Articles | Volume 18, issue 3
https://doi.org/10.5194/bg-18-1161-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1161-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Haplo-diplontic life cycle expands coccolithophore niche
Joost de Vries
CORRESPONDING AUTHOR
BRIDGE, School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK
Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
Fanny Monteiro
BRIDGE, School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK
Glen Wheeler
Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
Alex Poulton
The Lyell Centre for Earth & Marine Science & Technology, Heriot-Watt University, Edinburgh EH14 4BA, UK
Jelena Godrijan
Division for Marine and Environmental Research, Ruđer Bošković
Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
Federica Cerino
Oceanography Section, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, via Piccard 54, 34151 Trieste, Italy
Elisa Malinverno
Department of Earth and Environmenal Sciences, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milan, Italy
Consorzio Nazionale Interuniversitario per le Scienze del Mare – CoNISMa, Piazzale Flaminio 9, 00196 Rome, Italy
Gerald Langer
Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
Colin Brownlee
Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
School of Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, UK
Related authors
Ruby Barrett, Joost de Vries, and Daniela N. Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2405, https://doi.org/10.5194/egusphere-2024-2405, 2024
Short summary
Short summary
Planktic foraminifers are a plankton whose fossilised shell weight is used to reconstruct past environmental conditions such as seawater CO2. However, there is debate about whether other environmental drivers impact shell weight. Here we use a global data compilation and statistics to analyse what controls their weight. We find that the response varies between species and ocean basin, making it important to use regional calibrations and consider which species should be used to reconstruct CO2.
Joost de Vries, Fanny Monteiro, Gerald Langer, Colin Brownlee, and Glen Wheeler
Biogeosciences, 21, 1707–1727, https://doi.org/10.5194/bg-21-1707-2024, https://doi.org/10.5194/bg-21-1707-2024, 2024
Short summary
Short summary
Calcifying phytoplankton (coccolithophores) utilize a life cycle in which they can grow and divide into two different phases. These two phases (HET and HOL) vary in terms of their physiology and distributions, with many unknowns about what the key differences are. Using a combination of lab experiments and model simulations, we find that nutrient storage is a critical difference between the two phases and that this difference allows them to inhabit different nitrogen input regimes.
Serena Lagorio, Barbara Delmonte, Dieter Tetzner, Elisa Malinverno, Giovanni Baccolo, Barbara Stenni, Massimo Frezzotti, Valter Maggi, and Nancy Bertler
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-56, https://doi.org/10.5194/cp-2024-56, 2024
Preprint under review for CP
Short summary
Short summary
Aeolian diatoms and dust in the RICE ice core (Antarctica) allow reconstructing climate variability in the Eastern Ross Sea over the last 2 ka. Long-term changes are related to environmental parameters as sea ice extent and extension of the Ross Sea Polynya. A climatic reorganization occurred around 1470 CE in response to the development of the Roosevelt Island Polynya. El Niño promoted the establishment of the Ross Sea dipole while La Niña favored the eastward expansion of the polynya.
Ruby Barrett, Joost de Vries, and Daniela N. Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2405, https://doi.org/10.5194/egusphere-2024-2405, 2024
Short summary
Short summary
Planktic foraminifers are a plankton whose fossilised shell weight is used to reconstruct past environmental conditions such as seawater CO2. However, there is debate about whether other environmental drivers impact shell weight. Here we use a global data compilation and statistics to analyse what controls their weight. We find that the response varies between species and ocean basin, making it important to use regional calibrations and consider which species should be used to reconstruct CO2.
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
EGUsphere, https://doi.org/10.5194/egusphere-2024-990, https://doi.org/10.5194/egusphere-2024-990, 2024
Short summary
Short summary
The Southern Ocean is a rapidly warming environment, with subsequent impacts on ecosystems and biogeochemical cycling. This study examines changes in phytoplankton and biogeochemistry using a range of climate models. Under climate change the Southern Ocean will be warmer, more acidic, more productive and have reduced nutrient availability by 2100. However, there is substantial variability between models across key productivity parameters, we propose ways of reducing this uncertainty.
Joost de Vries, Fanny Monteiro, Gerald Langer, Colin Brownlee, and Glen Wheeler
Biogeosciences, 21, 1707–1727, https://doi.org/10.5194/bg-21-1707-2024, https://doi.org/10.5194/bg-21-1707-2024, 2024
Short summary
Short summary
Calcifying phytoplankton (coccolithophores) utilize a life cycle in which they can grow and divide into two different phases. These two phases (HET and HOL) vary in terms of their physiology and distributions, with many unknowns about what the key differences are. Using a combination of lab experiments and model simulations, we find that nutrient storage is a critical difference between the two phases and that this difference allows them to inhabit different nitrogen input regimes.
Aaron A. Naidoo-Bagwell, Fanny M. Monteiro, Katharine R. Hendry, Scott Burgan, Jamie D. Wilson, Ben A. Ward, Andy Ridgwell, and Daniel J. Conley
Geosci. Model Dev., 17, 1729–1748, https://doi.org/10.5194/gmd-17-1729-2024, https://doi.org/10.5194/gmd-17-1729-2024, 2024
Short summary
Short summary
As an extension to the EcoGEnIE 1.0 Earth system model that features a diverse plankton community, EcoGEnIE 1.1 includes siliceous plankton diatoms and also considers their impact on biogeochemical cycles. With updates to existing nutrient cycles and the introduction of the silicon cycle, we see improved model performance relative to observational data. Through a more functionally diverse plankton community, the new model enables more comprehensive future study of ocean ecology.
Mariem Saavedra-Pellitero, Karl-Heinz Baumann, Nuria Bachiller-Jareno, Harold Lovell, Nele Manon Vollmar, and Elisa Malinverno
EGUsphere, https://doi.org/10.5194/egusphere-2023-2801, https://doi.org/10.5194/egusphere-2023-2801, 2023
Short summary
Short summary
In this manuscript we combine micropalaeontology and remote-sensing. We compare the calcium carbonate produced by tiny marine algae called coccolithophores to satellite-derived particulate organic carbon in the Southern Ocean. They show good agreement north of the polar front, but hugely differ south of it. We argue that those highly reflective values could be due to small opal particles and we highlight the need to improve satellite algorithms in this unexplored part of the ocean.
Rui Ying, Fanny M. Monteiro, Jamie D. Wilson, and Daniela N. Schmidt
Geosci. Model Dev., 16, 813–832, https://doi.org/10.5194/gmd-16-813-2023, https://doi.org/10.5194/gmd-16-813-2023, 2023
Short summary
Short summary
Planktic foraminifera are marine-calcifying zooplankton; their shells are widely used to measure past temperature and productivity. We developed ForamEcoGEnIE 2.0 to simulate the four subgroups of this organism. We found that the relative abundance distribution agrees with marine sediment core-top data and that carbon export and biomass are close to sediment trap and plankton net observations respectively. This model provides the opportunity to study foraminiferal ecology in any geological era.
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-10, https://doi.org/10.5194/bg-2023-10, 2023
Revised manuscript not accepted
Short summary
Short summary
The Southern Ocean is warming faster than the global average. As a globally important carbon sink and nutrient source, climate driven changes in ecosystems can be expected to cause widespread changes to biogeochemical cycles. We analysed earth system models and showed that productivity is expected to increase across the Southern Ocean, driven by different phytoplankton groups at different latitudes. These predictions carry large uncertainties, we propose targeted studies to reduce this error.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Markus Adloff, Andy Ridgwell, Fanny M. Monteiro, Ian J. Parkinson, Alexander J. Dickson, Philip A. E. Pogge von Strandmann, Matthew S. Fantle, and Sarah E. Greene
Geosci. Model Dev., 14, 4187–4223, https://doi.org/10.5194/gmd-14-4187-2021, https://doi.org/10.5194/gmd-14-4187-2021, 2021
Short summary
Short summary
We present the first representation of the trace metals Sr, Os, Li and Ca in a 3D Earth system model (cGENIE). The simulation of marine metal sources (weathering, hydrothermal input) and sinks (deposition) reproduces the observed concentrations and isotopic homogeneity of these metals in the modern ocean. With these new tracers, cGENIE can be used to test hypotheses linking these metal cycles and the cycling of other elements like O and C and simulate their dynamic response to external forcing.
Romana Melis, Lucilla Capotondi, Fiorenza Torricella, Patrizia Ferretti, Andrea Geniram, Jong Kuk Hong, Gerhard Kuhn, Boo-Keun Khim, Sookwan Kim, Elisa Malinverno, Kyu Cheul Yoo, and Ester Colizza
J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021, https://doi.org/10.5194/jm-40-15-2021, 2021
Short summary
Short summary
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and silicoflagellates) analysis, together with textural and geochemical results of a deep-sea core from the Hallett Ridge (northwestern Ross Sea), provides new data for late Quaternary (23–2 ka) paleoenvironmental and paleoceanographic reconstructions of this region. Results allow us to identify three time intervals: the glacial–deglacial transition, the deglacial period, and the interglacial period.
Hannah K. Donald, Gavin L. Foster, Nico Fröhberg, George E. A. Swann, Alex J. Poulton, C. Mark Moore, and Matthew P. Humphreys
Biogeosciences, 17, 2825–2837, https://doi.org/10.5194/bg-17-2825-2020, https://doi.org/10.5194/bg-17-2825-2020, 2020
Short summary
Short summary
The boron isotope pH proxy is increasingly being used to reconstruct ocean pH in the past. Here we detail a novel analytical methodology for measuring the boron isotopic composition (δ11B) of diatom opal and apply this to the study of the diatom Thalassiosira weissflogii grown in culture over a range of pH. To our knowledge this is the first study of its kind and provides unique insights into the way in which diatoms incorporate boron and their potential as archives of palaeoclimate records.
Thomas Klintzsch, Gerald Langer, Gernot Nehrke, Anna Wieland, Katharina Lenhart, and Frank Keppler
Biogeosciences, 16, 4129–4144, https://doi.org/10.5194/bg-16-4129-2019, https://doi.org/10.5194/bg-16-4129-2019, 2019
Short summary
Short summary
Marine algae might contribute to the observed methane oversaturation in oxic waters, but so far direct evidence for methane production by marine algae is limited. We investigated three widespread haptophytes for methane formation. Our results provide unambiguous evidence that all investigated marine algae produce methane per se and at substantial rates. We conclude that each of the three algae studied here could substantially account for the methane production observed in field studies.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford B. Hooker, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Hubert Loisel, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 11, 1037–1068, https://doi.org/10.5194/essd-11-1037-2019, https://doi.org/10.5194/essd-11-1037-2019, 2019
Short summary
Short summary
A compiled set of in situ data is useful to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2018) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Maria Grigoratou, Fanny M. Monteiro, Daniela N. Schmidt, Jamie D. Wilson, Ben A. Ward, and Andy Ridgwell
Biogeosciences, 16, 1469–1492, https://doi.org/10.5194/bg-16-1469-2019, https://doi.org/10.5194/bg-16-1469-2019, 2019
Short summary
Short summary
The paper presents a novel study based on the traits of shell size, calcification and feeding behaviour of two planktonic foraminifera life stages using modelling simulations. With the model, we tested the cost and benefit of calcification and explored how the interactions of planktonic foraminifera among other plankton groups influence their biomass under different environmental conditions. Our results provide new insights into environmental controls in planktonic foraminifera ecology.
Ben A. Ward, Jamie D. Wilson, Ros M. Death, Fanny M. Monteiro, Andrew Yool, and Andy Ridgwell
Geosci. Model Dev., 11, 4241–4267, https://doi.org/10.5194/gmd-11-4241-2018, https://doi.org/10.5194/gmd-11-4241-2018, 2018
Short summary
Short summary
A novel configuration of an Earth system model includes a diverse plankton community. The model – EcoGEnIE – is sufficiently complex to reproduce a realistic, size-structured plankton community, while at the same time retaining the efficiency to run to a global steady state (~ 10k years). The increased capabilities of EcoGEnIE will allow future exploration of ecological communities on much longer timescales than have so far been examined in global ocean models and particularly for past climate.
