Articles | Volume 18, issue 5
https://doi.org/10.5194/bg-18-1543-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1543-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stable isotopic composition of top consumers in Arctic cryoconite holes: revealing divergent roles in a supraglacial trophic network
Tereza Novotná Jaroměřská
CORRESPONDING AUTHOR
Department of Ecology, Faculty of Science, Charles University, Prague,
128 44, Czech Republic
Jakub Trubač
Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty
of Science, Charles University, Prague, 128 43, Czech Republic
Krzysztof Zawierucha
Department of Animal Taxonomy and Ecology, Adam Mickiewicz University,
Poznań, 61-614, Poland
Lenka Vondrovicová
Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty
of Science, Charles University, Prague, 128 43, Czech Republic
Miloslav Devetter
Institute of Soil Biology, Biology Centre, Czech Academy of Sciences,
České Budějovice, 370 05, Czech Republic
Centre for Polar Ecology, University of South Bohemia, České
Budějovice, 370 05, Czech Republic
Jakub D. Žárský
Department of Ecology, Faculty of Science, Charles University, Prague,
128 44, Czech Republic
Related authors
Tereza Novotná Jaroměřská, Roberto Ambrosini, Dorota Richter, Miroslawa Pietryka, Przemyslaw Niedzielski, Juliana Souza-Kasprzyk, Piotr Klimaszyk, Andrea Franzetti, Francesca Pittino, Lenka Vondrovicová, Tyler Kohler, and Krzysztof Zawierucha
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-198, https://doi.org/10.5194/bg-2022-198, 2022
Preprint withdrawn
Short summary
Short summary
Changes in the composition and biomass of photoautotrophs and consumers on glacier indicated phenological or ecological controls over their communities. We demonstrated that the recognition of the community structure of cryoconite holes requires a broad-scale and seasonal approach since biological communities vary in time and space on the glacier surface.
Guillaume Lamarche-Gagnon, Marek Stibal, Alexandre M. Anesio, Jemma L. Wadham, Jon Hawkings, Lukáš Falteisek, Kristýna Vrbická, Petra Klímová, Jakub D. Žárský, Tyler J. Kohler, Elizabeth A. Bagshaw, Jade E. Hatton, Alex D. Beaton, and Jon Telling
EGUsphere, https://doi.org/10.5194/egusphere-2024-817, https://doi.org/10.5194/egusphere-2024-817, 2024
Short summary
Short summary
To better understand the microbial ecosystems that underlay Earth’s glaciers, studies often rely on indirect sampling of the subglacial environment via proglacial meltwater runoff. Our research in Greenland reveals that fluctuations in glacier melt can affect microbial composition in runoff, highlighting important biases often overlooked in studies of glacial runoff that might skew interpretations as to the subglacial origin of microbial communities exported within meltwaters.
Tereza Novotná Jaroměřská, Roberto Ambrosini, Dorota Richter, Miroslawa Pietryka, Przemyslaw Niedzielski, Juliana Souza-Kasprzyk, Piotr Klimaszyk, Andrea Franzetti, Francesca Pittino, Lenka Vondrovicová, Tyler Kohler, and Krzysztof Zawierucha
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-198, https://doi.org/10.5194/bg-2022-198, 2022
Preprint withdrawn
Short summary
Short summary
Changes in the composition and biomass of photoautotrophs and consumers on glacier indicated phenological or ecological controls over their communities. We demonstrated that the recognition of the community structure of cryoconite holes requires a broad-scale and seasonal approach since biological communities vary in time and space on the glacier surface.
Related subject area
Biodiversity and Ecosystem Function: Freshwater
Environmental drivers of spatio-temporal dynamics in floodplain vegetation: grasslands as habitat for megafauna in Bardia National Park (Nepal)
Geodiversity influences limnological conditions and freshwater ostracode species distributions across broad spatial scales in the northern Neotropics
Arctic aquatic graminoid tundra responses to nutrient availability
Experimental tests of water chemistry response to ornithological eutrophication: biological implications in Arctic freshwaters
Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?
Significance of climate and hydrochemistry on shape variation – a case study on Neotropical cytheroidean Ostracoda
Assembly processes of gastropod community change with horizontal and vertical zonation in ancient Lake Ohrid: a metacommunity speciation perspective
Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard
Unusual biogenic calcite structures in two shallow lakes, James Ross Island, Antarctica
Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes
Constant diversification rates of endemic gastropods in ancient Lake Ohrid: ecosystem resilience likely buffers environmental fluctuations
Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forested stream
Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes
Explosive demographic expansion by dreissenid bivalves as a possible result of astronomical forcing
Phytoplankton community structure in the Lena Delta (Siberia, Russia) in relation to hydrography
Lacustrine mollusc radiations in the Lake Malawi Basin: experiments in a natural laboratory for evolution
DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages
Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe
Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa
Spatially explicit analysis of gastropod biodiversity in ancient Lake Ohrid
A freshwater biodiversity hotspot under pressure – assessing threats and identifying conservation needs for ancient Lake Ohrid
Stratigraphic analysis of lake level fluctuations in Lake Ohrid: an integration of high resolution hydro-acoustic data and sediment cores
Sediment core fossils in ancient Lake Ohrid: testing for faunal change since the Last Interglacial
Testing the spatial and temporal framework of speciation in an ancient lake species flock: the leech genus Dina (Hirudinea: Erpobdellidae) in Lake Ohrid
Native Dreissena freshwater mussels in the Balkans: in and out of ancient lakes
Jitse Bijlmakers, Jasper Griffioen, and Derek Karssenberg
Biogeosciences, 20, 1113–1144, https://doi.org/10.5194/bg-20-1113-2023, https://doi.org/10.5194/bg-20-1113-2023, 2023
Short summary
Short summary
At the foot of the Himalayas in Nepal, land cover time series and data of environmental drivers show changes in disturbance-dependent grasslands that serve as habitat for endangered megafauna. The changes in surface area and heterogeneity of the grassland patches are attributed to a relocation of the dominant river channel of the Karnali River and associated decline of hydromorphological disturbances and a decrease in anthropogenic disturbances after its establishment as conservation area.
