Articles | Volume 18, issue 13
https://doi.org/10.5194/bg-18-4005-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4005-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing climate change impacts on live fuel moisture and wildfire risk using a hydrodynamic vegetation model
Wu Ma
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States
Lu Zhai
Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, United States
Alexandria Pivovaroff
Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, United States
Jacquelyn Shuman
National Center for Atmospheric Research, Climate and Global Dynamics, Terrestrial Sciences Section, Boulder, CO, United States
Polly Buotte
Energy and Resources Group, University of California, Berkeley, CA, United States
Junyan Ding
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
Bradley Christoffersen
Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, United States
Ryan Knox
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
Max Moritz
UC ANR Cooperative Extension, Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, United States
Rosie A. Fisher
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, Toulouse, France
Charles D. Koven
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
Lara Kueppers
Energy and Resources Group, University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, CA, United States
Chonggang Xu
CORRESPONDING AUTHOR
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States
Related authors
Polly C. Buotte, Charles D. Koven, Chonggang Xu, Jacquelyn K. Shuman, Michael L. Goulden, Samuel Levis, Jessica Katz, Junyan Ding, Wu Ma, Zachary Robbins, and Lara M. Kueppers
Biogeosciences, 18, 4473–4490, https://doi.org/10.5194/bg-18-4473-2021, https://doi.org/10.5194/bg-18-4473-2021, 2021
Short summary
Short summary
We present an approach for ensuring the definitions of plant types in dynamic vegetation models are connected to the underlying ecological processes controlling community composition. Our approach can be applied regionally or globally. Robust resolution of community composition will allow us to use these models to address important questions related to future climate and management effects on plant community composition, structure, carbon storage, and feedbacks within the Earth system.
Benjamin M. Sanderson, Victor Brovkin, Rosie A. Fisher, David Hohn, Tatiana Ilyina, Chris D. Jones, Torben Koenigk, Charles Koven, Hongmei Li, David M. Lawrence, Peter Lawrence, Spencer Liddicoat, Andrew H. MacDougall, Nadine Mengis, Zebedee Nicholls, Eleanor O'Rourke, Anastasia Romanou, Marit Sandstad, Jörg Schwinger, Roland Séférian, Lori T. Sentman, Isla R. Simpson, Chris Smith, Norman J. Steinert, Abigail L. S. Swann, Jerry Tjiputra, and Tilo Ziehn
Geosci. Model Dev., 18, 5699–5724, https://doi.org/10.5194/gmd-18-5699-2025, https://doi.org/10.5194/gmd-18-5699-2025, 2025
Short summary
Short summary
This study investigates how climate models warm in response to simplified carbon emissions trajectories, refining the understanding of climate reversibility and commitment. Metrics are defined for warming response to cumulative emissions and for the cessation of emissions or ramp-down to net-zero and net-negative levels. Results indicate that previous concentration-driven experiments may have overstated the Zero Emissions Commitment due to emissions rates exceeding historical levels.
Mara Y. McPartland, Tomas Lovato, Charles D. Koven, Jamie D. Wilson, Briony Turner, Colleen M. Petrik, José Licón-Saláiz, Fang Li, Fanny Lhardy, Jaclyn Clement Kinney, Michio Kawamiya, Birgit Hassler, Nathan P. Gillett, Cheikh Modou Noreyni Fall, Christopher Danek, Chris M. Brierley, Ana Bastos, and Oliver Andrews
EGUsphere, https://doi.org/10.5194/egusphere-2025-3246, https://doi.org/10.5194/egusphere-2025-3246, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Coupled Model Intercomparison Project (CMIP) is an international consortium of climate modeling groups that produce coordinated experiments in order to evaluate human influence on the climate and test knowledge of Earth systems. This paper describes the data requested for Earth systems research in CMIP7. We detail the request for model output of the carbon cycle, the flows of energy among the atmosphere, land and the oceans, and interactions between these and the global climate.
Victor Brovkin, Benjamin M. Sanderson, Noel G. Brizuela, Tomohiro Hajima, Tatiana Ilyina, Chris D. Jones, Charles Koven, David Lawrence, Peter Lawrence, Hongmei Li, Spencer Liddcoat, Anastasia Romanou, Roland Séférian, Lori T. Sentman, Abigail L. S. Swann, Jerry Tjiputra, Tilo Ziehn, and Alexander J. Winkler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3270, https://doi.org/10.5194/egusphere-2025-3270, 2025
Short summary
Short summary
Idealized experiments with Earth system models provide a basis for understanding the response of the carbon cycle to emissions. We show that most models exhibit a quasi-linear relationship between cumulative carbon uptake on land and in the ocean and hypothesize that this relationship does not depend on emission pathways. We reduce the coupled system to only one differential equation, which represents a powerful simplification of the Earth system dynamics as a function of fossil fuel emissions.
