Articles | Volume 17, issue 20
https://doi.org/10.5194/bg-17-5209-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5209-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Methane paradox in tropical lakes? Sedimentary fluxes rather than pelagic production in oxic conditions sustain methanotrophy and emissions to the atmosphere
Cédric Morana
CORRESPONDING AUTHOR
KU Leuven, Leuven, Belgium
Université de Liège, Liège, Belgium
Steven Bouillon
KU Leuven, Leuven, Belgium
Vimac Nolla-Ardèvol
KU Leuven, Leuven, Belgium
Fleur A. E. Roland
Université de Liège, Liège, Belgium
William Okello
National Fisheries Resources Research Institute, Jinja, Uganda
Jean-Pierre Descy
Université de Liège, Liège, Belgium
Angela Nankabirwa
National Fisheries Resources Research Institute, Jinja, Uganda
Erina Nabafu
National Fisheries Resources Research Institute, Jinja, Uganda
Dirk Springael
KU Leuven, Leuven, Belgium
Alberto V. Borges
Université de Liège, Liège, Belgium
Related authors
No articles found.
Thomas Bauduin, Nathalie Gypens, and Alberto V. Borges
Biogeosciences, 22, 3785–3805, https://doi.org/10.5194/bg-22-3785-2025, https://doi.org/10.5194/bg-22-3785-2025, 2025
Short summary
Short summary
To investigate if greenhouse gases (GHG) emissions from ponds vary among clear-water ponds with macrophytes and turbid-water ponds with phytoplankton, we measured CO2, CH4, and N2O concentrations and emissions in two clear- and two turbid-water urban ponds in the city of Brussels from June 2021 to December 2023. Differences in CH4 ebullitive emissions were observed between clear- and turbid-water ponds but none for CO2 and N2O emissions.
Mona Huyzentruyt, Maarten Wens, Gregory Scott Fivash, David C. Walters, Steven Bouillon, Joell A. Carr, Glenn C. Guntenspergen, Matthew L. Kirwan, and Stijn Temmerman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3293, https://doi.org/10.5194/egusphere-2025-3293, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Vegetated environments from forests to peatlands store carbon in the soil, which mitigates climate change. But which environment does this best? In this study, we show how the levees of tidal marshes are one of the most effective carbon sequestering environments in the world. This is because soil water-logging and high salinity inhibits carbon degradation while the levee fosters fast vegetation growth, complimented also by the preferential settlement of carbon-rich sediments on the marsh levee.
Zita Kelemen, David P. Gillikin, and Steven Bouillon
Biogeosciences, 22, 2621–2635, https://doi.org/10.5194/bg-22-2621-2025, https://doi.org/10.5194/bg-22-2621-2025, 2025
Short summary
Short summary
We analysed the C and O stable isotope composition (δ13C, δ18O) across the growth axis of museum-archived and recent Chambardia wissmanni shells from the Oubangui River (Congo basin) covering sections of the past ~120 years. Recent shells showed a much wider range of δ18O values compared to historical specimens, consistent with the suggestion that dry periods in the upper Congo basin have become more extreme in recent times and highlighting the potential of this species to reconstruct hydroclimatic conditions.
Vao Fenotiana Razanamahandry, Alberto Vieira Borges, Liesa Brosens, Cedric Morana, Tantely Razafimbelo, Tovonarivo Rafolisy, Gerard Govers, and Steven Bouillon
Biogeosciences, 22, 2403–2424, https://doi.org/10.5194/bg-22-2403-2025, https://doi.org/10.5194/bg-22-2403-2025, 2025
Short summary
Short summary
A comprehensive survey of the biogeochemistry of the Lake Alaotra system showed that the lake and surrounding wetlands acted as a substantial source of new organic carbon (OC), which was exported downstream. Marsh vegetation was the main source of dissolved OC, while phytoplankton contributed to the particulate OC pool. The biogeochemical functioning of Lake Alaotra differs from most East African lakes studied, likely due to its large surface area, shallow water depth, and surrounding wetlands.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon
Biogeosciences, 19, 3825–3841, https://doi.org/10.5194/bg-19-3825-2022, https://doi.org/10.5194/bg-19-3825-2022, 2022
Short summary
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
Rey Harvey Suello, Simon Lucas Hernandez, Steven Bouillon, Jean-Philippe Belliard, Luis Dominguez-Granda, Marijn Van de Broek, Andrea Mishell Rosado Moncayo, John Ramos Veliz, Karem Pollette Ramirez, Gerard Govers, and Stijn Temmerman
Biogeosciences, 19, 1571–1585, https://doi.org/10.5194/bg-19-1571-2022, https://doi.org/10.5194/bg-19-1571-2022, 2022
Short summary
Short summary
This research shows indications that the age of the mangrove forest and its position along a deltaic gradient (upstream–downstream) play a vital role in the amount and sources of carbon stored in the mangrove sediments. Our findings also imply that carbon capture by the mangrove ecosystem itself contributes partly but relatively little to long-term sediment organic carbon storage. This finding is particularly relevant for budgeting the potential of mangrove ecosystems to mitigate climate change.