Laura Macario-González, Sergio Cohuo, Philipp Hoelzmann, Liseth Pérez, Manuel Elías-Gutiérrez, Margarita Caballero, Alexis Oliva, Margarita Palmieri, María Renée Álvarez, and Antje Schwalb
Biogeosciences, 19, 5167–5185, https://doi.org/10.5194/bg-19-5167-2022, https://doi.org/10.5194/bg-19-5167-2022, 2022
Short summary
Short summary
We evaluate the relationships between geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. Geological, limnological, geochemical, and mineralogical characteristics of 76 systems reveal two main limnological regions and seven subregions. Water ionic and sediment composition are the most influential. Geodiversity strongly influences limnological conditions, which in turn influence ostracode composition and distribution.
Christian G. Andresen and Vanessa L. Lougheed
Biogeosciences, 18, 2649–2662, https://doi.org/10.5194/bg-18-2649-2021, https://doi.org/10.5194/bg-18-2649-2021, 2021
Short summary
Short summary
Aquatic tundra plants dominate productivity and methane fluxes in the Arctic coastal plain. We assessed how environmental nutrient availability influences production of biomass and greenness of aquatic tundra. We found phosphorous to be the main nutrient limiting biomass productivity and greenness in Arctic aquatic grasses. This study highlights the importance of nutrient pools and mobilization between terrestrial–aquatic systems and their influence on regional carbon and energy feedbacks.
Heather L. Mariash, Milla Rautio, Mark Mallory, and Paul A. Smith
Biogeosciences, 16, 4719–4730, https://doi.org/10.5194/bg-16-4719-2019, https://doi.org/10.5194/bg-16-4719-2019, 2019
Short summary
Short summary
Across North America and Europe, goose populations have increased exponentially in response to agricultural intensification. By using an experimental approach, we empirically demonstrated that geese act as bio-vectors, making terrestrial nutrients more bioavailable to freshwater systems. The study revealed that the nutrient loading from goose faeces has the potential to change phytoplankton community composition, with a shift toward an increased presence of cyanobacteria.
Gwenaël Abril and Alberto V. Borges
Biogeosciences, 16, 769–784, https://doi.org/10.5194/bg-16-769-2019, https://doi.org/10.5194/bg-16-769-2019, 2019
Short summary
Short summary
Based on classical concepts in ecology, and a literature survey, we highlight the importance of flooded land as a preferential source of atmospheric carbon to aquatic systems at the global scale. Studies in terrestrial and aquatic ecosystems could be reconciled by considering the occurrence of an efficient wetland CO2 pump to river systems. New methodological approaches coupling hydrology and ecology are also necessary to improve scientific knowledge on carbon fluxes at the land–water interface.
Claudia Wrozyna, Thomas A. Neubauer, Juliane Meyer, Maria Ines F. Ramos, and Werner E. Piller
Biogeosciences, 15, 5489–5502, https://doi.org/10.5194/bg-15-5489-2018, https://doi.org/10.5194/bg-15-5489-2018, 2018
Short summary
Short summary
How environmental change affects a species' phenotype is crucial for taxonomy and biodiversity assessments and for their application as paleoecological indicators. Morphometric data of a Neotropical ostracod species, as well as several climatic and hydrochemical variables, were used to investigate the link between morphology and environmental conditions. Temperature seasonality, annual precipitation, and chloride and sulphate concentrations were identified as drivers for ostracod ecophenotypy.
Torsten Hauffe, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 2901–2911, https://doi.org/10.5194/bg-13-2901-2016, https://doi.org/10.5194/bg-13-2901-2016, 2016
T. R. Vonnahme, M. Devetter, J. D. Žárský, M. Šabacká, and J. Elster
Biogeosciences, 13, 659–674, https://doi.org/10.5194/bg-13-659-2016, https://doi.org/10.5194/bg-13-659-2016, 2016
Short summary
Short summary
The diversity of microalgae and cyanobacteria in cryoconites on three high-Arctic glaciers was investigated. Possible bottom-up controls via nutrient limitation, wind dispersal, and hydrological stability were measured. Grazer populations were quantified to estimate the effect of top-down controls. Nutrient limitation appeared to be the most important control on the diversity and competition outcomes of microalgae and cyanobacteria.
J. Elster, L. Nedbalová, R. Vodrážka, K. Láska, J. Haloda, and J. Komárek
Biogeosciences, 13, 535–549, https://doi.org/10.5194/bg-13-535-2016, https://doi.org/10.5194/bg-13-535-2016, 2016
J. Comte, C. Lovejoy, S. Crevecoeur, and W. F. Vincent
Biogeosciences, 13, 175–190, https://doi.org/10.5194/bg-13-175-2016, https://doi.org/10.5194/bg-13-175-2016, 2016
Short summary
Short summary
Thaw ponds and lakes varied in their bacterial community structure. A small number of taxa occurred in high abundance and dominated many of the communities. Nevertheless, there were taxonomic differences among different valleys implying some degree of habitat selection. Association networks were composed of a limited number of highly connected OTUs. These "keystone species" were not merely the abundant taxa, whose loss would greatly alter the structure and functioning of these aquatic ecosystem.
K. Föller, B. Stelbrink, T. Hauffe, C. Albrecht, and T. Wilke
Biogeosciences, 12, 7209–7222, https://doi.org/10.5194/bg-12-7209-2015, https://doi.org/10.5194/bg-12-7209-2015, 2015
Short summary
Short summary
Based on our molecular data and performed analyses we found that the gastropods studied represent a comparatively old group that most likely evolved with a constant rate of diversification. However, preliminary data of the SCOPSCO deep-drilling program indicate signatures of environmental/climatic perturbations in Lake Ohrid. We therefore propose that the constant rate observed has been caused by a potential lack of catastrophic environmental events and/or a high ecosystem resilience.
S. Bernal, A. Lupon, M. Ribot, F. Sabater, and E. Martí
Biogeosciences, 12, 1941–1954, https://doi.org/10.5194/bg-12-1941-2015, https://doi.org/10.5194/bg-12-1941-2015, 2015
Short summary
Short summary
Terrestrial inputs are considered the major driver of longitudinal patterns of nutrient concentration. Yet we show that longitudinal trends result from hydrological mixing with terrestrial inputs and in-stream processes. We challenge the idea that nutrient concentrations decrease downstream when in-stream net uptake is high. Conversely, in-stream processes can strongly affect stream nutrient chemistry and fluxes even in the absence of consistent longitudinal trends in nutrient concentration.