Junyan Ding, Nate McDowell, Vanessa Bailey, Nate Conroy, Donnie J. Day, Yilin Fang, Kenneth M. Kemner, Matthew L. Kirwan, Charlie D. Koven, Matthew Kovach, Patrick Megonigal, Kendalynn A. Morris, Teri O’Meara, Stephanie C. Pennington, Roberta B. Peixoto, Peter Thornton, Mike Weintraub, Peter Regier, Leticia Sandoval, Fausto Machado-Silva, Alice Stearns, Nick Ward, and Stephanie J. Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1544, https://doi.org/10.5194/egusphere-2025-1544, 2025
Short summary
Short summary
We used a vegetation model to study why coastal forests are dying due to rising water levels and what happens to the ecosystem when marshes take over. We found that tree death is mainly caused by water-damaged roots, leading to major changes in the environment, such as reduced water use and carbon storage. Our study helps explain how coastal ecosystems are shifting and offers new ideas to explore in future field research.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Jacquelyn K. Shuman, Rosie A. Fisher, Charles Koven, Ryan Knox, Lara Kueppers, and Chonggang Xu
Geosci. Model Dev., 17, 4643–4671, https://doi.org/10.5194/gmd-17-4643-2024, https://doi.org/10.5194/gmd-17-4643-2024, 2024
Short summary
Short summary
We adapt a fire behavior and effects module for use in a size-structured vegetation demographic model to test how climate, fire regime, and fire-tolerance plant traits interact to determine the distribution of tropical forests and grasslands. Our model captures the connection between fire disturbance and plant fire-tolerance strategies in determining plant distribution and provides a useful tool for understanding the vulnerability of these areas under changing conditions across the tropics.
Junyan Ding, Polly Buotte, Roger Bales, Bradley Christoffersen, Rosie A. Fisher, Michael Goulden, Ryan Knox, Lara Kueppers, Jacquelyn Shuman, Chonggang Xu, and Charles D. Koven
Biogeosciences, 20, 4491–4510, https://doi.org/10.5194/bg-20-4491-2023, https://doi.org/10.5194/bg-20-4491-2023, 2023
Short summary
Short summary
We used a vegetation model to investigate how the different combinations of plant rooting depths and the sensitivity of leaves and stems to drying lead to differential responses of a pine forest to drought conditions in California, USA. We found that rooting depths are the strongest control in that ecosystem. Deep roots allow trees to fully utilize the soil water during a normal year but result in prolonged depletion of soil moisture during a severe drought and hence a high tree mortality risk.
Chonggang Xu, Bradley Christoffersen, Zachary Robbins, Ryan Knox, Rosie A. Fisher, Rutuja Chitra-Tarak, Martijn Slot, Kurt Solander, Lara Kueppers, Charles Koven, and Nate McDowell
Geosci. Model Dev., 16, 6267–6283, https://doi.org/10.5194/gmd-16-6267-2023, https://doi.org/10.5194/gmd-16-6267-2023, 2023
Short summary
Short summary
We introduce a plant hydrodynamic model for the U.S. Department of Energy (DOE)-sponsored model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). To better understand this new model system and its functionality in tropical forest ecosystems, we conducted a global parameter sensitivity analysis at Barro Colorado Island, Panama. We identified the key parameters that affect the simulated plant hydrodynamics to guide both modeling and field campaign studies.
Nathan Alec Conroy, Jeffrey M. Heikoop, Emma Lathrop, Dea Musa, Brent D. Newman, Chonggang Xu, Rachael E. McCaully, Carli A. Arendt, Verity G. Salmon, Amy Breen, Vladimir Romanovsky, Katrina E. Bennett, Cathy J. Wilson, and Stan D. Wullschleger
The Cryosphere, 17, 3987–4006, https://doi.org/10.5194/tc-17-3987-2023, https://doi.org/10.5194/tc-17-3987-2023, 2023
Short summary
Short summary
This study combines field observations, non-parametric statistical analyses, and thermodynamic modeling to characterize the environmental causes of the spatial variability in soil pore water solute concentrations across two Arctic catchments with varying extents of permafrost. Vegetation type, soil moisture and redox conditions, weathering and hydrologic transport, and mineral solubility were all found to be the primary drivers of the existing spatial variability of some soil pore water solutes.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Doaa Aboelyazeed, Chonggang Xu, Forrest M. Hoffman, Jiangtao Liu, Alex W. Jones, Chris Rackauckas, Kathryn Lawson, and Chaopeng Shen
Biogeosciences, 20, 2671–2692, https://doi.org/10.5194/bg-20-2671-2023, https://doi.org/10.5194/bg-20-2671-2023, 2023
Short summary
Short summary
Photosynthesis is critical for life and has been affected by the changing climate. Many parameters come into play while modeling, but traditional calibration approaches face many issues. Our framework trains coupled neural networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Yilin Fang, L. Ruby Leung, Ryan Knox, Charlie Koven, and Ben Bond-Lamberty
Geosci. Model Dev., 15, 6385–6398, https://doi.org/10.5194/gmd-15-6385-2022, https://doi.org/10.5194/gmd-15-6385-2022, 2022
Short summary
Short summary
Accounting for water movement in the soil and water transport within the plant is important for plant growth in Earth system modeling. We implemented different numerical approaches for a plant hydrodynamic model and compared their impacts on the simulated aboveground biomass (AGB) at single points and globally. We found care should be taken when discretizing the number of soil layers for numerical simulations as it can significantly affect AGB if accuracy and computational costs are of concern.