Man Zhao, Liesbet Jacobs, Steven Bouillon, and Gerard Govers
Biogeosciences, 18, 1511–1523, https://doi.org/10.5194/bg-18-1511-2021, https://doi.org/10.5194/bg-18-1511-2021, 2021
Short summary
Short summary
We investigate the relative importance of two individual factors (hydrodynamical disturbance and aquatic microbial community) that possibly control SOC decomposition rates in river systems. We found aquatic microbial organisms led to rapid SOC decomposition, while effect of mechanical disturbance is relative minor. We propose a simple conceptual model: hydrodynamic disturbance is only important when soil aggregates are strong enough to withstand the disruptive forces imposed by water immersions.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Cited articles
Bastviken, D., Ejlertsson, J., Sundh, I., and Tranvik, L.: Methane as a
source of carbon and energy for lake pelagic food webs, Ecology, 84,
969–981, 2003.
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and
Enrich-Prast, A.: Freshwater methane emissions offset the continental carbon
sink, Science, 331, 50–50, 2011.
Baines, S. B. and Pace, M. L: The production of dissolved organic matter
by phytoplankton and its importance to bacteria: patterns across marine and
freshwater systems, Limnol. Oceanogr., 36, 1078–1090, https://doi.org/10.4319/lo.1991.36.6.1078, 1991.
Bishop, N. I.: The influence of the herbicide, DCMU, on the oxygen-evolving
system of photosynthesis, Biochim. Biophys. Acta, 27, 205–206,
https://doi.org/10.1016/0006-3002(58)90313-5, 1958.
Bižić, M., Ionescu, D., Günthel, M., Tang, K. W., and Grossart,
H. P.: Oxic Methane Cycling: New Evidence for Methane Formation in Oxic Lake
Water, Biogenesis of Hydrocarbons, 1, 1–22, 2018.
Bižić, M., Klintzsch, T., Ionescu, D., Hindiyeh, M. Y., Günthel,
M., Muro-Pastor, A. M., Eckert, W., Urich, T., and Grossart, H. P.: Aquatic
and terrestrial cyanobacteria produce methane, Sci. Adv., 6,
eaax5343, https://doi.org/10.1126/sciadv.aax5343, 2020.
Bogard, M. J., Del Giorgio, P. A., Boutet, L., Chaves, M. C. G., Prairie, Y.
T., Merante, A., and Derry, A. M.: Oxic water column methanogenesis as a
major component of aquatic CH4 fluxes, Nat. Commun., 5, 5350, https://doi.org/10.1038/ncomms6350, 2014.
Borges, A. V., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F.,
Geeraert, N., Morana, C., Okuku, E., and Bouillon, S.: Globally significant
greenhouse-gas emissions from African inland waters, Nat. Geosci.,
8, 637–642, 2015.
Bruhn, D., Møller, I. M., Mikkelsen, T. N., and Ambus, P.: Terrestrial
plant methane production and emission, Physiol. Plantarum, 144,
201–209, https://doi.org/10.1111/j.1399-3054.2011.01551, 2012.
Cole, J. J. and Caraco, N. F.: Atmospheric exchange of carbon dioxide in a
low-wind oligotrophic lake measured by the addition of SF6, Limnol.
Oceanogr., 43, 647–656, https://doi.org/10.4319/lo.1998.43.4.0647, 1998.
Damm, E., Helmke, E., Thoms, S., Schauer, U., Nöthig, E., Bakker, K.,
and Kiene, R. P.: Methane production in aerobic oligotrophic surface water
in the central Arctic Ocean, Biogeosciences, 7, 1099–1108, https://doi.org/10.5194/bg-7-1099-2010, 2010.
DelSontro, T., McGinnis, D. F., Wehrli, B., and Ostrovsky, I.: Size does
matter: Importance of large bubbles and small-scale hot spots for methane
transport, Environ. Sci. Technol., 49, 1268–1276, https://doi.org/10.1021/es5054286,
2015.