Chris J. Daniels, Alex J. Poulton, William M. Balch, Emilio Marañón, Tim Adey, Bruce C. Bowler, Pedro Cermeño, Anastasia Charalampopoulou, David W. Crawford, Dave Drapeau, Yuanyuan Feng, Ana Fernández, Emilio Fernández, Glaucia M. Fragoso, Natalia González, Lisa M. Graziano, Rachel Heslop, Patrick M. Holligan, Jason Hopkins, María Huete-Ortega, David A. Hutchins, Phoebe J. Lam, Michael S. Lipsen, Daffne C. López-Sandoval, Socratis Loucaides, Adrian Marchetti, Kyle M. J. Mayers, Andrew P. Rees, Cristina Sobrino, Eithne Tynan, and Toby Tyrrell
Earth Syst. Sci. Data, 10, 1859–1876, https://doi.org/10.5194/essd-10-1859-2018, https://doi.org/10.5194/essd-10-1859-2018, 2018
Short summary
Short summary
Calcifying marine algae (coccolithophores) are key to oceanic biogeochemical processes, such as calcium carbonate production and export. We compile a global database of calcium carbonate production from field samples (n = 2756), alongside primary production rates and coccolithophore abundance. Basic statistical analysis highlights global distribution, average surface and integrated rates, patterns with depth and the importance of considering cell-normalised rates as a simple physiological index.
Andrea C. Gerecht, Luka Šupraha, Gerald Langer, and Jorijntje Henderiks
Biogeosciences, 15, 833–845, https://doi.org/10.5194/bg-15-833-2018, https://doi.org/10.5194/bg-15-833-2018, 2018
Short summary
Short summary
Calcifying phytoplankton play an import role in long-term CO2 removal from the atmosphere. We therefore studied the ability of a representative species to continue sequestrating CO2 under future climate conditions. We show that CO2 sequestration is negatively affected by both an increase in temperature and the resulting decrease in nutrient availability. This will impact the biogeochemical cycle of carbon and may have a positive feedback on rising CO2 levels.
Helen E. K. Smith, Alex J. Poulton, Rebecca Garley, Jason Hopkins, Laura C. Lubelczyk, Dave T. Drapeau, Sara Rauschenberg, Ben S. Twining, Nicholas R. Bates, and William M. Balch
Biogeosciences, 14, 4905–4925, https://doi.org/10.5194/bg-14-4905-2017, https://doi.org/10.5194/bg-14-4905-2017, 2017
Short summary
Short summary
The Great Calcite Belt (GCB), a region of high calcite concentration from coccolithophores, covers 60 % of the Southern Ocean area. We examined the influence of temperature, macronutrients, and carbonate chemistry on the distribution of mineralizing phytoplankton in the GCB. Coccolithophores occupy a niche in the Southern Ocean after the diatom spring bloom depletes silicic acid. No single environmental variable holds a dominant influence over phytoplankton biogeography in summer GCB conditions.
Lennart J. de Nooijer, Anieke Brombacher, Antje Mewes, Gerald Langer, Gernot Nehrke, Jelle Bijma, and Gert-Jan Reichart
Biogeosciences, 14, 3387–3400, https://doi.org/10.5194/bg-14-3387-2017, https://doi.org/10.5194/bg-14-3387-2017, 2017
Rosie M. Sheward, Alex J. Poulton, Samantha J. Gibbs, Chris J. Daniels, and Paul R. Bown
Biogeosciences, 14, 1493–1509, https://doi.org/10.5194/bg-14-1493-2017, https://doi.org/10.5194/bg-14-1493-2017, 2017
Short summary
Short summary
Our culture experiments on modern Coccolithophores find that physiology regulates shifts in the geometry of their carbonate shells (coccospheres) between growth phases. This provides a tool to access growth information in modern and past populations. Directly comparing modern species with fossil coccospheres derives a new proxy for investigating the physiology that underpins phytoplankton responses to environmental change through geological time.
Glaucia M. Fragoso, Alex J. Poulton, Igor M. Yashayaev, Erica J. H. Head, and Duncan A. Purdie
Biogeosciences, 14, 1235–1259, https://doi.org/10.5194/bg-14-1235-2017, https://doi.org/10.5194/bg-14-1235-2017, 2017
Short summary
Short summary
This research describes a detailed analysis of current distributions of spring phytoplankton communities in the Labrador Sea based on 10 years of observations. Phytoplankton community composition varied mainly according to the contrasting hydrographical zones of the Labrador Sea. The taxonomic distinctions of these communities influenced the photosynthetic and biochemical signatures of near-surface waters, which may have a profound impact on the carbon cycle in high-latitude seas.
Laura Perrin, Ian Probert, Gerald Langer, and Giovanni Aloisi
Biogeosciences, 13, 5983–6001, https://doi.org/10.5194/bg-13-5983-2016, https://doi.org/10.5194/bg-13-5983-2016, 2016
Short summary
Short summary
Coccolithophores are calcifying marine algae that play an important role in the oceanic carbon cycle. Deep niches of coccolithophores exist in the ocean and are poorly understood. Laboratory cultures with the coccolithophore Emiliania huxleyi were carried out to reproduce the environmental conditions (light–nutrient limitation) of a deep niche in the South Pacific Ocean. Physiological modelling of experimental results allows us to estimate the growth rates of coccolithophores in this niche.
Anastasia Charalampopoulou, Alex J. Poulton, Dorothee C. E. Bakker, Mike I. Lucas, Mark C. Stinchcombe, and Toby Tyrrell
Biogeosciences, 13, 5917–5935, https://doi.org/10.5194/bg-13-5917-2016, https://doi.org/10.5194/bg-13-5917-2016, 2016
Short summary
Short summary
Coccolithophores are global calcifiers, potentially impacted by ocean acidity. Data from the Southern Ocean is scarce, though latitudinal gradients of acidity exist. We made measurements of calcification, species composition and physiochemical environment between America and the Antarctic Peninsula. Calcification and cell calcite declined to the south, though rates of coccolith production did not. Declining temperature and irradiance were more important in driving latitudinal changes than pH.
Xiaobo Jin, Chuanlian Liu, Alex J. Poulton, Minhan Dai, and Xianghui Guo
Biogeosciences, 13, 4843–4861, https://doi.org/10.5194/bg-13-4843-2016, https://doi.org/10.5194/bg-13-4843-2016, 2016
Short summary
Short summary
The vertical structure of the coccolithophore community in the water column was controlled by trophic conditions, which were regulated by mesoscale eddies across the South China Sea basin. Three key species (Emiliania huxleyi, Gephyrocapsa oceanica, Florisphaera profunda) contributed roughly half of the surface ocean coccolith-calcite concentrations. E. huxleyi coccolith length is influenced by light and nutrients through the regulation of growth rates.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Hervé Claustre, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford Hooker, Mati Kahru, Holger Klein, Susanne Kratzer, Hubert Loisel, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Alex J. Poulton, Michel Repecaud, Timothy Smyth, Heidi M. Sosik, Michael Twardowski, Kenneth Voss, Jeremy Werdell, Marcel Wernand, and Giuseppe Zibordi
Earth Syst. Sci. Data, 8, 235–252, https://doi.org/10.5194/essd-8-235-2016, https://doi.org/10.5194/essd-8-235-2016, 2016
Short summary
Short summary
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2012) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Katharina Lenhart, Thomas Klintzsch, Gerald Langer, Gernot Nehrke, Michael Bunge, Sylvia Schnell, and Frank Keppler
Biogeosciences, 13, 3163–3174, https://doi.org/10.5194/bg-13-3163-2016, https://doi.org/10.5194/bg-13-3163-2016, 2016
Short summary
Short summary
In this study we investigated marine algae as a source of CH4 in oxic surface waters of oceans. Algae-derived CH4 may explain the CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox".
This finding of an overlooked source of CH4 in marine environments will be of considerable importance to scientists in many disciplines because algae play a crucial role in organic matter cycling in marine and freshwater ecosystems.
Anaid Rosas-Navarro, Gerald Langer, and Patrizia Ziveri
Biogeosciences, 13, 2913–2926, https://doi.org/10.5194/bg-13-2913-2016, https://doi.org/10.5194/bg-13-2913-2016, 2016
Short summary
Short summary
The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. We show that sub-optimal growth temperatures lead to an increase in malformed coccoliths in a strain-specific fashion and the inorganic / organic carbon has a minimum at optimum growth temperature. Global warming might cause a decline in coccoliths' inorganic carbon contribution to the "rain ratio", as well as improved fitness in some genotypes by reducing coccolith malformation.
C. J. Daniels, A. J. Poulton, M. Esposito, M. L. Paulsen, R. Bellerby, M. St John, and A. P. Martin
Biogeosciences, 12, 2395–2409, https://doi.org/10.5194/bg-12-2395-2015, https://doi.org/10.5194/bg-12-2395-2015, 2015
A. Mewes, G. Langer, S. Thoms, G. Nehrke, G.-J. Reichart, L. J. de Nooijer, and J. Bijma
Biogeosciences, 12, 2153–2162, https://doi.org/10.5194/bg-12-2153-2015, https://doi.org/10.5194/bg-12-2153-2015, 2015
Short summary
Short summary
A culture study with the benthic foraminifer Amphistegina lessonii was conducted at varying seawater [Ca2+] and constant [Mg2+]. Results showed optimum growth rates and test thickness at ambient seawater Mg/Ca and a calcite Mg/Ca which is controlled by the relative seawater ratio. Results support the conceptual biomineralization model by Nehrke et al. (2013); however, our refined flux-based model suggests transmembrane transport fractionation that is slightly weaker than expected.
K. Kaczmarek, G. Langer, G. Nehrke, I. Horn, S. Misra, M. Janse, and J. Bijma
Biogeosciences, 12, 1753–1763, https://doi.org/10.5194/bg-12-1753-2015, https://doi.org/10.5194/bg-12-1753-2015, 2015
Short summary
Short summary
Culture experiments based on a decoupled pH and CO32- chemistry indicate that the δ11B of the test of A. lessonii is related to pH whereas the B/Ca of the foraminiferal shells show a positive correlation with B(OH)4-/HCO3-. The latter observation suggests a competition between B(OH)4- and HCO3- of the culture media for B uptake into the test.
G. Langer, G. Nehrke, C. Baggini, R. Rodolfo-Metalpa, J. M. Hall-Spencer, and J. Bijma
Biogeosciences, 11, 7363–7368, https://doi.org/10.5194/bg-11-7363-2014, https://doi.org/10.5194/bg-11-7363-2014, 2014
Short summary
Short summary
Specimens of the patellogastropod limpet Patella caerulea were collected within and outside a CO2 vent site at Ischia, Italy. The distribution of different crystal structures across shell sections was analysed. Patella caerulea counteracts shell dissolution in corrosive waters by enhanced production of aragonitic parts of the shell. We conclude that it is not possible to predict the dissolution behaviour of a composite biomineral on the basis of the properties of its constituent mineral.