Charles D. Koven, Vivek K. Arora, Patricia Cadule, Rosie A. Fisher, Chris D. Jones, David M. Lawrence, Jared Lewis, Keith Lindsay, Sabine Mathesius, Malte Meinshausen, Michael Mills, Zebedee Nicholls, Benjamin M. Sanderson, Roland Séférian, Neil C. Swart, William R. Wieder, and Kirsten Zickfeld
Earth Syst. Dynam., 13, 885–909, https://doi.org/10.5194/esd-13-885-2022, https://doi.org/10.5194/esd-13-885-2022, 2022
Short summary
Short summary
We explore the long-term dynamics of Earth's climate and carbon cycles under a pair of contrasting scenarios to the year 2300 using six models that include both climate and carbon cycle dynamics. One scenario assumes very high emissions, while the second assumes a peak in emissions, followed by rapid declines to net negative emissions. We show that the models generally agree that warming is roughly proportional to carbon emissions but that many other aspects of the model projections differ.
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021, https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Short summary
Emergent constraints promise a pathway to the reduction in climate projection uncertainties by exploiting ensemble relationships between observable quantities and unknown climate response parameters. This study considers the robustness of these relationships in light of biases and common simplifications that may be present in the original ensemble of climate simulations. We propose a classification scheme for constraints and a number of practical case studies.
Polly C. Buotte, Charles D. Koven, Chonggang Xu, Jacquelyn K. Shuman, Michael L. Goulden, Samuel Levis, Jessica Katz, Junyan Ding, Wu Ma, Zachary Robbins, and Lara M. Kueppers
Biogeosciences, 18, 4473–4490, https://doi.org/10.5194/bg-18-4473-2021, https://doi.org/10.5194/bg-18-4473-2021, 2021
Short summary
Short summary
We present an approach for ensuring the definitions of plant types in dynamic vegetation models are connected to the underlying ecological processes controlling community composition. Our approach can be applied regionally or globally. Robust resolution of community composition will allow us to use these models to address important questions related to future climate and management effects on plant community composition, structure, carbon storage, and feedbacks within the Earth system.
Robinson I. Negrón-Juárez, Jennifer A. Holm, Boris Faybishenko, Daniel Magnabosco-Marra, Rosie A. Fisher, Jacquelyn K. Shuman, Alessandro C. de Araujo, William J. Riley, and Jeffrey Q. Chambers
Biogeosciences, 17, 6185–6205, https://doi.org/10.5194/bg-17-6185-2020, https://doi.org/10.5194/bg-17-6185-2020, 2020
Short summary
Short summary
The temporal variability in the Landsat satellite near-infrared (NIR) band captured the dynamics of forest regrowth after disturbances in Central Amazon. This variability was represented by the dynamics of forest regrowth after disturbances were properly represented by the ELM-FATES model (Functionally Assembled Terrestrial Ecosystem Simulator (FATES) in the Energy Exascale Earth System Model (E3SM) Land Model (ELM)).
Taraka Davies-Barnard, Johannes Meyerholt, Sönke Zaehle, Pierre Friedlingstein, Victor Brovkin, Yuanchao Fan, Rosie A. Fisher, Chris D. Jones, Hanna Lee, Daniele Peano, Benjamin Smith, David Wårlind, and Andy J. Wiltshire
Biogeosciences, 17, 5129–5148, https://doi.org/10.5194/bg-17-5129-2020, https://doi.org/10.5194/bg-17-5129-2020, 2020
Maoyi Huang, Yi Xu, Marcos Longo, Michael Keller, Ryan G. Knox, Charles D. Koven, and Rosie A. Fisher
Biogeosciences, 17, 4999–5023, https://doi.org/10.5194/bg-17-4999-2020, https://doi.org/10.5194/bg-17-4999-2020, 2020
Short summary
Short summary
The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) is enhanced to mimic the ecological, biophysical, and biogeochemical processes following a logging event. The model can specify the timing and aerial extent of logging events; determine the survivorship of cohorts in the disturbed forest; and modifying the biomass, coarse woody debris, and litter pools. This study lays the foundation to simulate land use change and forest degradation in FATES as part of an Earth system model.
Cited articles
Abatzoglou, J. T.: Development of gridded surface meteorological data for
ecological applications and modelling, Int. J. Climatol., 33, 121–131,
https://doi.org/10.1002/joc.3413, 2013.
Abatzoglou, J. T. and Brown, T. J.: A comparison of statistical downscaling
methods suited for wildfire applications, Int. J. Climatol., 32, 772–780,
https://doi.org/10.1002/joc.2312, 2012.
Agee, J. K., Wright, C. S., Williamson, N., and Huff, M. H.: Foliar moisture
content of Pacific Northwest vegetation and its relation to wildland fire
behavior, For. Ecol. Manag., 167, 57–66,
https://doi.org/10.1016/S0378-1127(01)00690-9, 2002.
Aguado, I., Chuvieco, E., Boren, R., and Nieto, H.: Estimation of dead fuel
moisture content from meteorological data in Mediterranean areas.
Applications in fire danger assessment, Int. J. Wildland Fire, 16, 390–397,
https://doi.org/10.1071/WF06136, 2007.
Anderson, S. A. and Anderson, W. R.: Ignition and fire spread thresholds in
gorse (Ulex europaeus), Int. J. Wildland Fire, 19, 589–598,
https://doi.org/10.1071/WF09008, 2010.
Balch, J. K., Bradley, B. A., Abatzoglou, J. T., Nagy, R. C., Fusco, E. J.,
and Mahood, A. L.: Human-started wildfires expand the fire niche across the
United States, P. Natl. Acad. Sci. USA, 114, 2946–2951,
https://doi.org/10.1073/pnas.1617394114, 2017.