DelSontro, T., del Giorgio, P. A., and Prairie, Y. T.: No longer a paradox:
the interaction between physical transport and biological processes explains
the spatial distribution of surface water methane within and across lakes,
Ecosystems, 21, 1073–1087, https://doi.org/10.1007/s10021-017-0205-1, 2018.
Delwiche, K. B. and Hemond, H. F.: Methane bubble size distributions, flux,
and dissolution in a freshwater lake, Environ. Sci. Technol., 51, 13733–13739,
https://doi.org/10.1021/acs.est.7b04243, 2017.
Denman, S. E., Tomkins, N. W., and McSweeney, C. S.: Quantitation and
diversity analysis of ruminal methanogenic populations in response to the
antimethanogenic compound bromochloromethane, FEMS Microbiol. Ecol.,
62, 313–322, https://doi.org/10.1111/j.1574-6941.2007.00394.x, 2007.
Descy, J. P., Darchambeau, F., Lambert, T., Stoyneva-Gaertner, M. P.,
Bouillon, S., and Borges, A. V.: Phytoplankton dynamics in the Congo River,
Freshwater Biol., 62, 87–101, 2017.
Donis, D., Flury, S., Stöckli, A., Spangenberg, J. E., Vachon, D., and
McGinnis, D. F.: Full-scale evaluation of methane production under
oxic conditions in a mesotrophic lake, Nat. Commun., 8, 1661,
https://doi.org/10.1038/s41467-017-01648-4, 2017.
Dumestre, J. F., Guézennec, J., Galy-Lacaux, C., Delmas, R., Richard,
S., and Labroue, L.: Influence of Light Intensity on Methanotrophic Bacterial Activity in Petit Saut Reservoir, French Guiana, Appl. Environ. Microbiol., 65, 534–539, https://doi.org/10.1128/aem.65.2.534-539.1999, 1999.
Fernández, J. E., Peeters, F., and Hofmann, H.: On the methane paradox:
Transport from shallow water zones rather than in situ methanogenesis is the
major source of CH4 in the open surface water of lakes, J.
Geophys. Res.-Biogeo., 121, 2717–2726, https://doi.org/10.1002/2016JG003586, 2016.
French, E., Kozlowski, J. A., Mukherjee, M., Bullerjahn, G., and Bollmann,
A.: Ecophysiological characterization of ammonia-oxidizing archaea and
bacteria from freshwater, Appl. Environ. Microbiol., 78,
5773–5780, https://doi.org/10.1128/aem.00432-12, 2012.
Gillikin, D. P. and Bouillon, S.: Determination of delta O-18 of water and
delta C-13 of dissolved inorganic carbon using a simple modification of an
elemental analyzer-isotope ratio mass spectrometer: an evaluation, Rapid
Commun. Mass Sp., 21, 1475–1478,
https://doi.org/10.1002/rcm.2968, 2007.
Greinert, J. and McGinnis, D. F.: Single Bubble Dissolution Model: The
Graphical User Interface SiBu-GUI, Environ. Modell. Softw., 24, 1012–1013,
https://doi.org/10.1016/j.envsoft.2008.12.011, 2009.
Grossart, H. P., Frindte, K., Dziallas, C., Eckert, W., and Tang, K. W.:
Microbial methane production in oxygenated water column of an oligotrophic
lake, P. Natl. Acad. Sci. USA, 108, 19657–19661,
https://doi.org/10.1073/pnas.1110716108, 2011.
Günthel, M., Donis, D., Kirillin, G., Ionescu, D., Bizic, M., McGinnis,
D. F., Grossart, H. P., and Tang, K. W.: Contribution of oxic methane
production to surface methane emission in lakes and its global importance,
Nat. Commun., 10, 5497, https://doi.org/10.1038/s41467-019-13320-0, 2019.
Hama, T., Miyazaki, T., Ogawa, Y., Iwakuma, T., Takahashi, M., Otsuki, A.,
and Ichimura, S.: Measurement of photosynthetic production of a marine
phytoplankton population using a stable 13C isotope, Mar. Biol., 73,
31–36, https://doi.org/10.1007/BF00396282, 1983.
Hofmann, H., Federwisch, L., and Peeters, F.: Wave-induced release of
methane: littoral zones as source of methane in lakes, Limnol.
Oceanogr., 55, 1990–2000, https://doi.org/10.4319/lo.2010.55.5.1990, 2010.