C. J. Daniels, R. M. Sheward, and A. J. Poulton
Biogeosciences, 11, 6915–6925, https://doi.org/10.5194/bg-11-6915-2014, https://doi.org/10.5194/bg-11-6915-2014, 2014
S. A. Krueger-Hadfield, C. Balestreri, J. Schroeder, A. Highfield, P. Helaouët, J. Allum, R. Moate, K. T. Lohbeck, P. I. Miller, U. Riebesell, T. B. H. Reusch, R. E. M. Rickaby, J. Young, G. Hallegraeff, C. Brownlee, and D. C. Schroeder
Biogeosciences, 11, 5215–5234, https://doi.org/10.5194/bg-11-5215-2014, https://doi.org/10.5194/bg-11-5215-2014, 2014
J. R. Young, A. J. Poulton, and T. Tyrrell
Biogeosciences, 11, 4771–4782, https://doi.org/10.5194/bg-11-4771-2014, https://doi.org/10.5194/bg-11-4771-2014, 2014
S. Richier, E. P. Achterberg, C. Dumousseaud, A. J. Poulton, D. J. Suggett, T. Tyrrell, M. V. Zubkov, and C. M. Moore
Biogeosciences, 11, 4733–4752, https://doi.org/10.5194/bg-11-4733-2014, https://doi.org/10.5194/bg-11-4733-2014, 2014
A. J. Poulton, M. C. Stinchcombe, E. P. Achterberg, D. C. E. Bakker, C. Dumousseaud, H. E. Lawson, G. A. Lee, S. Richier, D. J. Suggett, and J. R. Young
Biogeosciences, 11, 3919–3940, https://doi.org/10.5194/bg-11-3919-2014, https://doi.org/10.5194/bg-11-3919-2014, 2014
G. Nehrke, N. Keul, G. Langer, L. J. de Nooijer, J. Bijma, and A. Meibom
Biogeosciences, 10, 6759–6767, https://doi.org/10.5194/bg-10-6759-2013, https://doi.org/10.5194/bg-10-6759-2013, 2013
N. Keul, G. Langer, L. J. de Nooijer, and J. Bijma
Biogeosciences, 10, 6185–6198, https://doi.org/10.5194/bg-10-6185-2013, https://doi.org/10.5194/bg-10-6185-2013, 2013
Related subject area
Biodiversity and Ecosystem Function: Microbial Ecology & Geomicrobiology
The geothermal gradient shapes microbial diversity and processes in natural-gas-bearing sedimentary aquifers
Microbial methane formation in deep aquifers associated with the sediment burial history at a coastal site
Impact of metabolism and temperature on 2H ∕ 1H fractionation in lipids of the marine bacterium Shewanella piezotolerans WP3
Maximum summer temperatures predict the temperature adaptation of Arctic soil bacterial communities
Potential contributions of nitrifiers and denitrifiers to nitrous oxide sources and sinks in China's estuarine and coastal areas
Aqueous system-level processes and prokaryote assemblages in the ferruginous and sulfate-rich bottom waters of a post-mining lake
Abundances and morphotypes of the coccolithophore Emiliania huxleyi in southern Patagonia compared to neighbouring oceans and Northern Hemisphere fjords
Determining the hierarchical order by which the variables of sampling period, dust outbreak occurrence, and sampling location can shape the airborne bacterial communities in the Mediterranean basin
The water column of the Yamal tundra lakes as a microbial filter preventing methane emission
Bioerosion and fungal colonization of the invasive foraminiferan Amphistegina lobifera in a Mediterranean seagrass meadow
Effects of tidal influence on the structure and function of prokaryotic communities in the sediments of a pristine Brazilian mangrove
Deep maxima of phytoplankton biomass, primary production and bacterial production in the Mediterranean Sea
The composition of endolithic communities in gypcrete is determined by the specific microhabitat architecture
Uncovering chemical signatures of salinity gradients through compositional analysis of protein sequences
Cryptic roles of tetrathionate in the sulfur cycle of marine sediments: microbial drivers and indicators
Lake mixing regime selects apparent methane oxidation kinetics of the methanotroph assemblage
The contribution of microbial communities in polymetallic nodules to the diversity of the deep-sea microbiome of the Peru Basin (4130–4198 m depth)
The pH-based ecological coherence of active canonical methanotrophs in paddy soils
Biogeographical distribution of microbial communities along the Rajang River–South China Sea continuum
Microbial community composition and abundance after millennia of submarine permafrost warming
Cold-water corals and hydrocarbon-rich seepage in Pompeia Province (Gulf of Cádiz) – living on the edge
Ecophysiological characteristics of red, green, and brown strains of the Baltic picocyanobacterium Synechococcus sp. – a laboratory study
Factors controlling the community structure of picoplankton in contrasting marine environments
Community composition and seasonal changes of archaea in coarse and fine air particulate matter
Microbial community structure in the western tropical South Pacific
Ecophysiological characterization of early successional biological soil crusts in heavily human-impacted areas
Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard)
Plant n-alkane production from litterfall altered the diversity and community structure of alkane degrading bacteria in litter layer in lowland subtropical rainforest in Taiwan
Revisiting chlorophyll extraction methods in biological soil crusts – methodology for determination of chlorophyll a and chlorophyll a + b as compared to previous methods
Divergence of dominant factors in soil microbial communities and functions in forest ecosystems along a climatic gradient
Uncovering biological soil crusts: carbon content and structure of intact Arctic, Antarctic and alpine biological soil crusts
Antagonistic effects of drought and sand burial enable the survival of the biocrust moss Bryum argenteum in an arid sandy desert
Microbial methanogenesis in the sulfate-reducing zone of sediments in the Eckernförde Bay, SW Baltic Sea
Ferrihydrite-associated organic matter (OM) stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia
Effects of temperature on the composition and diversity of bacterial communities in bamboo soils at different elevations
Development of bacterial communities in biological soil crusts along a revegetation chronosequence in the Tengger Desert, northwest China
Viable cold-tolerant iron-reducing microorganisms in geographically diverse subglacial environments
Diversity and mineral substrate preference in endolithic microbial communities from marine intertidal outcrops (Isla de Mona, Puerto Rico)
Archive of bacterial community in anhydrite crystals from a deep-sea basin provides evidence of past oil-spilling in a benthic environment in the Red Sea
Mechanisms of Trichodesmium demise within the New Caledonian lagoon during the VAHINE mesocosm experiment
Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids
Effect of light on photosynthetic efficiency of sequestered chloroplasts in intertidal benthic foraminifera (Haynesina germanica and Ammonia tepida)
Seasonal and size-dependent variations in the phytoplankton growth and microzooplankton grazing in the southern South China Sea under the influence of the East Asian monsoon
Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest
Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China
Redox regime shifts in microbially mediated biogeochemical cycles
Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs
Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota
Diversity and seasonal dynamics of airborne archaea
Methanotrophic activity and diversity of methanotrophs in volcanic geothermal soils at Pantelleria (Italy)
Taiki Katayama, Hideyoshi Yoshioka, Toshiro Yamanaka, Susumu Sakata, and Yasuaki Hanamura
Biogeosciences, 21, 4273–4283, https://doi.org/10.5194/bg-21-4273-2024, https://doi.org/10.5194/bg-21-4273-2024, 2024
Short summary
Short summary
To understand microbial processes in deep sedimentary environments where the majority of Earth’s prokaryotes are found, we investigated the microbial communities in microbial natural-gas-bearing aquifers at temperatures of 38–81°C, situated above nonmicrobial oil-bearing sediments. Our results indicate that microbial carbon and sulfur cycling is driven by geothermal heating, showing previously overlooked geothermal-heat-driven geochemical and microbiological processes in the deep biosphere.
Taiki Katayama, Reo Ikawa, Masaru Koshigai, and Susumu Sakata
Biogeosciences, 20, 5199–5210, https://doi.org/10.5194/bg-20-5199-2023, https://doi.org/10.5194/bg-20-5199-2023, 2023
Short summary
Short summary
Methane produced by microorganisms in subsurface environments may account for a large fraction of global natural gas reserves. To understand how microbial methane is produced during sediment burial history, we examined methane-bearing aquifers in which temperature and salinity increase with depth. Geochemical and microbiological analyses showed that microbial methane is produced at depth, where microbial activity is stimulated by the increased temperature, and subsequently migrates upwards.
Xin Chen, Weishu Zhao, Liang Dong, Huahua Jian, Lewen Liang, Jing Wang, and Fengping Wang
Biogeosciences, 20, 1491–1504, https://doi.org/10.5194/bg-20-1491-2023, https://doi.org/10.5194/bg-20-1491-2023, 2023
Short summary
Short summary
Here, we studied the effects of metabolism and growth temperature on 2H/1H fractionation between fatty acids and growth water (εFA/water) by Shewanella piezotolerans WP3. Our results show that the εFA/water values display considerable variations for cultures grown on different substrates. Combined with metabolic model analysis, our results indicate that the central metabolic pathways exert a fundamental effect on the hydrogen isotope composition of lipids in heterotrophs.
Ruud Rijkers, Mark Dekker, Rien Aerts, and James T. Weedon
Biogeosciences, 20, 767–780, https://doi.org/10.5194/bg-20-767-2023, https://doi.org/10.5194/bg-20-767-2023, 2023
Short summary
Short summary
Bacterial communities in the soils of the Arctic region decompose soil organic matter to CO2 from a large carbon pool. The amount of CO2 released is likely to increase under future climate conditions. Here, we study how temperature sensitive the growth of soil bacterial communties is for 12 sampling sites in the sub to high Arctic. We show that the optimal growth temperature varies between 23 and 34 °C and is influenced by the summer temperature.
Xiaofeng Dai, Mingming Chen, Xianhui Wan, Ehui Tan, Jialing Zeng, Nengwang Chen, Shuh-Ji Kao, and Yao Zhang
Biogeosciences, 19, 3757–3773, https://doi.org/10.5194/bg-19-3757-2022, https://doi.org/10.5194/bg-19-3757-2022, 2022
Short summary
Short summary
This study revealed the distinct distribution patterns of six key microbial functional genes and transcripts related to N2O sources and sinks in four estuaries spanning the Chinese coastline, which were significantly constrained by nitrogen and oxygen concentrations, salinity, temperature, and pH. The community structure of the nosZ clade II was distinctly different from those in the soil and marine OMZs. Denitrification may principally control the N2O emissions patterns across the estuaries.
Daniel A. Petrash, Ingrid M. Steenbergen, Astolfo Valero, Travis B. Meador, Tomáš Pačes, and Christophe Thomazo
Biogeosciences, 19, 1723–1751, https://doi.org/10.5194/bg-19-1723-2022, https://doi.org/10.5194/bg-19-1723-2022, 2022
Short summary
Short summary
We spectroscopically evaluated the gradients of dissolved C, N, S, Fe and Mn in a newly formed redox-stratified lake. The lake features an intermediate redox state between nitrogenous and euxinic conditions that encompasses vigorous open sulfur cycling fuelled by the reducible Fe and Mn stocks of the anoxic sediments. This results in substantial bottom water loads of dissolved iron and sulfate. Observations made in this ecosystem have relevance for deep-time paleoceanographic reconstructions.
Francisco Díaz-Rosas, Catharina Alves-de-Souza, Emilio Alarcón, Eduardo Menschel, Humberto E. González, Rodrigo Torres, and Peter von Dassow
Biogeosciences, 18, 5465–5489, https://doi.org/10.5194/bg-18-5465-2021, https://doi.org/10.5194/bg-18-5465-2021, 2021
Short summary
Short summary
Coccolithophores are important unicellular algae with a calcium carbonate covering that might be affected by ongoing changes in the ocean due to absorption of CO2, warming, and melting of glaciers. We used the southern Patagonian fjords as a natural laboratory, where chemical conditions are naturally highly variable. One variant of a widespread coccolithophore species can tolerate these conditions, suggesting it is highly adaptable, while others were excluded, suggesting they are less adaptable.
Riccardo Rosselli, Maura Fiamma, Massimo Deligios, Gabriella Pintus, Grazia Pellizzaro, Annalisa Canu, Pierpaolo Duce, Andrea Squartini, Rosella Muresu, and Pietro Cappuccinelli
Biogeosciences, 18, 4351–4367, https://doi.org/10.5194/bg-18-4351-2021, https://doi.org/10.5194/bg-18-4351-2021, 2021
Short summary
Short summary
The bacteria carried by winds over the island of Sardinia in the Mediterranean Sea were collected, and their identities were investigated by reading DNA sequences. The sampling period was the factor that most determined the airborne species composition as its role was stronger than that of dust-carrying storms and of the geographical position of the sampling station. The bacteria found when the sampling was performed in September had more species variety than those collected in May.
Alexander Savvichev, Igor Rusanov, Yury Dvornikov, Vitaly Kadnikov, Anna Kallistova, Elena Veslopolova, Antonina Chetverova, Marina Leibman, Pavel A. Sigalevich, Nikolay Pimenov, Nikolai Ravin, and Artem Khomutov
Biogeosciences, 18, 2791–2807, https://doi.org/10.5194/bg-18-2791-2021, https://doi.org/10.5194/bg-18-2791-2021, 2021
Short summary
Short summary
Microbial processes of the methane cycle were studied in four lakes of the central part of the Yamal Peninsula in an area of continuous permafrost: two large, deep lakes and two small and shallow ones. It was found that only small, shallow lakes contributed significantly to the overall diffusive methane emissions from the water surface during the warm summer season. The water column of large, deep lakes on Yamal acted as a microbial filter preventing methane emissions into the atmosphere.