Bartlett, M. K., Scoffoni, C., and Sack, L.: The determinants of leaf turgor
loss point and prediction of drought tolerance of species and biomes: a
global meta-analysis, Ecol. Lett., 15, 393–405,
https://doi.org/10.1111/j.1461-0248.2012.01751.x, 2012.
Bilgili, E. and Saglam, B.: Fire behavior in maquis fuels in Turkey, For.
Ecol. Manag., 184, 201–207, https://doi.org/10.1016/S0378-1127(03)00208-1,
2003.
Bistinas, I., Harrison, S. P., Prentice, I. C., and Pereira, J. M. C.: Causal relationships versus emergent patterns in the global controls of fire frequency, Biogeosciences, 11, 5087–5101, https://doi.org/10.5194/bg-11-5087-2014, 2014.
Bridges Jr., C. C.: Hierarchical cluster analysis, Psychol. Rep., 18,
851–854, https://doi.org/10.2466/pr0.1966.18.3.851, 1966.
Caccamo, G., Chisholm, L. A., Bradstock, R. A., and Puotinen, M. L.: Using
remotely-sensed fuel connectivity patterns as a tool for fire danger
monitoring, Geophys. Res. Lett., 39, L01302, https://doi.org/10.1029/2011GL050125,
2012a.
Caccamo, G., Chisholm, L. A., Bradstock, R. A., Puotinen, M. L., and Pippen,
B. G.: Monitoring live fuel moisture content of heathland, shrubland and
sclerophyll forest in south-eastern Australia using MODIS data, Int. J.
Wildland Fire, 21, 257–269, https://doi.org/10.1071/WF11024, 2012b.
Caldwell, P. M., Mametjanov, A., Tang, Q., Van Roekel, L. P., Golaz, J. C.,
Lin, W., Bader, D. C., Keen, N. D., Feng, Y., Jacob, R., and Maltrud, M. E.:
The DOE E3SM coupled model version 1: Description and results at high
resolution, J. Adv. Model. Earth Syst., 11, 4095–4146,
https://doi.org/10.1029/2019MS001870, 2019.
Castro, F. X., Tudela, A., and Sebastià, M. T.: Modeling moisture
content in shrubs to predict fire risk in Catalonia (Spain), Agric. For.
Meteorol., 116, 49–59, https://doi.org/10.1016/S0168-1923(02)00248-4, 2003.
Christoffersen, B. O., Gloor, M., Fauset, S., Fyllas, N. M., Galbraith, D. R., Baker, T. R., Kruijt, B., Rowland, L., Fisher, R. A., Binks, O. J., Sevanto, S., Xu, C., Jansen, S., Choat, B., Mencuccini, M., McDowell, N. G., and Meir, P.: Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro), Geosci. Model Dev., 9, 4227–4255, https://doi.org/10.5194/gmd-9-4227-2016, 2016.
Chuvieco, E., Cocero, D., Riano, D., Martin, P., Martınez-Vega, J., de la
Riva, J., and Pérez, F.: Combining NDVI and surface temperature for the
estimation of live fuel moisture content in forest fire danger rating,
Remote. Sens. Environ., 92, 322–331,
https://doi.org/10.1016/j.rse.2004.01.019, 2004.
Chuvieco, E., González, I., Verdú, F., Aguado, I., and Yebra, M.:
Prediction of fire occurrence from live fuel moisture content measurements
in a Mediterranean ecosystem, Int. J. Wildland Fire, 18, 430–441,
https://doi.org/10.1071/WF08020, 2009.
Clarke, H., Pitman, A. J., Kala, J., Carouge, C., Haverd, V., and Evans, J.
P.: An investigation of future fuel load and fire weather in Australia,
Clim. Change., 139, 591–605, https://doi.org/10.1007/s10584-016-1808-9,
2016.
Dennison, P. E. and Moritz, M. A.: Critical live fuel moisture in chaparral
ecosystems: a threshold for fire activity and its relationship to antecedent
precipitation, Int. J. Wildland Fire, 18, 1021–1027,
https://doi.org/10.1071/WF08055, 2009.
Dennison, P. E., Moritz, M. A., and Taylor, R. S.: Evaluating predictive
models of critical live fuel moisture in the Santa Monica Mountains,
California, Int. J. Wildland Fire, 17, 18–27,
https://doi.org/10.1071/WF07017, 2008.
Dimitrakopoulos, A. P. and Papaioannou, K. K.: Flammability assessment of
Mediterranean forest fuels, Fire Technol., 37, 143–152,
https://doi.org/10.1023/A:1011641601076, 2001.
Duursma, R. A. and Medlyn, B. E.: MAESPA: a model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to [CO2] × drought interactions, Geosci. Model Dev., 5, 919–940, https://doi.org/10.5194/gmd-5-919-2012, 2012.
Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., Knox, R. G., Koven, C., Holm, J., Rogers, B. M., Spessa, A., Lawrence, D., and Bonan, G.: Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED), Geosci. Model Dev., 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, 2015.
Fisher, R. A., Koven, C. D., Anderegg, W. R., Christoffersen, B. O., Dietze,
M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G., Lawrence, P.
