 2014. a
Kondo, J.: Air-sea bulk transfer coefficients in diabatic conditions,
Bound. Lay. Meteorol., 9, 91–112, 1975. a
Laurent, A., Fennel, K., Cai, W.-J., Huang, W.-J., Barbero, L., and Wanninkhof,
R.: Eutrophication-induced acidification of coastal waters in the northern
Gulf of Mexico: Insights into origin and processes from a coupled physical-biogeochemical model Arnaud, Geophys. Res. Lett., 44, 946–956,
https://doi.org/10.1002/2016GL071881, 2017. a
Lenhart, H., Radach, G., and Ruardij, P.: The effects of river input on the
ecosystem dynamics in the continental coastal zone of the North Sea using
ERSEM, J. Sea Res., 38, 249–274, 1997. a
Leote, C., Mulder, L. L., Philippart, C. J. M., and Epping, E. H. G.:
Nutrients in the Western Wadden Sea: Freshwater Input Versus Internal
Recycling, Estuar. Coast., 39, 40–53, https://doi.org/10.1007/s12237-015-9979-6, 2015. a
Lessin, G., Artioli, Y., Almroth-rosell, E., Blackford, J. C., Dale, A. W.,
Glud, R. N., Middelburg, J. J., Pastres, R., Rabouille, C., Regnier, P.,
Soetaert, K., Solidoro, C., Stephens, N., and Yakushev, E.: Modelling Marine
Sediment Biogeochemistry: Current Knowledge Gaps, Challenges, and Some
Methodological Advice for Advancement, Front. Mar. Sci., 5, 19,
https://doi.org/10.3389/fmars.2018.00019, 2018. a
Lessin, G., Bruggeman, J., McNeill, C. L., and Widdicombe, S.: Time scales of
benthic macrofaunal response to pelagic production differ between major
feeding groups, Front. Mar. Sci., 6, 1–12,
https://doi.org/10.3389/fmars.2019.00015, 2019. a, b
Löder, M., Kraberg, A., Aberle, N., Peters, S., and Wiltshire, K.:
Dinoflagellates and ciliates at Helgoland Roads, North Sea, Helgoland
Mar. Res., 66, 11–23, https://doi.org/10.1007/s10152-010-0242-z, 2012. a
Loebl, M., Dolch, T., and Beusekom, J. E. E. V.: Annual dynamics of pelagic
primary production and respiration in a shallow coastal basin, J.
Sea Res., 58, 269–282, https://doi.org/10.1016/j.seares.2007.06.003, 2007. a
Loebl, M., Colijn, F., van Beusekom, J., Baretta-Bekker, J., Lancelot, C.,
Philippart, C., Rousseau, V., and Wiltshire, K.: Recent patterns in
potential phytoplankton limitation along the Northwest European continental
coast, J. Sea Res., 61, 34–43,
https://doi.org/10.1016/j.seares.2008.10.002, 2009. a
Lorkowski, I., Pätsch, J., Moll, A., and Kühn, W.: Interannual
variability of carbon fluxes in the North Sea from 1970 to 2006 – Competing
effects of abiotic and biotic drivers on the gas-exchange of CO2,
Estuar. Coast. Shelf S., 100, 38–57,
https://doi.org/10.1016/j.ecss.2011.11.037, 2012. a, b, c, d, e, f
Los, F., Villars, M., and Van der Tol, M.: A 3-dimensional primary
production model (BLOOM/GEM) and its applications to the (southern) North Sea
(coupled physical–chemical–ecological model), J. Marine Syst.,
74, 259–294, https://doi.org/10.1016/j.jmarsys.2008.01.002, 2008. a
Maerz, J., Hofmeister, R., van der Lee, E. M., Gräwe, U., Riethmüller, R., and Wirtz, K. W.: Maximum sinking velocities of suspended particulate matter in a coastal transition zone, Biogeosciences, 13, 4863–4876, https://doi.org/10.5194/bg-13-4863-2016, 2016. a
Merz, B., Elmer, F., Kunz, M., Mühr, B., Schröter, K., and
Uhlemann-Elmer, S.: The extreme flood in June 2013 in Germany, Houille
Blanche, 1, 5–10, https://doi.org/10.1051/lhb/2014001, 2014. a