Martin Vohník
Biogeosciences, 18, 2777–2790, https://doi.org/10.5194/bg-18-2777-2021, https://doi.org/10.5194/bg-18-2777-2021, 2021
Short summary
Short summary
Amphistegina lobifera (Foraminifera) has colonized the Mediterranean through the Suez Canal, often forming thick sediments altering the invaded environments. Little is known about postmortem fate of its shells, so I investigated their turnover in the rhizosphere of the dominant Mediterranean seagrass. Most were bioeroded, likely by cyanobacteria and algae but not fungi occurring in the seagrass roots. Bioerosion may counterbalance accumulation of A. lobifera shells in the seabed substrate.
Carolina Oliveira de Santana, Pieter Spealman, Vânia Maria Maciel Melo, David Gresham, Taíse Bomfim de Jesus, and Fabio Alexandre Chinalia
Biogeosciences, 18, 2259–2273, https://doi.org/10.5194/bg-18-2259-2021, https://doi.org/10.5194/bg-18-2259-2021, 2021
Short summary
Short summary
This study highlights the influence of
tidal zonationon the prokaryotic sediment communities of a pristine mangrove forest. We observed that the variability in environmental factors between tidal zones results in differences in structure, diversity, and the potential function of prokaryotic populations. This suggests that further work is needed in determining the role tidal microhabitat biodiversity has in mangroves.
Emilio Marañón, France Van Wambeke, Julia Uitz, Emmanuel S. Boss, Céline Dimier, Julie Dinasquet, Anja Engel, Nils Haëntjens, María Pérez-Lorenzo, Vincent Taillandier, and Birthe Zäncker
Biogeosciences, 18, 1749–1767, https://doi.org/10.5194/bg-18-1749-2021, https://doi.org/10.5194/bg-18-1749-2021, 2021
Short summary
Short summary
The concentration of chlorophyll is commonly used as an indicator of the abundance of photosynthetic plankton (phytoplankton) in lakes and oceans. Our study investigates why a deep chlorophyll maximum, located near the bottom of the upper, illuminated layer develops in the Mediterranean Sea. We find that the acclimation of cells to low light is the main mechanism involved and that this deep maximum represents also a maximum in the biomass and carbon fixation activity of phytoplankton.
María Cristina Casero, Victoria Meslier, Jocelyne DiRuggiero, Antonio Quesada, Carmen Ascaso, Octavio Artieda, Tomasz Kowaluk, and Jacek Wierzchos
Biogeosciences, 18, 993–1007, https://doi.org/10.5194/bg-18-993-2021, https://doi.org/10.5194/bg-18-993-2021, 2021
Short summary
Short summary
Endolithic microhabitats have been described as the last refuge for life in arid and hyper-arid deserts where life has to deal with harsh environmental conditions, such as those in the Atacama Desert. In this work, three different endolithic microhabitats occurring in gypcrete rocks of the Atacama Desert are characterized, using both microscopy and molecular techniques, to show if the architecture of each microhabitat has an influence on the microbial communities inhabiting each of them.
Jeffrey M. Dick, Miao Yu, and Jingqiang Tan
Biogeosciences, 17, 6145–6162, https://doi.org/10.5194/bg-17-6145-2020, https://doi.org/10.5194/bg-17-6145-2020, 2020
Short summary
Short summary
Many natural environments differ in their range of salt concentration (salinity). We developed a metric for the number of water molecules in formation reactions of different proteins and found that it decreases between freshwater and marine systems and also in laboratory experiments with increasing salinity. These results demonstrate a new type of link between geochemical conditions and the chemical composition of microbial communities that can be useful for models of microbial adaptation.
Subhrangshu Mandal, Sabyasachi Bhattacharya, Chayan Roy, Moidu Jameela Rameez, Jagannath Sarkar, Tarunendu Mapder, Svetlana Fernandes, Aditya Peketi, Aninda Mazumdar, and Wriddhiman Ghosh
Biogeosciences, 17, 4611–4631, https://doi.org/10.5194/bg-17-4611-2020, https://doi.org/10.5194/bg-17-4611-2020, 2020
Short summary
Short summary
Potential roles of polythionates as key sulfur cycle intermediates are less appreciated, apparently because, in most of the natural environments, they do not accumulate to easily detectable levels. Our exploration of the eastern Arabian Sea sediment horizons revealed microbe-mediated production and redox transformations of tetrathionate to be important modules of the in situ sulfur cycle, even as high biotic and abiotic reactivity of this polythionate keeps it hidden from geochemical detection.
Magdalena J. Mayr, Matthias Zimmermann, Jason Dey, Bernhard Wehrli, and Helmut Bürgmann
Biogeosciences, 17, 4247–4259, https://doi.org/10.5194/bg-17-4247-2020, https://doi.org/10.5194/bg-17-4247-2020, 2020
Massimiliano Molari, Felix Janssen, Tobias R. Vonnahme, Frank Wenzhöfer, and Antje Boetius
Biogeosciences, 17, 3203–3222, https://doi.org/10.5194/bg-17-3203-2020, https://doi.org/10.5194/bg-17-3203-2020, 2020
Short summary
Short summary
Industrial-scale mining of deep-sea polymetallic nodules will remove nodules in large areas of the sea floor. We describe community composition of microbes associated with nodules of the Peru Basin. Our results show that nodules provide a unique ecological niche, playing an important role in shaping the diversity of the benthic deep-sea microbiome and potentially in element fluxes. We believe that our findings are highly relevant to expanding our knowledge of the impact associated with mining.
Jun Zhao, Yuanfeng Cai, and Zhongjun Jia
Biogeosciences, 17, 1451–1462, https://doi.org/10.5194/bg-17-1451-2020, https://doi.org/10.5194/bg-17-1451-2020, 2020
Short summary
Short summary
We show that soil pH is a key factor in selecting distinct phylotypes of methanotrophs in paddy soils. Type II methanotrophs dominated the methane oxidation in low-pH soils, while type I methanotrophs were more active in high-pH soils. This pH-based niche differentiation of active methanotrophs appeared to be independent of nitrogen fertilization, but the inhibition of type II methanotrophic rate in low-pH soils by the fertilization might aggravate the emission of methane from paddy soils.
Edwin Sien Aun Sia, Zhuoyi Zhu, Jing Zhang, Wee Cheah, Shan Jiang, Faddrine Holt Jang, Aazani Mujahid, Fuh-Kwo Shiah, and Moritz Müller
Biogeosciences, 16, 4243–4260, https://doi.org/10.5194/bg-16-4243-2019, https://doi.org/10.5194/bg-16-4243-2019, 2019
Short summary
Short summary
Microbial community composition and diversity in freshwater habitats are much less studied compared to marine and soil communities. This study presents the first assessment of microbial communities of the Rajang River, the longest river in Malaysia, expanding our knowledge of microbial ecology in tropical regions. Areas surrounded by oil palm plantations showed the lowest diversity and other signs of anthropogenic impacts included the presence of CFB groups as well as probable algal blooms.
Julia Mitzscherling, Fabian Horn, Maria Winterfeld, Linda Mahler, Jens Kallmeyer, Pier P. Overduin, Lutz Schirrmeister, Matthias Winkel, Mikhail N. Grigoriev, Dirk Wagner, and Susanne Liebner
Biogeosciences, 16, 3941–3958, https://doi.org/10.5194/bg-16-3941-2019, https://doi.org/10.5194/bg-16-3941-2019, 2019
Short summary
Short summary
Permafrost temperatures increased substantially at a global scale, potentially altering microbial assemblages involved in carbon mobilization before permafrost thaws. We used Arctic Shelf submarine permafrost as a natural laboratory to investigate the microbial response to long-term permafrost warming. Our work shows that millennia after permafrost warming by > 10 °C, microbial community composition and population size reflect the paleoenvironment rather than a direct effect through warming.
Blanca Rincón-Tomás, Jan-Peter Duda, Luis Somoza, Francisco Javier González, Dominik Schneider, Teresa Medialdea, Esther Santofimia, Enrique López-Pamo, Pedro Madureira, Michael Hoppert, and Joachim Reitner
Biogeosciences, 16, 1607–1627, https://doi.org/10.5194/bg-16-1607-2019, https://doi.org/10.5194/bg-16-1607-2019, 2019
Short summary
Short summary
Cold-water corals were found at active sites in Pompeia Province (Gulf of Cádiz). Since seeped fluids are harmful for the corals, we approached the environmental conditions that allow corals to colonize carbonates while seepage occurs. As a result, we propose that chemosynthetic microorganisms (i.e. sulfide-oxidizing bacteria and AOM-related microorganisms) play an important role in the colonization of the corals at these sites by feeding on the seeped fluids and avoiding coral damage.
Sylwia Śliwińska-Wilczewska, Agata Cieszyńska, Jakub Maculewicz, and Adam Latała
Biogeosciences, 15, 6257–6276, https://doi.org/10.5194/bg-15-6257-2018, https://doi.org/10.5194/bg-15-6257-2018, 2018
Short summary
Short summary
The present study describes responses of picocyanobacteria (PCY) physiology to different environmental conditions. The cultures were grown under 64 combinations of temperature, irradiance in a photosynthetically active spectrum (PAR), and salinity. The results show that each strain of Baltic Synechococcus sp. behaves differently in respective environmental scenarios. The study develops the knowledge on bloom-forming PCY and reasons further research on the smallest size fraction of phytoplankton.
Jose Luis Otero-Ferrer, Pedro Cermeño, Antonio Bode, Bieito Fernández-Castro, Josep M. Gasol, Xosé Anxelu G. Morán, Emilio Marañon, Victor Moreira-Coello, Marta M. Varela, Marina Villamaña, and Beatriz Mouriño-Carballido
Biogeosciences, 15, 6199–6220, https://doi.org/10.5194/bg-15-6199-2018, https://doi.org/10.5194/bg-15-6199-2018, 2018
Short summary
Short summary
The effect of inorganic nutrients on planktonic assemblages has been traditionally assessed by looking at concentrations rather than fluxes of nutrient supply. However, in near-steady-state systems such as subtropical gyres, nitrate concentrations are kept close to the detection limit due to phytoplankton uptake. Our results, based on direct measurements of nitrate diffusive fluxes, support the key role of nitrate supply in controlling the structure of marine picoplankton communities.
Jörn Wehking, Daniel A. Pickersgill, Robert M. Bowers, David Teschner, Ulrich Pöschl, Janine Fröhlich-Nowoisky, and Viviane R. Després
Biogeosciences, 15, 4205–4214, https://doi.org/10.5194/bg-15-4205-2018, https://doi.org/10.5194/bg-15-4205-2018, 2018
Short summary
Short summary
Archaea as a third domain of life play an important role in soils and marine environments. Although archaea have been found in air as a part of the atmospheric bioaerosol, little is known about their atmospheric dynamics due to their low number and challenging analysis.
Here we present a DNA-based study of airborne archaea, show seasonal dynamics, and discuss anthropogenic influences on the diversity, composition, and abundances of airborne archaea.
Nicholas Bock, France Van Wambeke, Moïra Dion, and Solange Duhamel
Biogeosciences, 15, 3909–3925, https://doi.org/10.5194/bg-15-3909-2018, https://doi.org/10.5194/bg-15-3909-2018, 2018
Short summary
Short summary
We report the distribution of major nano- and pico-plankton groups in the western tropical South Pacific. We found microbial community structure to be typical of highly stratified regions of the open ocean, with significant contributions to total biomass by picophytoeukaryotes, and N2 fixation playing a central role in regulating ecosystem processes. Our results also suggest a reduction in the importance of predation in regulating bacteria populations under nutrient-limited conditions.
Michelle Szyja, Burkhard Büdel, and Claudia Colesie
Biogeosciences, 15, 1919–1931, https://doi.org/10.5194/bg-15-1919-2018, https://doi.org/10.5194/bg-15-1919-2018, 2018
Short summary
Short summary
Ongoing human impact transforms habitats into surfaces lacking higher vegetation. Here, biological soil crusts (BSCs) provide ecosystem services like soil creation and carbon uptake. To understand the functioning of these areas, we examined the physiological capability of early successional BSCs. We found features enabling BSCs to cope with varying climatic stresses. BSCs are important carbon fixers independent of the dominating organism. We provide baseline data for modeling carbon fluxes.