J., and Lichstein, J. W.: Vegetation demographics in Earth System Models: A
review of progress and priorities, Glob. Change. Biol., 24, 35–54,
https://doi.org/10.1111/gcb.13910, 2018.
Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M., and
Gowman, L. M.: Implications of changing climate for global wildland fire,
Int. J. Wildland Fire, 18, 483–507, https://doi.org/10.1071/WF08187, 2009.
Gillett, N. P., Weaver, A. J., Zwiers, F. W., and Flannigan, M. D.:
Detecting the effect of climate change on Canadian forest fires, Geophys.
Res. Lett., 31, L18211, https://doi.org/10.1029/2004GL020876, 2004.
Goss, M., Swain, D. L., Abatzoglou, J. T., Sarhadi, A., Kolden, C. A.,
Williams, A. P., and Diffenbaugh, N. S.: Climate change is increasing the
likelihood of extreme autumn wildfire conditions across California, Environ.
Res. Lett., 15, 094016, https://doi.org/10.1088/1748-9326/ab83a7, 2020.
Hantson, S., Arneth, A., Harrison, S. P., Kelley, D. I., Prentice, I. C., Rabin, S. S., Archibald, S., Mouillot, F., Arnold, S. R., Artaxo, P., Bachelet, D., Ciais, P., Forrest, M., Friedlingstein, P., Hickler, T., Kaplan, J. O., Kloster, S., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Meyn, A., Sitch, S., Spessa, A., van der Werf, G. R., Voulgarakis, A., and Yue, C.: The status and challenge of global fire modelling, Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, 2016.
Holm, J. A., Shugart, H. H., Van Bloem, S. J., and Larocque, G. R.: Gap
model development, validation, and application to succession of secondary
subtropical dry forests of Puerto Rico, Ecol. Modell., 233, 70–82,
https://doi.org/10.1016/j.ecolmodel.2012.03.014, 2012.
Jackson, D. A.: Stopping rules in principal components analysis: a
comparison of heuristical and statistical approaches, Ecology, 74,
2204–2214, https://doi.org/10.2307/1939574, 1993.
Jacobsen, A. L., Pratt, R. B., Davis, S. D., and Ewers, F. W.: Comparative
community physiology: nonconvergence in water relations among three
semi-arid shrub communities, New Phytol., 180, 100–113,
https://doi.org/10.1111/j.1469-8137.2008.02554.x, 2008.
Jolly, W. M. and Johnson, D. M.: Pyro-ecophysiology: shifting the paradigm
of live wildland fuel research, Fire, 1, 8,
https://doi.org/10.3390/fire1010008, 2018.
Keeley, J. E.: Future of California floristics and systematics: wildfire
threats to the California flora, Madrono, 42, 175–179, available at: https://www.jstor.org/stable/41425064 (last access: 25 March 2021), 1995.
Keeley, J. E. and Zedler, P. H.: Large, high-intensity fire events in
southern California shrublands: debunking the fine-grain age patch model,
Ecol. Appl., 19, 69–94, https://doi.org/10.1890/08-0281.1, 2009.
Keeley, J. E., Bond, W. J., Bradstock, R. A., Pausas, J. G., and Rundel, P.
W.: Fire in Mediterranean ecosystems: ecology, evolution and management,
Cambridge University Press, https://doi.org/10.4000/mediterranee.6936, 2011.
Kelley, D. I., Bistinas, I., Whitley, R., Burton, C., Marthews, T. R., and
Dong, N.: How contemporary bioclimatic and human controls change global fire
regimes, Nat. Clim. Change., 9, 690–696,
https://doi.org/10.1038/s41558-019-0540-7, 2019.
Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, R., Lola
da Costa, A. C., and Gentine, P.: Implementing plant hydraulics in the
community land model, version 5, J. Adv. Model. Earth Syst., 11, 485–513,
https://doi.org/10.1029/2018MS001500, 2019.
Koven, C. D., Knox, R. G., Fisher, R. A., Chambers, J. Q., Christoffersen, B. O., Davies, S. J., Detto, M., Dietze, M. C., Faybishenko, B., Holm, J., Huang, M., Kovenock, M., Kueppers, L. M., Lemieux, G., Massoud, E., McDowell, N. G., Muller-Landau, H. C., Needham, J. F., Norby, R. J., Powell, T., Rogers, A., Serbin, S. P., Shuman, J. K., Swann, A. L. S., Varadharajan, C., Walker, A. P., Wright, S. J., and Xu, C.: Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama, Biogeosciences, 17, 3017–3044, https://doi.org/10.5194/bg-17-3017-2020, 2020.
Krawchuk, M. A., Moritz, M. A., Parisien, M. A., Van Dorn, J., and Hayhoe,
K.: Global pyrogeography: the current and future distribution of wildfire,
Plos One, 4, e5102, https://doi.org/10.1371/journal.pone.0005102, 2009.
Linn, R., Reisner, J., Colman, J. J., and Winterkamp, J.: Studying wildfire
behavior using FIRETEC, Int. J. Wildland Fire, 11, 233–246,
https://doi.org/10.1071/WF02007, 2002.
Liu, Y., Stanturf, J., and Goodrick, S.: Trends in global wildfire potential
in a changing climate, For. Ecol. Manag., 259, 685–697,
https://doi.org/10.1016/j.foreco.2009.09.002, 2010.