Middelburg, J. J.: Reviews and syntheses: to the bottom of carbon processing at the seafloor, Biogeosciences, 15, 413–427, https://doi.org/10.5194/bg-15-413-2018, 2018. a, b
Morel, F.: Kinetics of nutrient uptake and growth in phytoplankton, J. Phycol., 23, 137–150, 1987. a
Nasermoaddeli, M. H., Lemmen, C., Stigge, G., Kerimoglu, O., Burchard, H.,
Klingbeil, K., Hofmeister, R., Kreus, M., Wirtz, K. W., and Kösters,
F.: A model study on the large-scale effect of macrofauna on the suspended
sediment concentration in a shallow shelf sea, Estuar. Coast. Shelf
S., 211, 62–76, https://doi.org/10.1016/j.ecss.2017.11.002, 2018. a, b
Neumann, A., van Beusekom, J. E., Holtappels, M., and Emeis, K. C.: Nitrate
consumption in sediments of the German Bight (North Sea), J. Sea
Res., 127, 26–35, https://doi.org/10.1016/j.seares.2017.06.012, 2017. a
Oubelkheir, K., Sciandra, A., and Babin, M.: Bio-optical and biogeochemical
properties of different trophic regimes in oceanic waters, Limnol. Oceanogr., 50, 1795–1809, https://doi.org/10.4319/lo.2005.50.6.1795, 2005. a
Pätsch, J. and Kühn, W.: Nitrogen and carbon cycling in the North
Sea and exchange with the North Atlantic – A model study. Part I. Nitrogen
budget and fluxes, Cont. Shelf Res., 28, 767–787,
https://doi.org/10.1016/j.csr.2007.12.013, 2008. a, b
Pätsch, J., Burchard, H., Dieterich, C., Gräwe, U., Gröger,
M., Mathis, M., Kapitza, H., Bersch, M., Moll, A., Pohlmann, T., Su, J.,
Ho-Hagemann, H. T., Schulz, A., Elizalde, A., and Eden, C.: An evaluation of
the North Sea circulation in global and regional models relevant for
ecosystem simulations, Ocean Model., 116, 70–95,
https://doi.org/10.1016/j.ocemod.2017.06.005, 2017. a, b
Paulson, C. and Simpson, J.: Irradience measurements in the upper ocean,
J. Phys. Oceanogr., 7, 952–956, 1977. a
Payne, R. E.: Albedo of the Sea Surface, J. Atmos. Sci.,
29, 959–970, https://doi.org/10.1175/1520-0469(1972)029<0959:AOTSS>2.0.CO;2, 1972. a
Pein, J., Eisele, A., Hofmeister, R., Sanders, T., Daewel, U., Stanev, E. V., van Beusekom, J., Staneva, J., and Schrum, C.: Nitrogen cycling in the Elbe estuary from a joint 3D-modelling and observational perspective, Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-265, 2019. a, b, c, d, e
Petersen, W., Schroeder, F., and Bockelmann, F.-D.: FerryBox – Application of
continuous water quality observations along transects in the North Sea,
Ocean Dynam., 61, 1541–1554, https://doi.org/10.1007/s10236-011-0445-0, 2011. a
Platis, A., Siedersleben, S. K., Bange, J., Lampert, A., Bärfuss, K.,
Hankers, R., Cañadillas, B., Foreman, R., Schulz-stellenfleth, J.,
Djath, B., Neumann, T., and Emeis, S.: First in situ evidence of wakes in
the far field behind offshore wind farms, Sci. Rep.-UK, 8, 2163,
https://doi.org/10.1038/s41598-018-20389-y, 2018. a
Pohlmann, T.: A meso-scale model of the central and southern North Sea:
Consequences of an improved resolution, Cont. Shelf Res., 26,
2367–2385, https://doi.org/10.1016/j.csr.2006.06.011, 2006. a
Radach, G.: Ecosystem Functioning in the German Bight Under Continental
Nutrient Inputs by Rivers, Estuaries, 15, 477–496, https://doi.org/10.2307/1352392,
1992. a
Radach, G. and Pätsch, J.: Variability of Continental Riverine
Freshwater and Nutrient Inputs into the North Sea for the Years 1977–2000
and Its Consequences for the Assessment of Eutrophication, Estuar.