Petr Kotas, Hana Šantrůčková, Josef Elster, and Eva Kaštovská
Biogeosciences, 15, 1879–1894, https://doi.org/10.5194/bg-15-1879-2018, https://doi.org/10.5194/bg-15-1879-2018, 2018
Short summary
Short summary
The soil microbial properties were investigated along altitudinal gradients in the Arctic. Systematic altitudinal shift in MCS resulting in high F / B ratios at the most elevated sites was observed. The changes in composition, size and activity of microbial communities were mainly controlled through the effect of vegetation on edaphic properties and by bedrock chemistry. The upward migration of vegetation due to global warming will likely diminish the spatial variability in microbial properties.
Tung-Yi Huang, Bing-Mu Hsu, Wei-Chun Chao, and Cheng-Wei Fan
Biogeosciences, 15, 1815–1826, https://doi.org/10.5194/bg-15-1815-2018, https://doi.org/10.5194/bg-15-1815-2018, 2018
Short summary
Short summary
The n-alkane in litterfall and the microbial community in litter layer in different habitats of lowland subtropical rainforest were studied. We revealed that the plant vegetation of forest not only dominated the n-alkane input of habitats but also governed the diversity of microbial community of litter layer. In this study, we found that the habitat which had high n-alkane input induced a shift of relative abundance toward phylum of Actinobacteria and the growth of alkB gene contained bacteria.
Jennifer Caesar, Alexandra Tamm, Nina Ruckteschler, Anna Lena Leifke, and Bettina Weber
Biogeosciences, 15, 1415–1424, https://doi.org/10.5194/bg-15-1415-2018, https://doi.org/10.5194/bg-15-1415-2018, 2018
Short summary
Short summary
In our study we analyzed the efficiency of different chlorophyll extraction solvents and investigated the effect of different preparatory steps to determine the optimal extraction method for biological soil crusts. Based on our results we confirm a DMSO-based chlorophyll extraction method without grinding pretreatment and suggest to insert an intermediate shaking step for complete chlorophyll extraction.
Zhiwei Xu, Guirui Yu, Xinyu Zhang, Nianpeng He, Qiufeng Wang, Shengzhong Wang, Xiaofeng Xu, Ruili Wang, and Ning Zhao
Biogeosciences, 15, 1217–1228, https://doi.org/10.5194/bg-15-1217-2018, https://doi.org/10.5194/bg-15-1217-2018, 2018
Short summary
Short summary
Forest types with specific soil conditions supported the development of distinct soil microbial communities with variable functions. Our results indicate that the main controls on soil microbes and functions vary across forest ecosystems in different climatic zones. This information will add value to the modeling of microbial processes and will contribute to carbon cycling on a large scale.
Patrick Jung, Laura Briegel-Williams, Anika Simon, Anne Thyssen, and Burkhard Büdel
Biogeosciences, 15, 1149–1160, https://doi.org/10.5194/bg-15-1149-2018, https://doi.org/10.5194/bg-15-1149-2018, 2018
Short summary
Short summary
Arctic, Antarctic and alpine biological soil crusts (BSCs) are formed by adhesion of soil particles to cyanobacteria. BSCs influence ecosystems services like soil erodibility and chemical cycles. In cold environments degradation rates are low and BSCs increase soil organic carbon through photosynthesis, whereby these soils are considered as CO2 sinks. This work provides a novel method to visualize BSCs with a focus on cyanobacteria and their contribution to soil organic carbon.
Rongliang Jia, Yun Zhao, Yanhong Gao, Rong Hui, Haotian Yang, Zenru Wang, and Yixuan Li
Biogeosciences, 15, 1161–1172, https://doi.org/10.5194/bg-15-1161-2018, https://doi.org/10.5194/bg-15-1161-2018, 2018
Short summary
Short summary
Why can biocrust moss survive and flourish in these habitats when stressed simultaneously by drought and sand burial? A field experiment was conducted to assess the combined effects of the two stressors on Bryum argenteum within biocrust. The two stressors did not exacerbate the single negative effects; their mutually antagonistic effect on the physiological vigor of B. argenteum was found, and it provided an opportunity for it to overcome the two co-occurring stressors in arid sandy ecosystems.
Johanna Maltby, Lea Steinle, Carolin R. Löscher, Hermann W. Bange, Martin A. Fischer, Mark Schmidt, and Tina Treude
Biogeosciences, 15, 137–157, https://doi.org/10.5194/bg-15-137-2018, https://doi.org/10.5194/bg-15-137-2018, 2018
Short summary
Short summary
The activity and environmental controls of methanogenesis (MG) within the sulfate-reducing zone (0–30 cm below the seafloor) were investigated in organic-rich sediments of the seasonally hypoxic Eckernförde Bay, SW Baltic Sea. MG activity was mostly linked to non-competitive substrates. The major controls identified were organic matter availability, C / N, temperature, and O2 in the water column, revealing higher rates in warm, stratified, hypoxic seasons compared to colder, oxygenated seasons.
Rebecca Elizabeth Cooper, Karin Eusterhues, Carl-Eric Wegner, Kai Uwe Totsche, and Kirsten Küsel
Biogeosciences, 14, 5171–5188, https://doi.org/10.5194/bg-14-5171-2017, https://doi.org/10.5194/bg-14-5171-2017, 2017
Short summary
Short summary
In this study we show increasing organic matter (OM) content on ferrihydrite surfaces enhances Fe reduction by the model Fe reducer S. oneidensis and a microbial consortia extracted from peat. Similarities in reduction rates between S. oneidensis and the consortia suggest electron shuttling dominates in OM-rich soils. Community profile analyses showed enrichment of fermenters with pure ferrihydrite, whereas OM–mineral complexes favored enrichment of Fe-reducing Desulfobacteria and Pelosinus sp.
Yu-Te Lin, Zhongjun Jia, Dongmei Wang, and Chih-Yu Chiu
Biogeosciences, 14, 4879–4889, https://doi.org/10.5194/bg-14-4879-2017, https://doi.org/10.5194/bg-14-4879-2017, 2017
Short summary
Short summary
We evaluated the bacterial composition and diversity of bamboo soils sampled at different elevations and incubated at different temperatures. Soil respiration was greater at higher elevation and temperature. Soil bacterial structure and diversity showed variable under different incubation times and temperatures. Increases in temperature increased soil respiration and consumption of soil soluble carbon and nitrogen, thus influencing the bacterial diversity and structure at different elevations.
Lichao Liu, Yubing Liu, Peng Zhang, Guang Song, Rong Hui, Zengru Wang, and Jin Wang
Biogeosciences, 14, 3801–3814, https://doi.org/10.5194/bg-14-3801-2017, https://doi.org/10.5194/bg-14-3801-2017, 2017
Short summary
Short summary
We studied the development process of bacterial community structure of biological soil crusts (BSCs) along a revegetation chronosequence by Illumina MiSeq sequencing in the Tengger Desert. Our results indicated (1) a shift of bacterial composition related to their function in the crust development process; (2) bacterial diversity and richness consistent with the recovery phase of soil properties; and (3) bacteria as key contributors to the BSC succession process.
Sophie L. Nixon, Jon P. Telling, Jemma L. Wadham, and Charles S. Cockell
Biogeosciences, 14, 1445–1455, https://doi.org/10.5194/bg-14-1445-2017, https://doi.org/10.5194/bg-14-1445-2017, 2017
Short summary
Short summary
Despite their permanently cold and dark characteristics, subglacial environments (glacier ice–sediment interface) are known to harbour active microbial communities. However, the role of microbial iron cycling in these environments is poorly understood. Here we show that subglacial sediments harbour active iron-reducing microorganisms, and they appear to be cold-adapted. These results may have important implications for global biogeochemical iron cycling and export to marine ecosystems.
Estelle Couradeau, Daniel Roush, Brandon Scott Guida, and Ferran Garcia-Pichel
Biogeosciences, 14, 311–324, https://doi.org/10.5194/bg-14-311-2017, https://doi.org/10.5194/bg-14-311-2017, 2017
Short summary
Short summary
Endoliths are a prominent bioerosive component of intertidal marine habitats, traditionally thought to be formed by a few cyanobacteria, algae and fungi. Using molecular techniques, however, we found that endoliths from Mona Island, Puerto Rico, were of high diversity, well beyond that reported in traditional studies. We also found evidence for substrate specialization, in that closely related cyanobacteria seem to have diversified to specialize recurrently to excavate various mineral substrates
Yong Wang, Tie Gang Li, Meng Ying Wang, Qi Liang Lai, Jiang Tao Li, Zhao Ming Gao, Zong Ze Shao, and Pei-Yuan Qian
Biogeosciences, 13, 6405–6417, https://doi.org/10.5194/bg-13-6405-2016, https://doi.org/10.5194/bg-13-6405-2016, 2016
Short summary
Short summary
Mild eruption of hydrothermal solutions on deep-sea benthic floor can produce anhydrite crystal layers, where microbes are trapped and preserved for a long period of time. These embedded original inhabitants will be biomarkers for the environment when the hydrothermal eruption occurred. This study discovered a thick anhydrite layer in a deep-sea brine pool in the Red Sea. Oil-degrading bacteria were revealed in the crystals with genomic and microscopic evidence.
Dina Spungin, Ulrike Pfreundt, Hugo Berthelot, Sophie Bonnet, Dina AlRoumi, Frank Natale, Wolfgang R. Hess, Kay D. Bidle, and Ilana Berman-Frank
Biogeosciences, 13, 4187–4203, https://doi.org/10.5194/bg-13-4187-2016, https://doi.org/10.5194/bg-13-4187-2016, 2016
Short summary
Short summary
The marine cyanobacterium Trichodesmium spp. forms massive blooms important to carbon and nitrogen cycling in the oceans that often collapse abruptly. We investigated a Trichodesmium bloom in the lagoon waters of New Caledonia to specifically elucidate the cellular processes mediating the bloom decline. We demonstrate physiological, biochemical, and genetic evidence for nutrient and oxidative stress that induced a genetically controlled programmed cell death (PCD) pathway leading to bloom demise.
Lotta Purkamo, Malin Bomberg, Riikka Kietäväinen, Heikki Salavirta, Mari Nyyssönen, Maija Nuppunen-Puputti, Lasse Ahonen, Ilmo Kukkonen, and Merja Itävaara
Biogeosciences, 13, 3091–3108, https://doi.org/10.5194/bg-13-3091-2016, https://doi.org/10.5194/bg-13-3091-2016, 2016
Short summary
Short summary
The microbial communities of up to 2.3 km depth of Precambrian crystalline bedrock fractures share features with serpenization-driven microbial communities in alkaline springs and subsurface aquifers. This study suggests that phylotypes belonging to Burkholderiales and Clostridia are possible "keystone microbial species" in Outokumpu deep biosphere. Many of the keystone species belong to the rare biosphere with low abundance but a wide range of carbon substrates and a capacity for H2 oxidation.
Thierry Jauffrais, Bruno Jesus, Edouard Metzger, Jean-Luc Mouget, Frans Jorissen, and Emmanuelle Geslin
Biogeosciences, 13, 2715–2726, https://doi.org/10.5194/bg-13-2715-2016, https://doi.org/10.5194/bg-13-2715-2016, 2016
Short summary
Short summary
Some benthic foraminifera can incorporate chloroplasts from microalgae. We investigated chloroplast functionality of two benthic foraminifera (Haynesina germanica & Ammonia tepida) exposed to different light levels. Only H. germanica was capable of using the kleptoplasts, showing net oxygen production. Chloroplast functionality time was longer in darkness (2 weeks) than at high light (1 week). Kleptoplasts are unlikely to be completely functional, thus requiring continuous chloroplast resupply.
L. Zhou, Y. Tan, L. Huang, Z. Hu, and Z. Ke
Biogeosciences, 12, 6809–6822, https://doi.org/10.5194/bg-12-6809-2015, https://doi.org/10.5194/bg-12-6809-2015, 2015
Short summary
Short summary
We observed that phytoplankton biomass and growth rate (μ), microzooplankton grazing rate (m), and coupling (correlation) between the μ and m significantly varied between the summer and winter, and microzooplankton selectively grazed more on the larger-sized phytoplankton, and a low grazing impact on phytoplankton (m/μ < 50%) in the SSCS. The salient seasonal variations in μ and m, and their coupling were closely related to environmental variables under the influence of the East Asian monsoon.