Massoud, E. C., Xu, C., Fisher, R. A., Knox, R. G., Walker, A. P., Serbin, S. P., Christoffersen, B. O., Holm, J. A., Kueppers, L. M., Ricciuto, D. M., Wei, L., Johnson, D. J., Chambers, J. Q., Koven, C. D., McDowell, N. G., and Vrugt, J. A.: Identification of key parameters controlling demographically structured vegetation dynamics in a land surface model: CLM4.5(FATES), Geosci. Model Dev., 12, 4133–4164, https://doi.org/10.5194/gmd-12-4133-2019, 2019.
Matthews, S., Sullivan, A. L., Watson, P., and Williams, R. J.: Climate
change, fuel and fire behaviour in a eucalypt forest, Glob. Change Biol.,
18, 3212–3223, https://doi.org/10.1111/j.1365-2486.2012.02768.x, 2012.
McDowell, N. G., Fisher, R. A., Xu, C., Domec, J. C., Hölttä, T.,
Mackay, D. S., Sperry, J. S., Boutz, A., Dickman, L., Gehres, N., and
Limousin, J. M.: Evaluating theories of drought-induced vegetation mortality
using a multimodel–experiment framework, New Phytol., 200, 304–321,
https://doi.org/10.1111/nph.12465, 2013.
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L.,
Lamarque, J. F., Matsumoto, K., Montzka, S. A., Raper, S. C., Riahi, K., and
Thomson, A. G.: The RCP greenhouse gas concentrations and their extensions
from 1765 to 2300, Clim. Change., 109, 213–241,
https://doi.org/10.1007/s10584-011-0156-z, 2011.
Meinzer, F. C., James, S. A., Goldstein, G., and Woodruff, D.: Whole-tree
water transport scales with sapwood capacitance in tropical forest canopy
trees, Plant Cell Environ., 26, 1147–1155,
https://doi.org/10.1046/j.1365-3040.2003.01039.x, 2003.
Meinzer, F. C., Johnson, D. M., Lachenbruch, B., McCulloh, K. A., and
Woodruff, D. R.: Xylem hydraulic safety margins in woody plants:
coordination of stomatal control of xylem tension with hydraulic
capacitance, Funct. Ecol., 23, 922–930,
https://doi.org/10.1111/j.1365-2435.2009.01577.x, 2009.
Mencuccini, M., Manzoni, S., and Christoffersen, B.: Modelling water fluxes
in plants: from tissues to biosphere, New Phytol., 222, 1207–1222,
https://doi.org/10.1111/nph.15681, 2019.
Mikkelsen, T. N., Beier, C., Jonasson, S., Holmstrup, M., Schmidt, I. K.,
Ambus, P., Pilegaard, K., Michelsen, A., Albert, K., Andresen, L. C., and
Arndal, M. F.: Experimental design of multifactor climate change experiments
with elevated CO2, warming and drought: the CLIMAITE project, Funct. Ecol.,
22, 185–195, https://doi.org/10.1111/j.1365-2435.2007.01362.x, 2008.
Moorcroft, P. R., Hurtt, G. C., and Pacala, S. W.: A method for scaling
vegetation dynamics: the ecosystem demography model (ED), Ecol. Monogr., 71,
557–586, https://doi.org/10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2,
2001.
Moritz, M. A., Parisien, M. A., Batllori, E., Krawchuk, M. A., Van Dorn, J.,
Ganz, D. J., and Hayhoe, K.: Climate change and disruptions to global fire
activity, Ecosphere, 3, 1–22, https://doi.org/10.1890/ES11-00345.1, 2012.
Nolan, R. H., Boer, M. M., Resco de Dios, V., Caccamo, G., and Bradstock, R.
A.: Large-scale, dynamic transformations in fuel moisture drive wildfire
activity across southeastern Australia, Geophys. Res. Lett., 43, 4229–4238,
https://doi.org/10.1002/2016GL068614, 2016.
Nolan, R. H., Blackman, C. J., de Dios, V. R., Choat, B., Medlyn, B. E., Li,
X., Bradstock, R. A., and Boer, M. M.: Linking forest flammability and plant
vulnerability to drought, Forests, 11, 779,
https://doi.org/10.3390/f11070779, 2020.
Pataki, D. E., Huxman, T. E., Jordan, D. N., Zitzer, S. F., Coleman, J. S.,
Smith, S. D., Nowak, R. S., and Seemann, J. R.: Water use of two Mojave
Desert shrubs under elevated CO2, Glob. Change Biol., 6, 889–897,
https://doi.org/10.1046/j.1365-2486.2000.00360.x, 2000.
Pellizzaro, G., Cesaraccio, C., Duce, P., Ventura, A., and Zara, P.:
Relationships between seasonal patterns of live fuel moisture and
meteorological drought indices for Mediterranean shrubland species, Int. J. Wildland Fire, 16, 232–241, https://doi.org/10.1071/WF06081, 2007.
Pimont, F., Ruffault, J., Martin-StPaul, N. K., and Dupuy, J. L.: Why is the
effect of live fuel moisture content on fire rate of spread underestimated
in field experiments in shrublands?, Int. J. Wildland Fire, 28, 127–137,
https://doi.org/10.1071/WF18056, 2019.