P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, V. E. Villafañe, and E. W. Helbling
Biogeosciences, 12, 697–712, https://doi.org/10.5194/bg-12-697-2015, https://doi.org/10.5194/bg-12-697-2015, 2015
Short summary
Short summary
Under UVR and stratification,the commensalistic algae-bacteria interaction was strengthened in the high-UVR lake, where excretion of organic carbon rates exceeded the bacterial carbon demand,but did not occur in the low-UVR lake.The greater UVR damage to algae and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates these lakes would be especially vulnerable to UVR. These results have implications for the C cycle in lakes of the Mediterranean region.
M. Harzhauser, O. Mandic, A. K. Kern, W. E. Piller, T. A. Neubauer, C. Albrecht, and T. Wilke
Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, https://doi.org/10.5194/bg-10-8423-2013, 2013
A. C. Kraberg, E. Druzhkova, B. Heim, M. J. G. Loeder, and K. H. Wiltshire
Biogeosciences, 10, 7263–7277, https://doi.org/10.5194/bg-10-7263-2013, https://doi.org/10.5194/bg-10-7263-2013, 2013
D. Van Damme and A. Gautier
Biogeosciences, 10, 5767–5778, https://doi.org/10.5194/bg-10-5767-2013, https://doi.org/10.5194/bg-10-5767-2013, 2013
I. Domaizon, O. Savichtcheva, D. Debroas, F. Arnaud, C. Villar, C. Pignol, B. Alric, and M. E. Perga
Biogeosciences, 10, 3817–3838, https://doi.org/10.5194/bg-10-3817-2013, https://doi.org/10.5194/bg-10-3817-2013, 2013
E. W. Helbling, P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, M. Villar-Argaiz, and V. E. Villafañe
Biogeosciences, 10, 1037–1050, https://doi.org/10.5194/bg-10-1037-2013, https://doi.org/10.5194/bg-10-1037-2013, 2013
C. H. Hsieh, Y. Sakai, S. Ban, K. Ishikawa, T. Ishikawa, S. Ichise, N. Yamamura, and M. Kumagai
Biogeosciences, 8, 1383–1399, https://doi.org/10.5194/bg-8-1383-2011, https://doi.org/10.5194/bg-8-1383-2011, 2011
T. Hauffe, C. Albrecht, K. Schreiber, K. Birkhofer, S. Trajanovski, and T. Wilke
Biogeosciences, 8, 175–188, https://doi.org/10.5194/bg-8-175-2011, https://doi.org/10.5194/bg-8-175-2011, 2011
G. Kostoski, C. Albrecht, S. Trajanovski, and T. Wilke
Biogeosciences, 7, 3999–4015, https://doi.org/10.5194/bg-7-3999-2010, https://doi.org/10.5194/bg-7-3999-2010, 2010
K. Lindhorst, H. Vogel, S. Krastel, B. Wagner, A. Hilgers, A. Zander, T. Schwenk, M. Wessels, and G. Daut
Biogeosciences, 7, 3531–3548, https://doi.org/10.5194/bg-7-3531-2010, https://doi.org/10.5194/bg-7-3531-2010, 2010
C. Albrecht, H. Vogel, T. Hauffe, and T. Wilke
Biogeosciences, 7, 3435–3446, https://doi.org/10.5194/bg-7-3435-2010, https://doi.org/10.5194/bg-7-3435-2010, 2010
S. Trajanovski, C. Albrecht, K. Schreiber, R. Schultheiß, T. Stadler, M. Benke, and T. Wilke
Biogeosciences, 7, 3387–3402, https://doi.org/10.5194/bg-7-3387-2010, https://doi.org/10.5194/bg-7-3387-2010, 2010
T. Wilke, R. Schultheiß, C. Albrecht, N. Bornmann, S. Trajanovski, and T. Kevrekidis
Biogeosciences, 7, 3051–3065, https://doi.org/10.5194/bg-7-3051-2010, https://doi.org/10.5194/bg-7-3051-2010, 2010
Cited articles
Abelson, P. H. and Hoering, T. C.: Carbon isotope fractionation in formation
of amino acids by photosynthetic organisms, P. Natl. Acad. Sci. USA, 47,
623, https://doi.org/10.1073/pnas.47.5.623, 1961.
Aberle, N. and Malzahn, A. M.: Interspecific and nutrient-dependent
variations in stable isotope fractionation: experimental studies simulating
pelagic multitrophic systems, Oecologia, 154, 291–303,
https://doi.org/10.1007/s00442-007-0829-5, 2007.
Adams, T. S. and Sterner, R. W.: The effect of dietary nitrogen content on
trophic level 15N enrichment, Limnol. Oceanogr., 45, 601–607,
https://doi.org/10.4319/lo.2000.45.3.0601, 2000.
Almela, P., Velázquez, D., Rico, E., Justel, A., and Quesada, A.: Carbon
pathways through the food web of a microbial mat from Byers Peninsula,
Antarctica, Front. Microbiol., 10, 628, https://doi.org/10.3389/fmicb.2019.00628, 2019.
Altabet, M. A. and Small, L. F.: Nitrogen isotopic ratios in fecal pellets
produced by marine Zooplankton, Geochim. Cosmochim. Ac., 54, 155–163,
https://doi.org/10.1016/0016-7037(90)90203-W, 1990.
Anderson, L. E.: Hoyer's solution as a rapid permanent mounting medium for
bryophytes, Bryologist, 57, 242–244, 1954.
Anesio, A. M., Hodson, A. J., Fritz, A., Psenner, R., and Sattler, B.: High
microbial activity on glaciers: importance to the global carbon cycle, Glob.
Change Biol., 15, 955–960, https://doi.org/10.1111/j.1365-2486.2008.01758.x, 2009.
Anesio, A. M., Sattler, B., Foreman, C., Telling, J., Hodson, A., Tranter,
M., and Psenner, R.: Carbon fluxes through bacterial communities on glacier
surfaces, Ann. Glaciol., 51, 32–40, https://doi.org/10.3189/172756411795932092, 2010.