A. M. Womack, P. E. Artaxo, F. Y. Ishida, R. C. Mueller, S. R. Saleska, K. T. Wiedemann, B. J. M. Bohannan, and J. L. Green
Biogeosciences, 12, 6337–6349, https://doi.org/10.5194/bg-12-6337-2015, https://doi.org/10.5194/bg-12-6337-2015, 2015
Short summary
Short summary
Fungi in the atmosphere can affect precipitation by nucleating the formation of clouds and ice. This process is important over the Amazon rainforest where precipitation is limited by the types and amount of airborne particles. We found that the total and metabolically active fungi communities were dominated by different taxonomic groups, and the active community unexpectedly contained many lichen fungi, which are effective at nucleating ice.
W. Y. Dong, X. Y. Zhang, X. Y. Liu, X. L. Fu, F. S. Chen, H. M. Wang, X. M. Sun, and X. F. Wen
Biogeosciences, 12, 5537–5546, https://doi.org/10.5194/bg-12-5537-2015, https://doi.org/10.5194/bg-12-5537-2015, 2015
Short summary
Short summary
We examined how N and P addition influenced soil microbial community composition and enzyme activities in subtropical China. The results showed that C and N cycling enzymes were more sensitive to nutrient additions than P cycling enzymes and Gram-positive bacteria were most closely related to soil nutrient cycling enzymes. Combined additions of N and P fertilizer are recommended to promote soil fertility and microbial activity in this kind of plantation.
T. Bush, I. B. Butler, A. Free, and R. J. Allen
Biogeosciences, 12, 3713–3724, https://doi.org/10.5194/bg-12-3713-2015, https://doi.org/10.5194/bg-12-3713-2015, 2015
Short summary
Short summary
Despite their global importance, redox reactions mediated by microorganisms are often crudely represented in biogeochemical models. We show that including the dynamics of microbial growth in such a model can cause sudden shifts between redox states in response to an environmental change. We identify the conditions required for these redox regime shifts, and predict that they are likely in the modern day sulfur and nitrogen cycles, and potentially the iron cycle in the ancient ocean.
P. K. Gao, G. Q. Li, H. M. Tian, Y. S. Wang, H. W. Sun, and T. Ma
Biogeosciences, 12, 3403–3414, https://doi.org/10.5194/bg-12-3403-2015, https://doi.org/10.5194/bg-12-3403-2015, 2015
Short summary
Short summary
Microbial communities in injected water are expected to have a significant influence on those of reservoir strata in long-term water-flooding petroleum reservoirs. We thereby investigated the similarities and differences in microbial communities in water samples collected from the wellhead and downhole of injection wells, and from production wells in a homogeneous reservoir and a heterogeneous reservoir using high-throughput sequencing.
V. Marteinsson, A. Klonowski, E. Reynisson, P. Vannier, B. D. Sigurdsson, and M. Ólafsson
Biogeosciences, 12, 1191–1203, https://doi.org/10.5194/bg-12-1191-2015, https://doi.org/10.5194/bg-12-1191-2015, 2015
Short summary
Short summary
Colonization of life on Surtsey has been observed systematically since the formation of the island. Microbial colonization and the influence of associate vegetation and birds on viable counts of environmental bacteria at the surface of the Surtsey was explored for the first time in diverse surface soils. Also, hot subsurface samples deep in the centre of this volcanic island were collected. Both uncultivated bacteria and archaea were found in the subsurface samples collected below 145 m.
J. Fröhlich-Nowoisky, C. Ruzene Nespoli, D. A. Pickersgill, P. E. Galand, I. Müller-Germann, T. Nunes, J. Gomes Cardoso, S. M. Almeida, C. Pio, M. O. Andreae, R. Conrad, U. Pöschl, and V. R. Després
Biogeosciences, 11, 6067–6079, https://doi.org/10.5194/bg-11-6067-2014, https://doi.org/10.5194/bg-11-6067-2014, 2014
Short summary
Short summary
We have investigated the presence of archaea as well as their amoA gene diversity in aerosol particles collected over 1 year in central Europe and found that, within the 16S and amoA gene, Thaumarchaeota prevail and experience a diversity peak in fall, while only few Euryarchaeota were detected primarily in spring. We also compared the results with airborne archaea from Cape Verde and observe that the proportions of Euryarchaeota seem to be enhanced in coastal air compared to continental air.
A. L. Gagliano, W. D'Alessandro, M. Tagliavia, F. Parello, and P. Quatrini
Biogeosciences, 11, 5865–5875, https://doi.org/10.5194/bg-11-5865-2014, https://doi.org/10.5194/bg-11-5865-2014, 2014
Cited articles
Andruleit, H.: Living coccolithophores recorded during the onset of upwelling conditions off oman in the western arabian sea, J. Nannoplankton Res., 27, 1–14, 2005. a
Andruleit, H.: Status of the Java upwelling area (Indian Ocean) during the
oligotrophic northern hemisphere winter monsoon season as revealed by
coccolithophores, Mar. Micropaleontol., 64, 36–51,
https://doi.org/10.1016/j.marmicro.2007.02.001, 2007. a
Andruleit, H., Stäger, S., Rogalla, U., and Čepek, P.: Living
coccolithophores in the northern Arabian Sea: Ecological tolerances and
environmental control, Mar. Micropaleontol., 49, 157–181,
https://doi.org/10.1016/S0377-8398(03)00049-5, 2003. a
Aubry, M. P.: A sea of Lilliputians, Palaeogeogr. Palaeocl., 284, 88–113, https://doi.org/10.1016/j.palaeo.2009.08.020, 2009. a
Balch, W.: Re-evaluation of the physiological ecology of coccolithophores,
in: Coccolithophores: from molecular processes to global impact,
Springer, Berlin, https://doi.org/10.1007/978-3-662-06278-4, 165–190, 2004. a
Baumann, K., Boeckel, B., and Čepek, M.: Spatial distribution of living coccolithophores along an east- west transect in the subtropical South Atlantic, J. Nannoplankton Res., 30, 9–21, 2008. a
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento,
J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M.,
and Boss, E. S.: Climate-driven trends in contemporary ocean productivity, Nature, 444, 752–755, https://doi.org/10.1038/nature05317, 2006. a
Blonder, B.: Hypervolume concepts in niche- and trait-based ecology,
Ecography, 41, 1441–1455, https://doi.org/10.1111/ecog.03187, 2018. a
Blonder, B. and Harris, D. J.: hypervolume: High Dimensional Geometry and
Set Operations Using Kernel Density Estimation, Support Vector Machines, and Convex Hulls, available at: https://cran.r-project.org/package=hypervolume (last access: August 2020), 2018. a
Blonder, B., Lamanna, C., Violle, C., and Enquist, B. J.: The n-dimensional
hypervolume, Global Ecol. Biogeogr., 23, 595–609,
https://doi.org/10.1111/geb.12146, 2014. a, b, c
Boeckel, B. and Baumann, K. H.: Vertical and lateral variations in
coccolithophore community structure across the subtropical frontal zone in
the South Atlantic Ocean, Mar. Micropaleontol., 67, 255–273,
https://doi.org/10.1016/j.marmicro.2008.01.014, 2008. a
Bollmann, J., Cortés, M. Y., Haidar, A. T., Brabec, B., Close, A.,
Hofmann, R., Palma, S., Tupas, L., and Thierstein, H. R.: Techniques for
quantitative analyses of calcareous marine phytoplankton, Mar.
Micropaleontol., 44, 163–185, https://doi.org/10.1016/S0377-8398(01)00040-8, 2002. a
Bramucci, A. R., Labeeuw, L., Orata, F. D., Ryan, E. M., Malmstrom, R. R., and Case, R. J.: The Bacterial Symbiont Phaeobacter inhibens Shapes the Life
History of Its Algal Host Emiliania huxleyi, Front. Mar. Sci., 5,
1–12, https://doi.org/10.3389/fmars.2018.00188, 2018. a
Broecker, W. and Clark, E.: Ratio of coccolith CaCO3 to foraminifera CaCO3 in late Holocene deep sea sediments, Paleoceanography, 24, 1–11,
https://doi.org/10.1029/2009PA001731, 2009. a
Campbell, L., Shapiro, L. P., and Haugen, E.: Immunochemical characterization for eukaryotic ultraplankton from the Atlantic and Pacific oceans, J. Plankton Res., 16, 35–51, https://doi.org/10.1093/plankt/16.1.35, 1994. a
Cepek, M.: Zeitliche und räumliche Variationen von
Coccolithophoriden-Gemeinschaften im subtropischen Ost-Atlantik:
Untersuchungen an Plankton, Sinkstoffen und Sedimenten, PhD thesis, University of Bremen, Germany, German, 1996. a
Charalampopoulou, A., Poulton, A. J., Tyrrell, T., and Lucas, M. I.:
Irradiance and pH affect coccolithophore community composition on a transect between the North Sea and the Arctic Ocean, Mar. Ecol. Prog. Ser., 431, 25–43, https://doi.org/10.3354/meps09140, 2011. a
Charalampopoulou, A., Poulton, A. J., Bakker, D. C. E., Lucas, M. I., Stinchcombe, M. C., and Tyrrell, T.: Environmental drivers of coccolithophore abundance and calcification across Drake Passage (Southern Ocean), Biogeosciences, 13, 5917–5935, https://doi.org/10.5194/bg-13-5917-2016, 2016. a
Couceiro, L., Le Gac, M., Hunsperger, H. M., Mauger, S., Destombe, C., Cock, J. M., Ahmed, S., Coelho, S. M., Valero, M., and Peters, A. F.: Evolution and maintenance of haploid-diploid life cycles in natural populations: The case of the marine brown alga Ectocarpus, Evolution, 69, 1808–1822, https://doi.org/10.1111/evo.12702, 2015. a
Cros, L. and Fortuño, J. M.: Atlas of Northwestern Mediterranean
Coccolithophores, Sci. Mar., 66, 1–182,
https://doi.org/10.3989/scimar.2002.66s11, 2002. a
Cros, L., Kleijne, A., Zeltner, A., Billard, C., and Young, J. R.: New
examples of holococcolith-heterococcolith combination coccospheres and their implications for coccolithophorid biology, Mar. Micropaleontol., 39, 1–34, https://doi.org/10.1016/S0377-8398(00)00010-4, 2000. a
D'Amario, B., Ziveri, P., Grelaud, M., Oviedo, A., and Kralj, M.:
Coccolithophore haploid and diploid distribution patterns in the
Mediterranean Sea: Can a haplo-diploid life cycle be advantageous under
climate change?, J. Plankton Res., 39, 781–794,
https://doi.org/10.1093/plankt/fbx044, 2017. a, b
Daniels, C. J., Poulton, A. J., Young, J. R., Esposito, M., Humphreys, M. P.,
Ribas-Ribas, M., Tynan, E., and Tyrrell, T.: Species-specific calcite
production reveals Coccolithus pelagicus as the key calcifier in the Arctic
Ocean, Mar. Ecol. Prog. Ser., 555, 29–47, https://doi.org/10.3354/meps11820,
2016. a, b, c, d
de Vries, J. C., Monteiro, M. T. F., Andruleit, H., Böckel, B., Baumann, K.-H., Cerino, F., Charalampopoulou, A., Cepek, M., Cros, L., D'Amario, B., Daniels, C. J., Dimiza, M. D., Estrada, M., Eynaud, F., Giraudeau, J., Godrijan, J., Guerreiro, C. V., Guptha, M. V. S., Thierstein, H. R., Haidar, A. T., Karatsolis, B.-T., Kinkel, H., Luan, Q., Malinverno, E., Patil, S. M., Mohan, R., Poulton, A. J., Saavedra-Pellitero, M., Schiebel, R., Smith, H. E. K., Šupraha, L., Takahashi, K., Okada, H., Triantaphyllou, M., and Silver, M. W.: Global SEM coccolithophore abundance compilation, PANGAEA, https://doi.org/10.1594/PANGAEA.922933, 2020. a
Dimiza, M., Triantaphyllou, M., and Dermitzakis, M.: Vertical distribution and ecology of living coccolithophores in the marine ecosystems of Andros Island (Middle Aegean Sea) during late summer 2001, Hell. J.
