Articles | Volume 17, issue 4
https://doi.org/10.5194/bg-17-833-2020
https://doi.org/10.5194/bg-17-833-2020
Research article
 | 
18 Feb 2020
Research article |  | 18 Feb 2020

Influence of oceanic conditions in the energy transfer efficiency estimation of a micronekton model

Audrey Delpech, Anna Conchon, Olivier Titaud, and Patrick Lehodey

Data sets

Photosynthetic rates derived from satellite-based chlorophyll concentration M. Behrenfeld and P. Falkowski http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.vgpm.m.chl.m.sst.php

Download
Short summary
Micronekton is an important, yet poorly known, component of the trophic chain, which partly contributes to the storage of CO2 in the deep ocean thanks to biomass vertical migrations. In this study, we characterize the ideal sampling regions to estimate the amount of biomass that undergoes theses migrations. We find that observations made in warm, nondynamic and productive waters reduce the error of the estimation by 20 %. This result should likely serve for future in situ network deployment.
Altmetrics
Final-revised paper
Preprint