Bagshaw, E. A., Tranter, M., Fountain, A. G., Welch, K., Basagic, H. J., and
Lyons, W. B.: Do cryoconite holes have the potential to be significant
sources of C, N, and P to downstream depauperate ecosystems of Taylor
Valley, Antarctica?, Arct. Antarct. Alp. Res., 45, 440–454,
https://doi.org/10.1657/1938-4246-45.4.440, 2013.
Bardgett, R. D., Richter, A., Bol, R., Garnett, M. H., Bäumler, R., Xu,
X., Lopez-Capel, E., Manning, D. A., Hobbs, P. J., Hartley, I. R., and
Wanek, W.: Heterotrophic microbial communities use ancient carbon following
glacial retreat, Biol. Letters, 3, 487–490, https://doi.org/10.1098/rsbl.2007.0242,
2007.
Barker, W. W. and Banfield, J. F.: Zones of chemical and physical
interaction at interfaces between microbial communities and minerals: a
model, Geomicrobiol. J., 15, 223–244, https://doi.org/10.1080/01490459809378078, 1998.
Benassai, S., Becagli, S., Gragnani, R., Magand, O., Proposito, M., Fattori,
I., Traversi, R., and Udisti, R.: Sea-spray deposition in Antarctic coastal
and plateau areas from ITASE traverses, Ann. Glaciol., 41, 32–40,
https://doi.org/10.3189/172756405781813285, 2005.
Blair, N., Leu, A., Muñoz, E., Olsen, J., Kwong, E., and Des Marais, D.:
Carbon isotopic fractionation in heterotrophic microbial metabolism, Appl.
Environ. Microb., 50, 996–1001, 1985.
Bøggild, C. E., Brandt, R. E., Brown, K. J., and Warren, S. G.: The
ablation zone in northeast Greenland: ice types, albedos and impurities, J.
Glaciol., 56, 101–113, https://doi.org/10.3189/002214310791190776, 2010.
Bosley, K. L., Witting, D. A., Chambers, R. C., and Wainright, S. C.:
Estimating turnover rates of carbon and nitrogen in recently metamorphosed
winter flounder Pseudopleuronectes americanus with stable isotopes, Mar. Ecol.-Prog. Ser., 236, 233–240,
https://doi.org/10.3354/meps236233, 2002.
Brodie, C. R., Leng, M. J., Casford, J. S., Kendrick, C. P., Lloyd, J. M.,
Yongqiang, Z., and Bird, M. I.: Evidence for bias in C and N concentrations
and δ13C composition of terrestrial and aquatic organic
materials due to pre-analysis acid preparation methods, Chem. Geol., 282,
67–83, https://doi.org/10.1016/j.chemgeo.2011.01.007, 2011.
Bryndová, M., Stec, D., Schill, R. O., Michalczyk, Ł., and Devetter,
M.: Dietary preferences and diet effects on life-history traits of
tardigrades, Zool. J. Linn. Soc., 188, 865–877,
https://doi.org/10.1093/zoolinnean/zlz146, 2020.
Cameron, K. A., Hodson, A. J., and Osborn, A. M.: Structure and diversity of
bacterial, eukaryotic and archaeal communities in glacial cryoconite holes
from the Arctic and the Antarctic, FEMS Microbiol. Ecol., 82, 254–267,
https://doi.org/10.1111/j.1574-6941.2011.01277.x, 2012.
Carson, J. K., Rooney, D., Gleeson, D. B., and Clipson, N.: Altering the
mineral composition of soil causes a shift in microbial community
structure, FEMS Microbiol. Ecol., 61, 414–423,
https://doi.org/10.1111/j.1574-6941.2007.00361.x, 2007.
Chandler, D. M., Alcock, J. D., Wadham, J. L., Mackie, S. L., and Telling, J.: Seasonal changes of ice surface characteristics and productivity in the ablation zone of the Greenland Ice Sheet, The Cryosphere, 9, 487–504, https://doi.org/10.5194/tc-9-487-2015, 2015.
Cifuentes, L. A., Sharp, J. H., and Fogel, M. L.: Stable carbon and nitrogen
isotope biogeochemistry in the Delaware estuary, Limnol. Oceanogr., 33,
1102–1115, 1988.
Cook, J., Edwards, A., Takeuchi, N., and Irvine-Fynn, T.: Cryoconite: the
dark biological secret of the cryosphere, Prog. Phys. Geog., 40, 66–111,
https://doi.org/10.1177/0309133315616574, 2016.
Darby, B. J. and Neher, D. A.: Stable isotope composition of microfauna
supports the occurrence of biologically fixed nitrogen from cyanobacteria in
desert soil food webs, J. Arid Environ., 85, 76–78,
https://doi.org/10.1016/j.jaridenv.2012.06.006, 2012.
Degens, E. T., Guillard, R. R. L., Sackett, W. M., and Hellebust,
J. A.: Metabolic fractionation of carbon isotopes in marine
plankton – I. Temperature and respiration experiments, Deep
Sea Research and Oceanographic Abstracts, 15, 1–9, https://doi.org/10.1016/0011-7471(68)90024-7, 1968.
DeNiro, M. J. and Epstein, S.: Influence of diet on the distribution of
carbon isotopes in animals, Geochim. Cosmochim. Ac., 42, 495–506,
https://doi.org/10.1016/0016-7037(78)90199-0, 1978.
DeNiro, M. J. and Epstein, S.: Influence of diet on the distribution of
nitrogen isotopes in animals, Geochim. Cosmochim. Ac., 45, 341–351,
doi.org/10.1016/0016-7037(81)90244-1, 1981.
Devetter, M.: Clearance rates of the bdelloid rotifer, Habrotrocha thienemanni, a tree-hole inhabitant, Aquat. Ecol., 43, 85–89, https://doi.org/10.1007/s10452-007-9160-9, 2009.
Donner, J.: Ordnung Bdelloidea (Rotatoria, Rädertiere),
Akademie–Verlag, Berlin, Germany, 297 pp., 1965.
Edwards, A., Douglas, B., Anesio, A. M., Rassner, S. M., Irvine-Fynn, T. D.,
Sattler, B., and Griffith, G. W.: A distinctive fungal community inhabiting
cryoconite holes on glaciers in Svalbard, Fungal Ecol., 6, 168–176,
https://doi.org/10.1016/j.funeco.2012.11.001, 2013a.