Geosci., 43, 7–20, https://doi.org/10.1088/0004-637X/767/1/52, 2008. a
Dimiza, M. D., Triantaphyllou, M. V., Malinverno, E., Psarra, S., Karatsolis,
B.-T., Mara, P., Lagaria, A., and Gogou, A.: The composition and
distribution of living coccolithophores in the Aegean Sea (NE
Mediterranean), Micropaleontology, 61, 521–540, 2015. a
Dray, S. and Dufour, A. B.: The ade4 package: Implementing the duality diagram for ecologists, J. Stat. Softw., 22, 1–20,
https://doi.org/10.18637/jss.v022.i04, 2007. a
Durak, G. M., Taylor, A. R., Walker, C. E., Probert, I., De Vargas, C.,
Audic, S., Schroeder, D., Brownlee, C., and Wheeler, G. L.: A role for
diatom-like silicon transporters in calcifying coccolithophores, Nat.
Commun., 7, 10543, https://doi.org/10.1038/ncomms10543, 2016. a
Eynaud, F., Giraudeau, J., Pichon, J. J., and Pudsey, C. J.: Sea-surface
distribution of coccolithophores, diatoms, silicoflagellates and
dinoflagellates in the South Atlantic Ocean during the late austral summer
1995, Deep-Sea Research Pt. I, 46, 451–482, https://doi.org/10.1016/S0967-0637(98)00079-X, 1999. a
Finley, A., Banerjee, S., and Hjelle, Ø.: MBA: Multilevel B-Spline
Approximation, available at: https://cran.r-project.org/package=MBA (last access: August 2020), 2017. a
Fiorini, S., Middelburg, J. J., and Gattuso, J. P.: Testing the effects of
elevated pCO2 on coccolithophores (prymnesiophyceae): Comparison between
haploid and diploid life stages, J. Phycol., 47, 1281–1291,
https://doi.org/10.1111/j.1529-8817.2011.01080.x, 2011a. a, b
Fiorini, S., Middelburg, J. J., and Gattuso, J. P.: Effects of elevated
CO2 partial pressure and temperature on the coccolithophore Syracosphaera
pulchra, Aquat. Microb. Ecol., 64, 221–232, https://doi.org/10.3354/ame01520,
2011b. a, b
Frada, M., Probert, I., Allen, M. J., Wilson, W. H., and Vargas, C. D.: The
“Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi
in response to viral infection, P. Natl. Acad. Sci. USA, 105, 15944–15949, https://doi.org/10.1073/pnas.0807707105, 2008. a, b
Frada, M. J., Bidle, K. D., Probert, I., and de Vargas, C.: In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta),
Environ. Microbiol., 14, 1558–1569,
https://doi.org/10.1111/j.1462-2920.2012.02745.x, 2012. a, b
Frada, M. J., Rosenwasser, S., Ben-Dor, S., Shemi, A., Sabanay, H., and Vardi,
A.: Morphological switch to a resistant subpopulation in response to viral
infection in the bloom-forming coccolithophore Emiliania huxleyi, Plos
Pathog., 13, 1–17, https://doi.org/10.1371/journal.ppat.1006775, 2017. a
Fu, W., Randerson, J. T., and Moore, J. K.: Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models, Biogeosciences, 13, 5151–5170, https://doi.org/10.5194/bg-13-5151-2016, 2016. a
Geisen, M., Billard, C., Broerse, A. T., Cros, L., Probert, I., and Young,
J. R.: Life-cycle associations involving pairs of holococcolithophorid
species: Intraspecific variation or cryptic speciation?, Eur. J. Phycol., 37, 531–550, https://doi.org/10.1017/S0967026202003852, 2002. a, b
Giraudeau, J., Hulot, V., Hanquiez, V., Devaux, L., Howa, H., and Garlan, T.:
A survey of the summer coccolithophore community in the western Barents
Sea, J. Mar. Syst., 158, 93–105, https://doi.org/10.1016/j.jmarsys.2016.02.012, 2016. a
Godrijan, J., Young, J. R., Marić Pfannkuchen, D., Precali, R., and
Pfannkuchen, M.: Coastal zones as important habitats of coccolithophores: A study of species diversity, succession, and life-cycle phases, Limnol. Oceanogr., 63, 1692–1710, https://doi.org/10.1002/lno.10801, 2018. a, b, c, d, e, f, g, h, i, j
Guerreiro, C., Oliveira, A., De Stigter, H., Cachão, M., Sá, C., Borges, C., Cros, L., Santos, A., Fortuño, J. M., and Rodrigues, A.: Late winter coccolithophore bloom off central Portugal in response to river discharge and upwelling, Cont. Shelf Res., 59, 65–83,
https://doi.org/10.1016/j.csr.2013.04.016, 2013. a
Guillemin, M. L., Sepúlveda, R. D., Correa, J. A., and Destombe, C.:
Differential ecological responses to environmental stress in the life
history phases of the isomorphic red alga Gracilaria chilensis (Rhodophyta), J. Appl. Phycol., 25, 215–224, https://doi.org/10.1007/s10811-012-9855-8, 2013. a
Guptha, M. V., Mohan, R., and Muralinath, A. S.: Living coccolithophorids from the Arabian Sea, Rivista Italiana di Paleontologia e Stratigrafia, 100,
551–573, 1995. a
Haidar, A. T. and Thierstein, H. R.: Coccolithophore dynamics off Bermuda (N. Atlantic), Deep-Sea Res. Pt. II, 48,
1925–1956, https://doi.org/10.1016/S0967-0645(00)00169-7, 2001. a, b
Hoffmann, R., Kirchlechner, C., Langer, G., Wochnik, A. S., Griesshaber, E., Schmahl, W. W., and Scheu, C.: Insight into Emiliania huxleyi coccospheres by focused ion beam sectioning, Biogeosciences, 12, 825–834, https://doi.org/10.5194/bg-12-825-2015, 2015. a
Honjo, S. and Okada, H.: Community Structure of Coccolithophores in the Photic Layer of the Mid-Pacific, Micropaleontology, 20, 209, https://doi.org/10.2307/1485061, 1974. a, b, c
Hopkins, J. and Balch, W. M.: A New Approach to Estimating Coccolithophore
Calcification Rates From Space, J. Geophys. Res.-Biogeosci., 123, 1447–1459, https://doi.org/10.1002/2017JG004235, 2018. a
Houdan, A., Probert, I., Zatylny, C., Véron, B., and Billard, C.:
Ecology of oceanic coccolithophores. I. Nutritional preferences of the two
stages in the life cycle of Coccolithus braarudii and Calcidiscus
leptoporus, Aquat. Microbial Ecol., 44, 291–301,
https://doi.org/10.3354/ame044291, 2006. a, b, c, d
Hughes, J. S. and Otto, S. P.: Ecology and the Evolution of Biphasic Life
Cycles, Am. Nat., 154, 306–320, https://doi.org/10.1086/303241, 1999. a
Hutchinson, G. E.: Concluding Remarks, in: Cold SpringHarbor Symposia on
Quantitative Biology, Cold Spring Harbor Laboratory Press, USA, 415–427, https://doi.org/10.1201/9781315366746, 1957. a
Karatsolis, B. T., Triantaphyllou, M. V., Dimiza, M. D., Malinverno, E.,
Lagaria, A., Mara, P., Archontikis, O., and Psarra, S.: Coccolithophore
assemblage response to Black Sea Water inflow into the North Aegean Sea (NE
Mediterranean), Continental Shelf Res., 149, 138–150,
https://doi.org/10.1016/j.csr.2016.12.005, 2017. a
Kemp, A. E. and Villareal, T. A.: The case of the diatoms and the muddled
mandalas: Time to recognize diatom adaptations to stratified waters,
Prog. Oceanogr., 167, 138–149, https://doi.org/10.1016/j.pocean.2018.08.002,
2018. a
Kinkel, H., Baumann, K. H., and Cepek, M.: Coccolithophores in the equatorial Atlantic Ocean: Response to seasonal and Late Quaternary surface water variability, Mar. Micropaleontol., 39, 87–112,
https://doi.org/10.1016/S0377-8398(00)00016-5, 2000. a
Klaas, C. and Archer, D. E.: Association of sinking organic matter with
various types of mineral ballast in the deep sea: Implications for the rain
ratio, Global Biogeochem. Cy., 16, 63-1–63-14,
https://doi.org/10.1029/2001gb001765, 2002. a
Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D., and Kleypas,
J. A.: Coccolithophore growth and calcification in a changing ocean,
Prog. Oceanogr., 159, 276–295, https://doi.org/10.1016/j.pocean.2017.10.007,
2017. a, b
Krumhardt, K. M., Lovenduski, N. S., Long, M. C., Levy, M., Lindsay, K., Moore, J. K., and Nissen, C.: Coccolithophore Growth and Calcification in an
Acidified Ocean: Insights From Community Earth System Model Simulations,
J. Adv. Model. Earth Sys., 11, 1418–1437,
https://doi.org/10.1029/2018MS001483, 2019. a, b
Langer, G., Geisen, M., Baumann, K. H., Kläs, J., Riebesell, U., Thoms,
S., and Young, J. R.: Species-specific responses of calcifying algae to
changing seawater carbonate chemistry, Geochem. Geophys. Geosys.