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M.,
and Glöckner, F. O.: Evaluation of general 16S ribosomal RNA gene PCR
primers for classical and next-generation se,quencing-based diversity
studies, Nucleic Acids Res., 41, e1, https://doi.org/10.1093/nar/gks808, 2013.
Klintzsch, T., Langer, G., Nehrke, G., Wieland, A., Lenhart, K., and
Keppler, F.: Methane production by three widespread marine phytoplankton
species: release rates, precursor compounds, and potential relevance for the
environment, Biogeosciences, 16, 4129–4144, https://doi.org/10.5194/bg-16-4129-2019, 2019.
Kosten, S., Huszar, V. L., Bécares, E., Costa, L. S., van Donk, E.,
Hansson, L. A., Jeppesen, E., Kruk, C., Lacerot, G., Mazzeo, N., De Meester,
L., Moss, B., Lurling, M., Noges, T., Romo, S., and Scheffer, M.: Warmer
climates boost cyanobacterial dominance in shallow lakes, Glob. Change
Biol., 18, 118–126, https://doi.org/10.1111/j.1365-2486.2011.02488.x, 2012.
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., and
Schloss, P. D.: Development of a dual-index sequencing strategy and curation
pipeline for analyzing amplicon sequence data on the MiSeq Illumina
sequencing platform, Appl. Environ. Microbiol., 79, 5112–5120, https://doi.org/10.1128/aem.01043-13, 2013.
Lehner, B. and Döll, P.: Development and validation of a global database of
lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22, https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004.
Lenhart, K., Klintzsch, T., Langer, G., Nehrke, G., Bunge, M., Schnell, S.,
and Keppler, F.: Evidence for methane production by the marine algae
Emiliania huxleyi, Biogeosciences, 13, 3163–3174,
https://doi.org/10.5194/bg-13-3163-2016, 2016.
Levine, R. L., Mosoni, L., Berlett, B. S., and Stadtman, E. R.: Methionine
residues as endogenous antioxidants in proteins, P. Natl.
Acad. Sci. USA, 93, 15036–15040, https://doi.org/10.1073/pnas.93.26.15036,
1996.
Lewis Jr., W. M.: Tropical limnology, Annu. Rev. Ecol.
Syst., 18, 159–184, https://doi.org/10.1146/annurev.es.18.110187.001111, 1987.
Martinez-Cruz, K., Sepulveda-Jauregui, A., Greene, S., Fuchs, A., Rodriguez,
M., Pansch, N., Gonsiorczyk, T., and Casper, P.: Diel variation of CH4 and
CO2 dynamics in two contrasting temperate lakes, Inland Waters, 10, 333–347, https://doi.org/10.1080/20442041.2020.1728178, 2020.
McGinnis, D. F., Greinert, J., Artemov, Y., Beaubien, S. E., and Wüest,
A. N. D. A.: Fate of rising methane bubbles in stratified waters: How much
methane reaches the atmosphere?, J. Geophys. Res.-Ocean.,
111, C09007, https://doi.org/10.1029/2005JC003183, 2006.
Mohr, W., Grosskopf, T., Wallace, D. W., and LaRoche, J.: Methodological
underestimation of oceanic nitrogen fixation rates, PloS One, 5, e12583,
https://doi.org/10.1371/journal.pone.0012583, 2010.
Montoya, J. P., Voss, M., Kahler, P., and Capone, D. G.: A Simple,
High-Precision, High-Sensitivity Tracer Assay for N (inf2) Fixation, Appl.
Environ. Microbiol., 62, 986–993, https://doi.org/10.1128/aem.62.3.986-993.1996,
1996
Morana, C., Sarmento, H., Descy, J. P., Gasol, J. M., Borges, A. V.,
Bouillon, S., and Darchambeau, F.: Production of dissolved organic matter
by phytoplankton and its uptake by heterotrophic prokaryotes in large
tropical lakes, Limnol. Oceanogr., 59,
1364–1375, https://doi.org/10.4319/lo.2014.59.4.1364, 2014.
Morana, C., Darchambeau, F., Roland, F. A. E., Borges, A. V., Muvundja, F., Kelemen, Z., Masilya, P., Descy, J.-P., and Bouillon, S.: Biogeochemistry of a large and deep tropical lake (Lake Kivu, East Africa: insights from a stable isotope study covering an annual cycle, Biogeosciences, 12, 4953–4963, https://doi.org/10.5194/bg-12-4953-2015, 2015a.
Morana, C., Borges, A. V., Roland, F. A. E., Darchambeau, F., Descy, J. P.,
and Bouillon, S.: Methanotrophy within the water column of a large
meromictic tropical lake (Lake Kivu, East Africa), Biogeosciences, 12,
2077–2088, https://doi.org/10.5194/bg-12-2077-2015, 2015b.
