Articles | Volume 18, issue 6
https://doi.org/10.5194/bg-18-2047-2021
https://doi.org/10.5194/bg-18-2047-2021
Research article
 | 
22 Mar 2021
Research article |  | 22 Mar 2021

Methane dynamics in three different Siberian water bodies under winter and summer conditions

Ingeborg Bussmann, Irina Fedorova, Bennet Juhls, Pier Paul Overduin, and Matthias Winkel

Related authors

Thermokarst lake change and lake hydrochemistry: A snapshot from the Arctic Coastal Plain of Alaska
Lydia Stolpmann, Ingmar Nitze, Ingeborg Bussmann, Benjamin M. Jones, Josefine Lenz, Hanno Meyer, Juliane Wolter, and Guido Grosse
EGUsphere, https://doi.org/10.5194/egusphere-2024-2822,https://doi.org/10.5194/egusphere-2024-2822, 2024
Preprint archived
Short summary
Influence of wind strength and direction on diffusive methane fluxes and atmospheric methane concentrations above the North Sea
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024,https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024,https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary
Methane pathways in winter ice of a thermokarst lake–lagoon–coastal water transect in north Siberia
Ines Spangenberg, Pier Paul Overduin, Ellen Damm, Ingeborg Bussmann, Hanno Meyer, Susanne Liebner, Michael Angelopoulos, Boris K. Biskaborn, Mikhail N. Grigoriev, and Guido Grosse
The Cryosphere, 15, 1607–1625, https://doi.org/10.5194/tc-15-1607-2021,https://doi.org/10.5194/tc-15-1607-2021, 2021
Short summary

Cited articles

Angelopoulos, M., Westermann, S., Overduin, P., Faguet, A., Olenchenko, V., Grosse, G., and Grigoriev, M. N.: Heat and salt flow in subsea permafrost modeled with CryoGRID2, J. Geophys. Res.-Earth, 124, 920–937, https://doi.org/10.1029/2018JF004823, 2019. 
Bale, N. J., Rijpstra, W. I. C., Sahonero-Canavesi, D. X., Oshkin, I. Y., Belova, S. E., Dedysh, S. N., and Sinninghe Damsté, J. S.: Fatty acid and hopanoid adaption to cold in the nethanotroph Methylovulum psychrotolerans, Front. Microbiol., 10, 589, https://doi.org/10.3389/fmicb.2019.00589, 2019. 
Bastviken, D., Ejlertsson, J., Sundh, I., and Tranvik, L.: Measurement of methane oxidation in lakes: a comparison of methods, Environ. Sci. Technol., 36, 3354–3361, 2002. 
Bastviken, D., Cole, J., Pace, M., and Tranvik, L.: Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate, Global Biogeochem. Cy., 18, GB4009, https://doi.org/10.1029/2004GB002238, 2004. 
Bednařík, A., Blaser, M., Matoušů, A., Tušer, M., Chaudhary, P. P., Šimek, K., and Rulík, M.: Sediment methane dynamics along the Elbe River, Limnologica, 79, 125716, https://doi.org/10.1016/j.limno.2019.125716, 2019. 
Download
Short summary
Arctic rivers, lakes, and bays are affected by a warming climate. We measured the amount and consumption of methane in waters from Siberia under ice cover and in open water. In the lake, methane concentrations under ice cover were much higher than in summer, and methane consumption was highest. The ice cover leads to higher methane concentration under ice. In a warmer Arctic, there will be more time with open water when methane is consumed by bacteria, and less methane will escape into the air.
Share
Altmetrics
Final-revised paper
Preprint