7, Q09006, https://doi.org/10.1029/2005GC001227, 2006. a
Langer, G., Nehrke, G., Probert, I., Ly, J., and Ziveri, P.: Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry, Biogeosciences, 6, 2637–2646, https://doi.org/10.5194/bg-6-2637-2009, 2009. a
Langer, G., Taylor, A. R., Walker, C. E., Meyer, E. M., Joseph, O. B.,
Gal, A., Harper, G. M., Probert, I., Brownlee, C., and Wheeler, G. L.:
The role of silicon in the development of complex crystal shapes in coccolithophores, New Phytol., https://doi.org/10.1111/nph.17230, online first, 2021. a
Lee, S., Wolberg, G., and Shin, S. Y.: Scattered data interpolation with
multilevel b-splines, IEEE T. Vis. Comput. Gr., 3, 228–244, https://doi.org/10.1109/2945.620490, 1997. a
Lees, L. E., Krueger-Hadfield, S. A., Clark, A. J., Duermit, E. A., Sotka,
E. E., and Murren, C. J.: Nonnative Gracilaria vermiculophylla
tetrasporophytes are more difficult to debranch and are less nutritious than gametophytes, J. Phycol., 54, 471–482, https://doi.org/10.1111/jpy.12746,
2018. a
Luan, Q., Liu, S., Zhou, F., and Wang, J.: Living coccolithophore assemblages in the Yellow and East China Seas in response to physical processes during fall 2013, Mar. Micropaleontol., 123, 29–40,
https://doi.org/10.1016/j.marmicro.2015.12.004, 2016. a
Lubchenco, J. and Cubit, J.: Heteromorphic Life Histories of Certain Marine
Algae as Adaptations to Variations in Herbivory, Ecology, 61, 676–687,
https://doi.org/10.2307/1937433, 1980. a
Mable, B. K. and Otto, S. P.: The evolution of life cycles with haploid and
diploid phases, Bioessays, 20, 453–462,
https://doi.org/10.1002/(SICI)1521-1878(199806)20:6<453::AID-BIES3>3.0.CO;2-N, 1998. a
Malinverno, E.: Coccolithophorid distribution in the Ionian Sea and its
relationship to eastern Mediterranean circulation during late fall to early
winter 1997, J. Geophys. Res., 108, 8115,
https://doi.org/10.1029/2002JC001346, 2003. a
Malinverno, E., Triantaphyllou, M. V., and Dimiza, M. D.: Coccolithophore
assemblage distribution along a temperate to polar gradient in the West
Pacific sector of the Southern Ocean (January 2005), Micropaleontology, 61, 489–506, https://doi.org/10.1007/BF01874407, 2015. a
Mammola, S.: Assessing similarity of n-dimensional hypervolumes: Which metric to use?, J. Biogeogr., 46, 2012–2023, https://doi.org/10.1111/jbi.13618,
2019. a
Margalef, R.: Life-forms of phytoplankton as survival alternatives in an
unstable environment, Oceanol. Acta, 1, 493–509,
https://doi.org/10.1007/BF00202661, 1978. a, b, c
Mayers, T. J., Bramucci, A. R., Yakimovich, K. M., and Case, R. J.: A
bacterial pathogen displaying temperature-enhanced virulence of the microalga Emiliania huxleyi, Front. Microbiol., 7, 1–15,
https://doi.org/10.3389/fmicb.2016.00892, 2016. a
Meyer, J. and Riebesell, U.: Reviews and Syntheses: Responses of coccolithophores to ocean acidification: a meta-analysis, Biogeosciences, 12, 1671–1682, https://doi.org/10.5194/bg-12-1671-2015, 2015. a
Monteiro, F. M., Bach, L. T., Brownlee, C., Bown, P., Rickaby, R. E., Poulton, A. J., Tyrrell, T., Beaufort, L., Dutkiewicz, S., Gibbs, S., Gutowska, M. A., Lee, R., Riebesell, U., Young, J., and Ridgwell, A.: Why marine phytoplankton calcify, Sci. Adv., 2, e1501822, https://doi.org/10.1126/sciadv.1501822,
2016. a, b
Nissen, C., Vogt, M., Münnich, M., Gruber, N., and Haumann, F. A.: Factors controlling coccolithophore biogeography in the Southern Ocean, Biogeosciences, 15, 6997–7024, https://doi.org/10.5194/bg-15-6997-2018, 2018. a
Okada, H. and Honjo, S.: The distribution of oceanic coccolithophorids in the Pacific, Deep Sea Res. Oceanogr. Abstracts, 20, 355–374,
https://doi.org/10.1016/0011-7471(73)90059-4, 1973. a, b, c
Patil, S. M., Mohan, R., Shetye, S. S., Gazi, S., Baumann, K. H., and Jafar,
S.: Biogeographic distribution of extant Coccolithophores in the Indian
sector of the Southern Ocean, Mar. Micropaleontol., 137, 16–30,
https://doi.org/10.1016/j.marmicro.2017.08.002, 2017. a
Poulton, A. J., Holligan, P. M., Hickman, A., Kim, Y. N., Adey, T. R.,
Stinchcombe, M. C., Holeton, C., Root, S., and Woodward, E. M. S.:
Phytoplankton carbon fixation, chlorophyll-biomass and diagnostic pigments
in the Atlantic Ocean, Deep-Sea Res. Pt. II, 53, 1593–1610, https://doi.org/10.1016/j.dsr2.2006.05.007, 2006. a, b
Poulton, A. J., Adey, T. R., Balch, W. M., and Holligan, P. M.: Relating
coccolithophore calcification rates to phytoplankton community dynamics:
Regional differences and implications for carbon export, Deep-Sea Res.
Pt. II, 54, 538–557, https://doi.org/10.1016/j.dsr2.2006.12.003, 2007. a
Poulton, A. J., Painter, S. C., Young, J. R., Bates, N. R., Bowler, B.,
Drapeau, D., Lyczsckowski, E., and Balch, W. M.: The 2008 Emiliania huxleyi bloom along the Patagonian Shelf: Ecology, biogeochemistry, and cellular calcification, Global Biogeochem. Cy., 27, 1023–1033,
https://doi.org/10.1002/2013GB004641, 2013. a
Poulton, A. J., Holligan, P. M., Charalampopoulou, A., and Adey, T. R.:
Coccolithophore ecology in the tropical and subtropical Atlantic Ocean: New perspectives from the Atlantic meridional transect (AMT) programme, Prog. Oceanogr., 158, 150–170, https://doi.org/10.1016/j.pocean.2017.01.003,
2017. a, b, c, d, e
Reid, F. M.: Coccolithophorids of the North Pacific Central Gyre with notes on their vertical and seasonal distribution, Micropaleontol., 26, 151–176,
https://doi.org/10.2307/1485436, 1980. a, b, c
Rescan, M., Lenormand, T., and Roze, D.: Interactions between genetic and
ecological effects on the evolution of life cycles, Am. Nat.,
187, 19–34, https://doi.org/10.1086/684167, 2015. a
Ridgwell, A., Zondervan, I., Hargreaves, J. C., Bijma, J., and Lenton, T. M.: Assessing the potential long-term increase of oceanic fossil fuel CO2 uptake due to CO2-calcification feedback, Biogeosciences, 4, 481–492, https://doi.org/10.5194/bg-4-481-2007, 2007. a
Ridgwell, A., Schmidt, D. N., Turley, C., Brownlee, C., Maldonado, M. T., Tortell, P., and Young, J. R.: From laboratory manipulations to Earth system models: scaling calcification impacts of ocean acidification, Biogeosciences, 6, 2611–2623, https://doi.org/10.5194/bg-6-2611-2009, 2009. a, b
Rigual Hernández, A. S., Trull, T. W., Nodder, S. D., Flores, J. A., Bostock, H., Abrantes, F., Eriksen, R. S., Sierro, F. J., Davies, D. M., Ballegeer, A.-M., Fuertes, M. A., and Northcote, L. C.: Coccolithophore biodiversity controls carbonate export in the Southern Ocean, Biogeosciences, 17, 245–263, https://doi.org/10.5194/bg-17-245-2020, 2020. a, b
Rivero-Calle, S., Gnanadesikan, A., Del Castillo, C. E., Balch, W. M., and
Guikema, S. D.: Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2, Science, 350, 1533–1537,
https://doi.org/10.1126/science.aaa8026, 2015. a
Rokitta, S. D., de Nooijer, L. J., Trimborn, S., de Vargas, C., Rost, B., and
John, U.: Transcriptome analyses reveal differential gene expression
patterns between the life-cycle stages of emiliania huxleyi (haptophyta) and reflect specialization to different ecological niches, J. Phycol.,
47, 829–838, https://doi.org/10.1111/j.1529-8817.2011.01014.x, 2011. a
Saavedra-Pellitero, M., Baumann, K. H., Flores, J. A., and Gersonde, R.:
Biogeographic distribution of living coccolithophores in the pacific sector of the southern ocean, Mar. Micropaleontol., 109, 1–20,
https://doi.org/10.1016/j.marmicro.2014.03.003, 2014. a
Schiebel, R., Zeltner, A., Treppke, U. F., Waniek, J. J., Bollmann, J., Rixen, T., and Hemleben, C.: Distribution of diatoms, coccolithophores and planktic foraminifers along a trophic gradient during SW monsoon in the Arabian Sea, Mar. Micropaleontol., 51, 345–371, https://doi.org/10.1016/j.marmicro.2004.02.001, 2004. a
Schiebel, R., Brupbacher, U., Schmidtko, S., Nausch, G., Waniek, J. J., and
Thierstein, H. R.: Spring coccolithophore production and dispersion in the
temperate eastern North Atlantic Ocean, J. Geophys. Res., 116, 1–12, https://doi.org/10.1029/2010JC006841, 2011. a
Silver, M.: Vertigo KM0414 phytoplankton species data and biomass data:
abundance and fluxes from CTDs, Ocean Carbon and Biogeochemistry Data System, OCB DMO, WHOI, 2009. a
Skejić, S., Arapov, J., Kovačević, V.,
Bužančić, M., Bensi, M., Giani, M., Bakrač, A.,
Mihanović, H., Gladan, Ž. N., Urbini, L., and Grbec, B.:
Coccolithophore diversity in open waters of the middle Adriatic Sea in pre- and post-winter periods, Mar. Micropaleontol., 143, 30–45,
https://doi.org/10.1016/j.marmicro.2018.07.006, 2018. a
Smith, H. E. K., Poulton, A. J., Garley, R., Hopkins, J., Lubelczyk, L. C., Drapeau, D. T., Rauschenberg, S., Twining, B. S., Bates, N. R., and Balch, W. M.: The influence of environmental variability on the biogeography of coccolithophores and diatoms in the Great Calcite Belt, Biogeosciences, 14, 4905–4925, https://doi.org/10.5194/bg-14-4905-2017, 2017. a
Šupraha, L., Ljubešić, Z., Mihanović, H., and
Henderiks, J.: Coccolithophore life-cycle dynamics in a coastal
Mediterranean ecosystem: Seasonality and species-specific patterns, J. Plankton Res., 38, 1178–1193, https://doi.org/10.1093/plankt/fbw061, 2016. a, b, c, d
Takahashi, K. and Okada, H.: Environmental control on the biogeography of
modern coccolithophores in the southeastern Indian Ocean offshore of Western Australia, Mar. Micropaleontol., 39, 73–86,
https://doi.org/10.1016/S0377-8398(00)00015-3, 2000. a
Taylor, A. R., Brownlee, C., and Wheeler, G.: Coccolithophore Cell Biology:
Chalking Up Progress, Annu. Rev. Mar. Sci., 9, 283–310,
https://doi.org/10.1146/annurev-marine-122414-034032, 2017.
a, b
Triantaphyllou, M. V., Baumann, K. H., Karatsolis, B. T., Dimiza, M. D.,
Psarra, S., Skampa, E., Patoucheas, P., Vollmar, N. M., Koukousioura, O.,
Katsigera, A., Krasakopoulou, E., and Nomikou, P.: Coccolithophore community response along a natural CO2 gradient off Methana (SW Saronikos Gulf, Greece, NE Mediterranean), Plos One, 13, e0200012, https://doi.org/10.1371/journal.pone.0200012, 2018. a, b
Volpe, G., Nardelli, B. B., Cipollini, P., Santoleri, R., and Robinson, I. S.: Seasonal to interannual phytoplankton response to physical processes in the Mediterranean Sea from satellite observations, Remote Sens.
Environ., 117, 223–235, https://doi.org/10.1016/j.rse.2011.09.020, 2012. a
Von Dassow, P. and Montresor, M.: Unveiling the mysteries of phytoplankton
life cycles: Patterns and opportunities behind complexity, J.
Plankton Res., 33, 3–12, https://doi.org/10.1093/plankt/fbq137, 2011. a
Xu, J., Bach, L. T., Schulz, K. G., Zhao, W., Gao, K., and Riebesell, U.: The role of coccoliths in protecting Emiliania huxleyi against stressful light and UV radiation, Biogeosciences, 13, 4637–4643, https://doi.org/10.5194/bg-13-4637-2016, 2016. a
Young, J. R., Bown, P. R., and Lees, J. A.: Nannotax 3 website,
available at: http://www.mikrotax.org/Nannotax3, last access: August 2020. a
Young, J. R., Geisen, M., Cros, L., Kleijne, A., Sprengel, C., Probert, I., and Østergaard, J.: A guide to extant coccolithophore taxonomy, J. Nannoplankton Res., p. 125, 2003. a
Zeebe, R. E.: History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification, Annu. Rev. Earth Planet. Sci., 40,
141–165, https://doi.org/10.1146/annurev-earth-042711-105521, 2012. a
Ziveri, P., de Bernardi, B., Baumann, K. H., Stoll, H. M., and Mortyn, P. G.:
Sinking of coccolith carbonate and potential contribution to organic carbon ballasting in the deep ocean, Deep-Sea Res. Pt. II, 54, 659–675, https://doi.org/10.1016/j.dsr2.2007.01.006, 2007. a, b
Zondervan, I.: The effects of light, macronutrients, trace metals and CO2 on
the production of calcium carbonate and organic carbon in coccolithophores-A review, Deep-Sea Res. Pt. II, 54, 521–537, https://doi.org/10.1016/j.dsr2.2006.12.004, 2007. a
Short summary
Coccolithophores are important calcifying phytoplankton with an overlooked life cycle. We compile a global dataset of marine coccolithophore abundance to investigate the environmental characteristics of each life cycle phase. We find that both phases contribute to coccolithophore abundance and that their different environmental preference increases coccolithophore habitat. Accounting for the life cycle of coccolithophores is thus crucial for understanding their ecology and biogeochemical impact.
Coccolithophores are important calcifying phytoplankton with an overlooked life cycle. We...
Altmetrics
Final-revised paper
Preprint