Coast., 30, 66–81, https://doi.org/10.1007/BF02782968, 2007. a, b
Rijkswaterstaat: Waterinfo, available at: https://waterinfo.rws.nl, last access: 19 October 2020. a
Roberts, M. and Marshall, D.: Do We Require Adiabatic Dissipation Schemes in
Eddy-Resolving Ocean Models?, J. Phys. Oceanogr., 28,
2050–2063, 1998. a
Rosenberg, R., Agrenius, S., Hellman, B., Nilsson, H. C., and Norling, K.:
Recovery of marine benthic habitats and fauna in a Swedish fjord following
improved oxygen conditions, Mar. Ecol.-Prog. Ser., 234, 43–53,
https://doi.org/10.3354/meps234043, 2002. a
Schrum, C.: Thermohaline stratification and instabilities at tidal mixing
fronts: Results of an eddy resolving model for the German Bight, Cont.
Shelf Res., 17, 689–716, https://doi.org/10.1016/S0278-4343(96)00051-9, 1997. a, b, c
Seitzinger, S. P. and Giblin, A. E.: Estimating denitrification in North
Atlantic continental shelf sediments, Biogeochemistry, 35, 235–260,
https://doi.org/10.1007/978-94-009-1776-7_7, 1996. a
Sharples, J., Middelburg, J., Fennel, K., and Jickells, T.: What proportion of
riverine nutrients reaches the open ocean?, Global Biogeochem. Cy.,
31, 39–58, https://doi.org/10.1002/2016GB005483, 2017. a
Siegismund, F. and Schrum, C.: Decadal changes in the wind forcing over the
North Sea, Clim. Res., 18, 39–45, 2001. a
Singer, A., Schückel, U., Beck, M., Bleich, O., Brumsack, H. J., Freund,
H., Geimecke, C., Lettmann, K. A., Millat, G., Staneva, J., Vanselow, A.,
Westphal, H., Wolff, J. O., Wurpts, A., and Kröncke, I.: Small-scale
benthos distribution modelling in a North Sea tidal basin in response to
climatic and environmental changes (1970s–2009), Mar. Ecol.-Prog.
Ser., 551, 13–30, https://doi.org/10.3354/meps11756, 2016. a
Singer, A., Millat, G., and Staneva, J.: Modelling benthic macrofauna and
seagrass distribution patterns in a North Sea tidal basin in response to 2050
climatic and environmental scenarios, Estuar. Coast. Shelf S.,
188, 99–108, https://doi.org/10.1016/j.ecss.2017.02.003, 2017. a
Smagorinsky, J.: General circulation experiments with the primitive equations.
Part I: The basic experiment, Mon. Weather Rev., 91, 99–164,
https://doi.org/10.1126/science.27.693.594, 1963. a, b
Smith, V. H. and Schindler, D. W.: Eutrophication science: where do we go from
here?, Trends Ecol. Evol., 24, 201–207,
https://doi.org/10.1016/j.tree.2008.11.009, 2009. a
Soetaert, K., Middelburg, J. J., Herman, P. M. J., and Buis, K.: On the
coupling of benthic and pelagic biogeochemical models, Earth-Sci.
Rev., 51, 173–201, 2000. a
Stanev, E. V., Jacob, B., and Pein, J.: German Bight estuaries : An
inter-comparison on the basis of numerical modeling, Cont. Shelf
Res., 174, 48–65, https://doi.org/10.1016/j.csr.2019.01.001, 2019. a
Staneva, J., Stanev, E., Wolff, J.-O., Badewien, T., Reuter, R., Flemming, B.,
Bartholomä, A., and Bolding, K.: Hydrodynamics and sediment dynamics
in the German Bight. A focus on observations and numerical modelling in the
East Frisian Wadden Sea, Cont. Shelf Res., 29, 302–319,
https://doi.org/10.1016/j.csr.2008.01.006, 2009. a, b, c
Stedmon, C., Markager, S., and Kaas, H.: The optics of chromophoric dissolved
organic matter (CDOM) in the Greenland Sea: An algorithm for differentiation
between marine and terrestrially derived organic matter, Limnol. Oceanogr., 46, 2087–2093, https://doi.org/10.4319/lo.2001.46.8.2087, 2001. a
Stips, A., Bolding, K., Pohlmann, T., and Burchard, H.: Simulating the
temporal and spatial dynamics of the North Sea using the new model GETM
(general estuarine transport model), Ocean Dynam., 54, 266–283,
https://doi.org/10.1007/s10236-003-0077-0, 2004. a
Straile, D.: Gross growth efficiencies of protozoan and metazoan zooplankton
and their dependence on food concentration, predator-prey weight ratio, and
taxonomic group, Limnol. Oceanogr., 42, 1375–1385, 1997. a
Sündermann, J. and Pohlmann, T.: A brief analysis of North Sea physics,
Oceanologia, 53, 663–689, https://doi.org/10.5697/oc.53-3.663, 2011. a
UNESCO: Progress on oceanographic tables and standards 1983–1986: work and
recommendations of the UNESCO/SCOR/ICES/IAPSO Joint Panel, Technical Papers
in Marine Science, 50, Tech. rep., UNESCO, Paris, France, 1986. a
van Aken, H. M.: The onset of seasonal stratification in shelf seas due to
differential advection in the presence of a salinity gradient, Cont.