Edwards, A., Rassner, S. M., Anesio, A. M., Worgan, H. J., Irvine-Fynn, T.
D., Wyn Williams, H., Sattler, B., and Wyn Griffith, G.: Contrasts between
the cryoconite and ice-marginal bacterial communities of Svalbard
glaciers, Polar Res., 32, 19468, https://doi.org/10.3402/polar.v32i0.19468, 2013b.
Edwards, A., Mur, L. A., Girdwood, S. E., Anesio, A. M., Stibal, M.,
Rassner, S. M., Hell, K., Pachebat, J. A., Post, B., Bussell, J. S.,
Cameron, S. J. S., Wyn Griffith, G., Hodson, A. J., and Sattler, B.: Coupled
cryoconite ecosystem structure–function relationships are revealed by
comparing bacterial communities in alpine and Arctic glaciers, FEMS
Microbiol. Ecol., 89, 222–237, https://doi.org/10.1111/1574-6941.12283, 2014.
Ekblad, A. and Högberg, P.: Analysis of δ13C of CO2
distinguishes between microbial respiration of added C4-sucrose and other
soil respiration in a C3-ecosystem, Plant Soil, 219, 197–209,
https://doi.org/10.1023/A:1004732430929, 2000.
Elser, J. J. and Urabe, J.: The stoichiometry of consumer-driven nutrient
recycling: theory, observations, and consequences, Ecology, 80, 735–751,
https://doi.org/10.1890/0012-9658(1999)080[0735:TSOCDN]2.0.CO;2, 1999.
Ettl, H. and Gärtner, G.: Syllabus der Boden-, Luft- und Flechtenalgen,
Springer Spektrum, Berlin, Germany, 2014 (in German).
Foreman, C. M., Sattler, B., Mikucki, J. A., Porazinska, D. L., and Priscu,
J. C.: Metabolic activity and diversity of cryoconites in the Taylor Valley,
Antarctica, J. Geophys. Res.-Biogeo., 112, G04S32, https://doi.org/10.1029/2006JG000358,
2007.
Fountain, A. G., Tranter, M., Nylen, T. H., Lewis, K. J., and Mueller, D.
R.: Evolution of cryoconite holes and their contribution to meltwater runoff
from glaciers in the McMurdo Dry Valleys, Antarctica, J. Glaciol., 50,
35–45, https://doi.org/10.3189/172756504781830312, 2004.
Gerdel, R. W. and Drouet, F.: The cryoconite of the Thule area, Greenland,
T. Am. Microsc. Soc., 79, 256–272, https://doi.org/10.2307/3223732, 1960.
Grzesiak, J., Górniak, D., Świątecki, A.,
Aleksandrzak-Piekarczyk, T., Szatraj, K., and Zdanowski, M. K.: Microbial
community development on the surface of Hans and Werenskiold Glaciers
(Svalbard, Arctic): a comparison, Extremophiles, 19, 885–897,
https://doi.org/10.1007/s00792-015-0764-z, 2015.
Gu, B. and Alexander, V.: Estimation of N2 fixation based on
differences in the natural abundance of 15N among freshwater
N2-fixing and non-N2-fixing algae, Oecologia, 96, 43–48,
https://doi.org/10.1007/BF00318029, 1993.
Guidetti, R., Altiero, T., and Rebecchi, L.: On dormancy strategies in
tardigrades, J. Insect Physiol., 57, 567–576,
https://doi.org/10.1016/j.jinsphys.2011.03.003, 2011.
Guidetti, R., Altiero, T., Marchioro, T., Amade, L. S., Avdonina, A. M.,
Bertolani, R., and Rebecchi, L.: Form and function of the feeding apparatus
in Eutardigrada (Tardigrada), Zoomorphology, 131, 127–148,
https://doi.org/10.1007/s00435-012-0149-0, 2012.
Guil, N. and Sanchez-Moreno, S.: Fine-scale patterns in micrometazoans:
tardigrade diversity, community composition and trophic dynamics in leaf
litter, Syst. Biodivers., 11, 181–193, https://doi.org/10.1080/14772000.2013.798370,
2013.
Hagen, J., Liestøl, O., Roland, K., and Jørgensen, T.: Glacier Atlas
of Svalbard and Jan Mayen, Norsk Polarinstitutt, Oslo, Norway, 141 pp., 1993.
Hallas, T. E. and Yeates, G. W.: Tardigrada of the soil and litter of a
Danish beech forest, Pedobiologia, 12, 287–304, 1972.
Herzig, A., Gulati, R. D., Jersabek, C. D., and May, L.: Rotifera X:
Rotifer Research: Trends, New Tools and Recent Advances, 181, Springer
Science & Business Media, Berlin, Germany, 2006.
Hinga, K. R., Arthur, M. A., Pilson, M. E., and Whitaker, D.: Carbon isotope
fractionation by marine phytoplankton in culture: the effects of CO2
concentration, pH, temperature, and species, Glob. Biogeochem. Cy., 8,
91–102, https://doi.org/10.1029/93GB03393, 1994.
Hodson, A. J., Mumford, P. N., Kohler, J., and Wynn, P. M.: The High Arctic
glacial ecosystem: new insights from nutrient budgets, Biogeochemistry, 72,
233–256, https://doi.org/10.1007/s10533-004-0362-0, 2005.
Hodson, A., Anesio, A. M., Tranter, M., Fountain, A., Osborn, M., Priscu,
J., Laybourn-Parry, J., and Sattler, B.: Glacial ecosystems, Ecol. Monogr.,
78, 41–67, https://doi.org/10.1890/07-0187.1, 2008.
Hood, E., Fellman, J., Spencer, R. G., Hernes, P. J., Edwards, R., D'Amore,
D., and Scott, D.: Glaciers as a source of ancient and labile organic matter
to the marine environment, Nature, 462, 1044–1047, https://doi.org/10.1038/nature08580,
2009.