Pineda-Garcia, F., Paz, H., and Meinzer, F. C.: Drought resistance in early
and late secondary successional species from a tropical dry forest: the
interplay between xylem resistance to embolism, sapwood water storage and
leaf shedding, Plant Cell Environ., 36, 405–418,
https://doi.org/10.1111/j.1365-3040.2012.02582.x, 2013.
Pivovaroff, A. L., Emery, N., Sharifi, M. R., Witter, M., Keeley, J. E., and
Rundel, P. W.: The effect of ecophysiological traits on live fuel moisture
content, Fire, 2, 28, https://doi.org/10.3390/fire2020028, 2019.
Plucinski, M. P.: The investigation of factors governing ignition and
development of fires in heathland vegetation, PhD thesis, University of New
South Wales, Sydney, Australia, 2003.
Powell, T. L., Koven, C. D., Johnson, D. J., Faybishenko, B., Fisher, R. A.,
Knox, R. G., McDowell, N. G., Condit, R., Hubbell, S. P., Wright, S. J., and
Chambers, J. Q.: Variation in hydroclimate sustains tropical forest biomass
and promotes functional diversity, New Phytol., 219, 932–946,
https://doi.org/10.1111/nph.15271, 2018.
Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Kaplan, J. O., Li, F., Mangeon, S., Ward, D. S., Yue, C., Arora, V. K., Hickler, T., Kloster, S., Knorr, W., Nieradzik, L., Spessa, A., Folberth, G. A., Sheehan, T., Voulgarakis, A., Kelley, D. I., Prentice, I. C., Sitch, S., Harrison, S., and Arneth, A.: The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions, Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, 2017.
Rind, D., Goldberg, R., Hansen, J., Rosenzweig, C., and Ruedy, R.: Potential
evapotranspiration and the likelihood of future drought, J. Geophys. Res.
Atmos., 95, 9983–10004, https://doi.org/10.1029/JD095iD07p09983, 1990.
Rossa, C. G. and Fernandes, P. M.: Live fuel moisture content: The “pea
under the mattress” of fire spread rate modeling?, Fire, 1, 43,
https://doi.org/10.3390/fire1030043, 2018.
Rothermel, R. C.: A mathematical model for predicting fire spread in
wildland fuels (Vol. 115), Intermountain Forest & Range Experiment
Station, Forest Service, US Department of Agriculture, Minneapolis, USA, 1972.
Ruthrof, K. X., Fontaine, J. B., Matusick, G., Breshears, D. D., Law, D. J.,
Powell, S., and Hardy, G.: How drought-induced forest die-off alters
microclimate and increases fuel loadings and fire potentials, Int. J. Wildland Fire, 25, 819–830, https://doi.org/10.1071/WF15028, 2016.
Saura-Mas, S. and Lloret, F.: Leaf and shoot water content and leaf dry
matter content of Mediterranean woody species with different post-fire
regenerative strategies, Ann. Bot., 99, 545–554,
https://doi.org/10.1093/aob/mcl284, 2007.
Schroeder, M. J., Glovinsky, M., Henricks, V. F., Hood, F. C., and Hull, M.
K.: Synoptic weather types associated with critical fire weather, USDA
Forest Service, Pacific Southwest Range and Experiment Station, Berkeley,
CA, USA, 1964.
Seiler, C., Hutjes, R. W. A., Kruijt, B., Quispe, J., Añez, S., Arora,
V. K., Melton, J. R., Hickler, T., and Kabat, P.: Modeling forest dynamics
along climate gradients in Bolivia, J. Geophys. Res.-Biogeo., 119,
758–775, https://doi.org/10.1002/2013JG002509, 2014.
Stocks, B. J., Fosberg, M. A., Lynham, T. J., Mearns, L., Wotton, B. M.,
Yang, Q., Jin, J. Z., Lawrence, K., Hartley, G. R., Mason, J. A., and
McKenney, D. W.: Climate change and forest fire potential in Russian and
Canadian boreal forests, Clim. Change., 38, 1–13,
https://doi.org/10.1023/A:1005306001055, 1998.
Sturtevant, B. R., Scheller, R. M., Miranda, B. R., Shinneman, D., and
Syphard, A.: Simulating dynamic and mixed-severity fire regimes: a
process-based fire extension for LANDIS-II, Ecol. Modell., 220, 3380–3393,
https://doi.org/10.1016/j.ecolmodel.2009.07.030, 2009.
Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C.: The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model, Biogeosciences, 7, 1991–2011, https://doi.org/10.5194/bg-7-1991-2010, 2010.
Tjiputra, J. F., Roelandt, C., Bentsen, M., Lawrence, D. M., Lorentzen, T., Schwinger, J., Seland, Ø., and Heinze, C.: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM), Geosci. Model Dev., 6, 301–325, https://doi.org/10.5194/gmd-6-301-2013, 2013.
Tobin, M. F., Lopez, O. R., and Kursar, T. A.: Responses of Tropical Understory Plants to a Severe Drought: Tolerance and Avoidance of Water Stress, Biotropica, 31, 570–578, https://doi.org/10.1111/j.1744-7429.1999.tb00404.x, 1999.
Tognetti, R., Minnocci, A., Peñuelas, J., Raschi, A., and Jones, M. B.:
Comparative field water relations of three Mediterranean shrub species
co-occurring at a natural CO2 vent, J. Exp. Bot., 51, 1135–1146,
https://doi.org/10.1093/jexbot/51.347.1135, 2000.