Shelf Res., 5, 475–485, https://doi.org/10.1016/0278-4343(86)90071-3, 1986. a
van Beusekom, J. and Brockmann, U.: Transformation of Phosphorus in the Elbe
Estuary, Estuaries, 21, 518–526, 1998. a
van Beusekom, J., Brockmann, U., Hesse, K.-J., Hickel, W., Poremba, K., and
Tillmann, U.: The importance of sediments in the transformation and turnover
of nutrients and organic matter in the Wadden Sea and German Bight, Deutsche
Hydrographische Zeitschrift, 51, 245–266, https://doi.org/10.1007/BF02764176, 1999. a
van Beusekom, J. E., Carstensen, J., Dolch, T., Grage, A., Hofmeister, R.,
Lenhart, H., Kerimoglu, O., Kolbe, K., Pätsch, J., Rick, J.,
Rönn, L., and Ruiter, H.: Wadden Sea Eutrophication: Long-Term Trends
and Regional Differences, Front. Marine Sci., 6, 370,
https://doi.org/10.3389/fmars.2019.00370, 2019. a, b, c
van Leeuwen, S., Tett, P., Mills, D., and Van Der Molen, J.: Stratified and
nonstratified areas in the North Sea: Long-term variability and biological
and policy implications, J. Geophys. Res.-Oceans, 120,
4670–4686, https://doi.org/10.1002/2014JC010485, 2015. a
van Leeuwen, S. M., van der Molen, J., Ruardij, P., Fernand, L., and Jickells,
T.: Modelling the contribution of deep chlorophyll maxima to annual primary
production in the North Sea, Biogeochemistry, 113, 137–152,
https://doi.org/10.1007/s10533-012-9704-5, 2013. a
Wang, Y.: Importance of subgrid-scale parameterization in numerical
simulations of lake circulation, Adv. Water Resour., 26, 277–294,
2003. a
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean, J. Geophysical Res., 97, 7373–7382,
https://doi.org/10.1029/92JC00188, 1992. a
Wetz, M. S. and Yoskowitz, D. W.: An “extreme” future for estuaries –
Effects of extreme climatic events on estuarine water quality and ecology,
Mar. Pollut. Bull., 69, 7–18, https://doi.org/10.1016/j.marpolbul.2013.01.020,
2013. a
Wiltshire, K. H., Malzahn, A. M., Wirtz, K., Greve, W., Janisch, S.,
Mangelsdorf, P., Manly, B. F. J., and Boersma, M.: Resilience of North Sea
phytoplankton spring bloom dynamics: An analysis of long-term data at
Helgoland Roads, Limnol. Oceanogr., 53, 1294–1302,
https://doi.org/10.4319/lo.2008.53.4.1294, 2008. a, b
Zhang, Y. J., Ye, F., Stanev, E. V., and Grashorn, S.: Seamless cross-scale
modeling with SCHISM, Ocean Model., 102, 64–81,
https://doi.org/10.1016/j.ocemod.2016.05.002, 2016. a
Short summary
In this study, using extensive field observations and a numerical model, we analyzed the physical and biogeochemical structure of a coastal system following an extreme flood event. Our results suggest that a number of anomalous observations were driven by a co-occurrence of peculiar meteorological conditions and increased riverine discharges. Our results call for attention to the combined effects of hydrological and meteorological extremes that are anticipated to increase in frequency.
In this study, using extensive field observations and a numerical model, we analyzed the...
Altmetrics
Final-revised paper
Preprint