Iakovenko, N. S., Smykla, J., Convey, P., Kašparová, E., Kozeretska,
I. A., Trokhymets, V., Dykyy, I., Plewka, M., Devetter, M., Duriš, Z.,
and Janko, K.: Antarctic bdelloid rotifers: diversity, endemism and
evolution, Hydrobiologia, 761, 5–43, https://doi.org/10.1007/s10750-015-2463-2, 2015.
Kaczmarek, Ł., Jakubowska, N., Celewicz-Gołdyn, S., and Zawierucha, K.:
The microorganisms of cryoconite holes (algae, Archaea, bacteria,
cyanobacteria, fungi, and Protista): a review, Polar Rec., 52,
176–203, https://doi.org/10.1017/S0032247415000637, 2016.
Kling, G. W., Fry, B., and O'Brien, W. J.: Stable isotopes and planktonic
trophic structure in arctic lakes, Ecology, 73, 561–566,
https://doi.org/10.2307/1940762, 1992.
Kohler, T. J., Stanish, L. F., Liptzin, D., Barrett, J. E., and McKnight, D.
M.: Catch and release: Hyporheic retention and mineralization of N-fixing
Nostoc sustains downstream microbial mat biomass in two polar desert streams, Limnol. Oceanogr. Lett., 3, 357–364, https://doi.org/10.1002/lol2.10087,
2018.
Kosztyła, P., Stec, D., Morek, W., Gąsiorek, P., Zawierucha, K.,
Michno, K., Ufir, K., Małek, D., Hlebowicz, K., Laska, A., Dudziak, M.,
Frohme, M., Prokop, Z. M., Kaczmarek, Ł., and Michalczyk, Ł.: Experimental
taxonomy confirms the environmental stability of morphometric traits in a
taxonomically challenging group of microinvertebrates, Zool. J. Linn. Soc.,
178, 765–775, https://doi.org/10.1111/zoj.12409, 2016.
Kutikova, L. A.: Bdelloid rotifers (Rotifera, Bdelloidea) as a component of
soil and land biocenoses, Biol. Bull. Russ. Acad. Sci., 30, 271–274, https://doi.org/10.1023/A:1023811929889, 2003.
Macko, S. A. and Estep, M. L.: Microbial alteration of stable nitrogen and
carbon isotopic compositions of organic matter, Org. Geochem., 6, 787–790,
https://doi.org/10.1016/0146-6380(84)90100-1, 1984.
Mariotti, A., Pierre, D., Vedy, J. C., Bruckert, S., and Guillemot, J.: The
abundance of natural nitrogen 15 in the organic matter of soils along an
altitudinal gradient (Chablais, Haute Savoie, France), Catena, 7, 293–300,
https://doi.org/10.1016/S0341-8162(80)80020-8, 1980.
Marshall, W. A. and Chalmers, M. O.: Airborne dispersal of Antarctic
terrestrial algae and cyanobacteria, Ecography, 20, 585–594,
https://doi.org/10.1111/j.1600-0587.1997.tb00427.x, 1997.
McCutchan, J. H., Lewis, W. M., Kendall, C., and McGrath, C. C.: Variation
in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur,
Oikos, 102, 378–390, https://doi.org/10.1034/j.1600-0706.2003.12098.x, 2003.
Mialet, B., Majdi, N., Tackx, M., Azémar, F., and Buffan-Dubau, E.:
Selective feeding of bdelloid rotifers in river biofilms, Plos One, 8,
e75352, https://doi.org/10.1371/journal.pone.0075352, 2013.
Michener, R. and Lajtha, K.: Stable isotopes in ecology and
environmental science, John Wiley & Sons, New Jersey, USA, 2008.
Montoya, J. P., Horrigan, S. G., and McCarthy, J. J.: Natural abundance of
15N in particulate nitrogen and zooplankton in the
Chesapeake Bay, Mar. Ecol.-Prog. Ser., 65, 35–61, 1990.
Mueller, D. R., Vincent, W. F., Pollard, W. H., and Fritsen, C. H.: Glacial
cryoconite ecosystems: a bipolar comparison of algal communities and
habitats, Nova Hedwigia Beiheft, 123, 173–198, 2001.
Nagarkar, S., Williams, G. A., Subramanian, G., and Saha, S. K.:
Cyanobacteria-dominated biofilms: a high quality food resource for
intertidal grazers, Asian Pacific Phycology in the 21st Century: Prospects
and Challenges, Springer, Dordrecht, Germany,
https://doi.org/10.1007/978-94-007-0944-7_12, 89–95, 2004.
Nordenskiöld, A. E.: Cryoconite found 1870, July 19th–25th, on the
inland ice, east of Auleitsivik Fjord, Disco Bay, Greenland, Geol. Mag.,
Decade, 2, 157–162, 1875.
Olive, P. J., Pinnegar, J. K., Polunin, N. V., Richards, G., and Welch, R.:
Isotope trophic-step fractionation: a dynamic equilibrium model, J. Anim.
Ecol., 72, 608–617, https://doi.org/10.1046/j.1365-2656.2003.00730.x, 2003.
O'Reilly, C. M., Verburg, P., Hecky, R. E., Plisnier, P. D., and Cohen, A.
S.: Food web dynamics in stable isotope ecology: time integration of
different trophic levels, Handbook of Scaling Methods in Aquatic Ecology,
CRC Press, USA, 145–154, 2003.
Peterson, B. J. and Fry, B.: Stable isotopes in ecosystem studies, Annu.
Rev. Ecol. Syst., 18, 293–320, 1987.
Ponsard, S. and Arditi, R.: What can stable isotopes (δ15N and
δ13C) tell about the food web of soil
macro-invertebrates?, Ecology, 81, 852–864,
https://doi.org/10.1890/0012-9658(2000)081[0852:WCSINA]2.0.CO;2, 2000.
Porazinska, D. L., Fountain, A. G., Nylen, T. H., Tranter, M., Virginia, R.
A., and Wall, D. H.: The biodiversity and biogeochemistry of cryoconite
holes from McMurdo Dry Valley glaciers, Antarctica, Arct. Antarct. Alp.
Res., 36, 84–91, https://doi.org/10.1657/1523-0430(2004)036[0084:TBABOC]2.0.CO;2, 2004.
Post, D. M.: Using stable isotopes to estimate trophic position: models,
methods, and assumptions, Ecology, 83, 703–718,
https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2, 2002.