Tyree, M. T. and Hammel, H. T.: The measurement of the turgor pressure and
the water relations of plants by the pressure-bomb technique, J. Exp. Bot.,
23, 267–282, https://doi.org/10.1093/jxb/23.1.267, 1972.
Tyree, M. T. and Yang, S.: Water-storage capacity of Thuja, Tsuga and Acer
stems measured by dehydration isotherms, Planta, 182, 420–426,
https://doi.org/10.1007/BF02411394, 1990.
Veblen, T. T., Kitzberger, T., and Donnegan, J.: Climatic and human
influences on fire regimes in ponderosa pine forests in the Colorado Front
Range, Ecol. Appl., 10, 1178–1195,
https://doi.org/10.1890/1051-0761(2000)010[1178:CAHIOF]2.0.CO;2, 2000.
Venturas, M. D., MacKinnon, E. D., Dario, H. L., Jacobsen, A. L., Pratt, R.
B., and Davis, S. D.: Chaparral shrub hydraulic traits, size, and life
history types relate to species mortality during California's historic
drought of 2014, Plos One, 11, e0159145, https://doi.org/10.1371/journal.pone.0159145,
2016.
Wei, L., Xu, C., Jansen, S., Zhou, H., Christoffersen, B. O., Pockman, W.
T., Middleton, R. S., Marshall, J. D., and McDowell, N. G.: A heuristic
classification of woody plants based on contrasting shade and drought
strategies, Tree Physiol., 39, 767–781,
https://doi.org/10.1093/treephys/tpy146, 2019.
Westerling, A. L., Gershunov, A., Brown, T. J., Cayan, D. R., and Dettinger,
M. D.: Climate and wildfire in the western United States, Bull. Am.
Meteorol. Soc., 84, 595–604, https://doi.org/10.1175/BAMS-84-5-595, 2003.
Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming
and earlier spring increase western US forest wildfire activity, Science,
313, 940–943, https://doi.org/10.1098/rstb.2015.0178, 2006.
Williams, A. P., Abatzoglou, J. T., Gershunov, A., Guzman-Morales, J.,
Bishop, D. A., Balch, J. K., and Lettenmaier, D. P.: Observed impacts of
anthropogenic climate change on wildfire in California, Earths Future, 7,
892–910, https://doi.org/10.1029/2019EF001210, 2019.
Wu, J., Serbin, S. P., Ely, K. S., Wolfe, B. T., Dickman, L. T., Grossiord,
C., Michaletz, S. T., Collins, A. D., Detto, M., McDowell, N. G., and
Wright, S. J.: The response of stomatal conductance to seasonal drought in
tropical forests, Glob. Change Biol., 26, 823–839,
https://doi.org/10.1111/gcb.14820, 2020.
Wullschleger, S. D., Gunderson, C. A., Hanson, P. J., Wilson, K. B., and
Norby, R. J.: Sensitivity of stomatal and canopy conductance to elevated CO2
concentration–interacting variables and perspectives of scale, New Phytol.,
153, 485–496, https://doi.org/10.1046/j.0028-646X.2001.00333.x, 2002.
Xu, C., McDowell, N. G., Sevanto, S., and Fisher, R. A.: Our limited ability
to predict vegetation dynamics under water stress, New Phytol., 200,
298–300, https://doi.org/10.1111/nph.12450, 2013.
Xu, C., McDowell, N. G., Fisher, R. A., Wei, L., Sevanto, S.,
Christoffersen, B. O., Weng, E., and Middleton, R. S.: Increasing impacts of
extreme droughts on vegetation productivity under climate change, Nat. Clim.
Change., 9, 948–953, https://doi.org/10.1038/s41558-019-0630-6, 2019.
Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M., and Guan, K.: Diversity
in plant hydraulic traits explains seasonal and inter-annual variations of
vegetation dynamics in seasonally dry tropical forests, New Phytol., 212,
80–95, https://doi.org/10.1111/nph.14009, 2016.
Yebra, M., Chuvieco, E., and Riaño, D.: Estimation of live fuel moisture
content from MODIS images for fire risk assessment, Agric. For. Meteorol.,
148, 523–536, https://doi.org/10.1016/j.agrformet.2007.12.005, 2008.
Yebra, M., Quan, X., Riaño, D., Larraondo, P. R., van Dijk, A. I., and
Cary, G. J.: A fuel moisture content and flammability monitoring methodology
for continental Australia based on optical remote sensing, Remote. Sens.
Environ., 212, 260–272, https://doi.org/10.4225/41/5837cd92ada9f, 2018.
Zarco-Tejada, P. J., Rueda, C. A., and Ustin, S. L.: Water content
estimation in vegetation with MODIS reflectance data and model inversion
methods, Remote. Sens. Environ., 85, 109–124,
https://doi.org/10.1016/S0034-4257(02)00197-9, 2003.
Short summary
We use a hydrodynamic demographic vegetation model to estimate live fuel moisture dynamics of chaparral shrubs, a dominant vegetation type in fire-prone southern California. Our results suggest that multivariate climate change could cause a significant net reduction in live fuel moisture and thus exacerbate future wildfire danger in chaparral shrub systems.
We use a hydrodynamic demographic vegetation model to estimate live fuel moisture dynamics of...
Altmetrics
Final-revised paper
Preprint