Mountfort, D. O. and Asher, R. A.: Effect of inorganic sulfide on the growth
and metabolism of Methanosarcina barkeri strain DM, Appl. Environ.
Microbiol., 37, 670–675, 1979.
Mugidde, R., Hecky, R. E., Hendzel, L. L., and Taylor, W. D.: Pelagic
nitrogen fixation in lake Victoria (East Africa), J. Great Lakes
Res., 29, 76–88, https://doi.org/10.1016/S0380-1330(03)70540-1, 2003.
Murase, J. and Sugimoto, A: Inhibitory effect of light on methane
oxidation in the pelagic water column of a mesotrophic lake (Lake Biwa,
Japan), Limnol. Oceanogr., 50, 1339–1343, https://doi.org/10.4319/lo.2005.50.4.1339, 2005.
Peeters, F., Fernandez, J. E., and Hofmann, H.: Sediment fluxes rather than
oxic methanogenesis explain diffusive CH4 emissions from lakes and
reservoirs, Sci. Rep., 9, 1–10, https://doi.org/10.1038/s41598-018-36530-w, 2019.
Petrillo, E., Herz, M. A. G., Fuchs, A., Reifer, D., Fuller, J., Yanovsky,
M. J., Simpson, C., Brown, J. W. S., Barta, A., Kalyna, M., and Kornblihtt,
A. R.: A chloroplast retrograde signal regulates nuclear alternative
splicing, Science, 344, 427–430, https://doi.org/10.1126/science.1250322, 2014.
Repine, J. E., Eaton, J. W., Anders, M. W., Hoidal, J. R., and Fox, R. B.:
Generation of hydroxyl radical by enzymes, chemicals, and human phagocytes
in vitro: detection with the anti-inflammatory agent, dimethyl sulfoxide,
J. Clin. Invest., 64, 1642–1651, https://doi.org/10.1172/jci109626, 1979.
Sarmento, H., Romera-Castillo, C., Lindh, M., Pinhassi, J., Sala, M. M.,
Gasol, J. M., Marassé, C., and Taylor, G. T.: Phytoplankton
species-specific release of dissolved free amino acids and their selective
consumption by bacteria, Limnol. Oceanogr., 58, 1123–1135, https://doi.org/10.4319/lo.2013.58.3.1123, 2013.
Tang, K. W., McGinnis, D. F., Ionescu, D., and Grossart, H. P.: Methane
production in oxic lake waters potentially increases aquatic methane flux to
air, Environ. Sci. Technol. Lett., 3, 227–233, https://doi.org/10.1021/acs.estlett.6b00150, 2016.
Tolar, B. B., Powers, L. C., Miller, W. L., Wallsgrove, N. J., Popp, B. N.,
and Hollibaugh, J. T.: Ammonia oxidation in the ocean can be inhibited by
nanomolar concentrations of hydrogen peroxide, Front. Mar. Sci.,
3, 237, https://doi.org/10.3389/fmars.2016.00237, 2016
Vollenweider, R. A.: Calculations models of photosynthesis-depth curves and
some implications regarding day rate estimates in primary production
measurements, Memorie dell'Istituto Italiano di Idrobiologia, 18, 425–457,
1965.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean, J. Geophys. Res.-Ocean., 97, 7373–7382, https://doi.org/10.1029/92JC00188, 1992.
Yao, M., Henny, C., and Maresca, J. A.: Freshwater bacteria release methane
as a byproduct of phosphorus acquisition, Appl. Environ.
Microbiol., 82, 6994–7003, https://doi.org/10.1128/aem.02399-16, 2016.
Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C.,
St-Pierre, A., Thanh-Duc, N., and Del Giorgio, P. A.: Methane fluxes show
consistent temperature dependence across microbial to ecosystem scales,
Nature, 507, 488–491, https://doi.org/10.1038/nature13164, 2014.
Short summary
A growing body of studies challenges the paradigm that methane (CH4) production occurs only under anaerobic conditions. Our field experiments revealed that oxic CH4 production is closely related to phytoplankton metabolism and is indeed a common feature in five contrasting African lakes. Nevertheless, we found that methanotrophic activity in surface waters and CH4 emissions to the atmosphere were predominantly fuelled by CH4 generated in sediments and physically transported to the surface.
A growing body of studies challenges the paradigm that methane (CH4) production occurs only...
Altmetrics
Final-revised paper
Preprint