Ramazzotti, G. and Maucci, W.: II Phylum Tardigradum, Terza edizione
riveduta e corretta, Memorie dell'Istituto Italiano di Idrobiologia Dott,
Marco Marchi, Pallanza, Italy, 41, 1–1012, 1983 (in Italian).
R Development Core Team: R: a language and environment for statistical
computing, Vienna, Austria, available at: https://www.R-project.org (last access: 23 February 2021), 2018.
Ricci, C.: Dormancy patterns in rotifers, Hydrobiologia, 446, 1–11,
https://doi.org/10.1023/A:1017548418201, 2001.
Roberts, J. A., Hughes, B. T., and Fowle, D. A.: Micro-scale mineralogic
controls on microbial attachment to silicate surfaces: iron and phosphate
mineral inclusions, in: Water-Rock Interaction,
in: Proceedings of the Eleventh International Symposium on Water-Rock
Interaction WRI-11, Saratoga Springs, NY, USA, 27 June–2 July 2004,
1149–1153, 2004.
Šantrůček, J., Šantrůčková, H.,
Kaštovská, E., Květoň, J., Tahovská, K., Vrábl, D.,
and Vráblová, M.: Stabilní isotopy biogeních prvků:
použití v biologii a ekologii, Academia, Czech Republic, 2018 (in Czech).
Säwström, C., Mumford, P., Marshall, W., Hodson, A., and
Laybourn-Parry, J.: The microbial communities and primary productivity of
cryoconite holes in an Arctic glacier (Svalbard 79 N), Polar Biol., 25,
591–596, https://doi.org/10.1007/s00300-002-0388-5, 2002.
Shaw, E. A., Adams, B. J., Barrett, J. E., Lyons, W. B., Virginia, R. A.,
and Wall, D. H.: Stable C and N isotope ratios reveal soil food web
structure and identify the nematode Eudorylaimus antarcticus as an omnivore–predator in Taylor Valley, Antarctica, Polar Biol., 41, 1013–1018,
https://doi.org/10.1007/s00300-017-2243-8, 2018.
Starmach, K.: Cyanophyta–sinice (Cyanophyta–blue–green algae), Flora
słodkowodna Polski, 2, PAN – Państw. Wyd. Nauk., Warszawa, Poland,
807 pp., 1966.
Stibal, M., Tranter, M., Benning, L. G., and Řehák, J.: Microbial
primary production on an Arctic glacier is insignificant in comparison with
allochthonous organic carbon input, Environ. Microbiol., 10, 2172–2178,
https://doi.org/10.1111/j.1462-2920.2008.01620.x, 2008.
Stibal, M., Lawson, E. C., Lis, G. P., Mak, K. M., Wadham, J. L., and
Anesio, A. M.: Organic matter content and quality in supraglacial debris
across the ablation zone of the Greenland ice sheet, Ann. Glaciol., 51,
1–8, https://doi.org/10.3189/172756411795931958, 2010.
Stibal, M., Šabacká, M., and Žárský, J.: Biological
processes on glacier and ice sheet surfaces, Nat. Geosci., 5, 771,
https://doi.org/10.1038/ngeo1611, 2012a.
Stibal, M., Telling, J., Cook, J., Mak, K. M., Hodson, A., and Anesio, A.
M.: Environmental controls on microbial abundance and activity on the
Greenland ice sheet: a multivariate analysis approach, Microbial Ecol., 63,
74–84, https://doi.org/10.1007/s00248-011-9935-3, 2012b.
Střítecká, M. and Devetter, M.: Sledování
filtrační aktivity vířníků v kryokonitech, Senior
high school thesis, Česko-anglické gymnasium, 27 pp., České
Budějovice, Czech Republic, 2015 (in Czech).
Takeuchi, N., Kohshima, S., and Seko, K.: Structure, formation, and
darkening process of albedo-reducing material (cryoconite) on a Himalayan
glacier: a granular algal mat growing on the glacier, Arct. Antarct. Alp.
Res., 33, 115–122, https://doi.org/10.1080/15230430.2001.12003413, 2001.
Telling, J., Anesio, A. M., Tranter, M., Irvine-Fynn, T., Hodson, A.,
Butler, C., and Wadham, J.: Nitrogen fixation on Arctic glaciers, Svalbard,
J. Geophys. Res.-Biogeo., 116, G03039, https://doi.org/10.1029/2010JG001632, 2011.
Telling, J., Anesio, A. M., Tranter, M., Stibal, M., Hawkings, J.,
Irvine-Fynn, T., Hodson, A., Butler, C., Yallop, M., and Wadham, J.:
Controls on the autochthonous production and respiration of organic matter
in cryoconite holes on high Arctic glaciers, J. Geophys. Res.-Biogeo., 117,
G01017, https://doi.org/10.1029/2011JG001828, 2012.
Velázquez, D., Jungblut, A. D., Rochera, C., Rico, E., Camacho, A., and
Quesada, A.: Trophic interactions in microbial mats on Byers Peninsula,
maritime Antarctica, Polar Biol., 40, 1115–1126,
https://doi.org/10.1007/s00300-016-2039-2, 2017.
Vindušková, O., Jandová, K., and Frouz, J.: Improved method for
removing siderite by in situ acidification before elemental and isotope analysis of soil organic carbon, J. Plant Nutr. Soil Sc., 182, 82–91, https://doi.org/10.1002/jpln.201800164, 2019.
Vonnahme, T. R., Devetter, M., Žárský, J. D., Šabacká, M., and Elster, J.: Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard, Biogeosciences, 13, 659–674, https://doi.org/10.5194/bg-13-659-2016, 2016.
Wada, E.: Stable δ15N and δ13C isotope ratios in
aquatic ecosystems, P. Jpn. Acad. B, 85, 98–107,
https://doi.org/10.2183/pjab.85.98, 2009.
Wagenbach, D., Preunkert, S., Schäfer, J., Jung, W., and Tomadin, L.:
Northward transport of Saharan dust recorded in a deep Alpine ice core, The
impact of desert dust across the Mediterranean, Springer, Dordrecht,
Germany, 291–300, https://doi.org/10.1007/978-94-017-3354-0_29, 1996.
Wallace, R. L. and Snell, T. W.: Rotifera, Ecology and classification of
North American Freshwater Invertebrates, Academic Press, USA, 173–235,
2010.
Wehr, J. D., Sheath, R. G., and Kociolek, J. P.: Freshwater algae of
North America: ecology and classification, Elsevier, USA, 2015.
Williams Jr., R. S. and Ferrigno, J. G.: State of the Earth's cryosphere at
the beginning of the 21st century: Glaciers, global snow cover, floating
ice, and permafrost and periglacial environments, Director, 508, 344–6840,
2012.
Xu, Y., Simpson, A. J., Eyles, N., and Simpson, M. J.: Sources and molecular
composition of cryoconite organic matter from the Athabasca Glacier,
Canadian Rocky Mountains, Org. Geochem., 41, 177–186,
https://doi.org/10.1016/j.orggeochem.2009.10.010, 2010.
Yoshii, K., Melnik, N. G., Timoshkin, O. A., Bondarenko, N. A., Anoshko, P.
N., Yoshioka, T., and Wada, E.: Stable isotope analyses of the pelagic food
web in Lake Baikal, Limnol. Oceanogr., 44, 502–511,
https://doi.org/10.4319/lo.1999.44.3.0502, 1999.
Zah, R., Burgherr, P., Bernasconi, S. M., and Uehlinger, U.: Stable isotope
analysis of macroinvertebrates and their food sources in a glacier stream,
Freshwater Biol., 46, 871–882, https://doi.org/10.1046/j.1365-2427.2001.00720.x, 2001.
Žárský, J. D., Stibal, M., Hodson, A., Sattler, B., Schostag,
M., Hansen, L. H., Jacobsen, C. S., and Psenner, R.: Large cryoconite
aggregates on a Svalbard glacier support a diverse microbial community
including ammonia-oxidizing archaea, Environ. Res. Lett., 8, 035044,
https://doi.org/10.1088/1748-9326/8/3/035044, 2013.
Zawierucha, K., Kolicka, M., Takeuchi, N., and Kaczmarek, Ł.: What animals
can live in cryoconite holes? A faunal review, J. Zool., 295, 159–169,
https://doi.org/10.1111/jzo.12195, 2015.
Zawierucha, K., Ostrowska, M., Vonnahme, T. R., Devetter, M., Nawrot, A. P.,
Lehmann, S., and Kolicka, M.: Diversity and distribution of Tardigrada in
Arctic cryoconite holes, J. Limnol., 75, 545–559,
https://doi.org/10.4081/jlimnol.2016.1453, 2016.
Zawierucha, K., Buda, J., Pietryka, M., Richter, D., Łokas, E.,
Lehmann-Konera, S., Makowska, N., and Bogdziewicz, M.: Snapshot of
micro-animals and associated biotic and abiotic environmental variables on
the edge of the south-west Greenland ice sheet, Limnology, 19, 141–150,
https://doi.org/10.1007/s10201-017-0528-9, 2018a.
Zawierucha, K., Stec, D., Lachowska-Cierlik, D., Takeuchi, N., Li, Z., and
Michalczyk, Ł.: High mitochondrial diversity in a new water bear species
(Tardigrada: Eutardigrada) from mountain glaciers in central Asia, with the
erection of a new genus Cryoconicus, Annal. Zool., 68, 179–202,
https://doi.org/10.3161/00034541ANZ2018.68.1.007, 2018b.
Zawierucha, K., Buda, J., and Nawrot, A.: Extreme weather event results in
the removal of invertebrates from cryoconite holes on an Arctic valley
glacier (Longyearbreen, Svalbard), Ecol. Res., 34, 370–379,
https://doi.org/10.1111/1440-1703.1276, 2019a.
Zawierucha, K., Buda, J., Fontaneto, D., Ambrosini, R., Franzetti, A.,
Wierzgoń, M., and Bogdziewicz, M.: Fine-scale spatial heterogeneity of
invertebrates within cryoconite holes, Aquat. Ecol., 53, 179–190,
https://doi.org/10.1007/s10452-019-09681-9, 2019b.
Zawierucha, K., Baccolo, G., Di Mauro, B., Nawrot, A., Szczuciński, W.,
and Kalińska, E.: Micromorphological features of mineral matter from
cryoconite holes on Arctic (Svalbard) and alpine (the Alps, the Caucasus)
glaciers, Polar Sci., 22, 100482, https://doi.org/10.1016/j.polar.2019.100482, 2019c.
Zawierucha, K., Buda, J., Novotna Jaromerska, T., Janko, K., and
Gąsiorek, P.: Integrative approach reveals new species of water bears
(Pilatobius, Grevenius, and Acutuncus) from Arctic cryoconite holes, with the discovery of hidden
lineages of Hypsibius, Zool. Anz., 289, 141–165, https://doi.org/10.1016/j.jcz.2020.09.004, 2020.
Zawierucha, K., Porazinska, D. L., Ficetola, G. F., Ambrosini, R., Baccolo,
G., Buda, J., Ceballos, J. L., Devetter, M., Dial, R., Franzetti, A.,
Fuglewicz, U., Gielly, L., Łokas, E., Janko, K., Novotna Jaromerska, T.,
Kościński, A., Kozłowska, A., Ono, M., Parnikoza, I., Pittino, F.,
Poniecka, E., Sommers, P., Schmidt, S. K., Shain, D., Sikorska, S., Uetake,
J., and Takeuchi, N.: A hole in the nematosphere: tardigrades and rotifers
dominate the cryoconite hole environment, whereas nematodes are missing, J.
Zool., 313, 18–36, https://doi.org/10.1111/jzo.12832, 2021.
Short summary
Cryoconite holes are ponds on the glacier surface that play an important role in glacier nutrient pathways. This paper presents the first description of the carbon and nitrogen isotopic composition of cryoconite consumers (tardigrades and rotifers) and their potential food. We showed that consumers differ in nitrogen isotopes and carbon isotopes vary between taxa and between glaciers. The study contributes to improving knowledge about cryoconite hole functioning and cryoconite trophic networks.
Cryoconite holes are ponds on the glacier surface that play an important role in glacier...
Altmetrics
Final-revised paper
Preprint