Research article
15 Nov 2022
Research article
| 15 Nov 2022
Geodiversity influences limnological conditions and freshwater ostracode species distributions across broad spatial scales in the northern Neotropics
Laura Macario-González et al.
Related authors
Rodrigo Martínez-Abarca, Michelle Abstein, Philipp Hoelzmann, David Hodell, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Frederik Schenk, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
EGUsphere, https://doi.org/10.5194/egusphere-2022-787, https://doi.org/10.5194/egusphere-2022-787, 2022
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climatic and environmental changes between 59 and 15 ka cal BP. We also compare the response of Petén Itzá with other regional records to discern the possible climatic factors that influenced it. Short-term climate oscillations are also detected.
Rodrigo Martínez-Abarca, Michelle Abstein, Philipp Hoelzmann, David Hodell, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Frederik Schenk, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
EGUsphere, https://doi.org/10.5194/egusphere-2022-787, https://doi.org/10.5194/egusphere-2022-787, 2022
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climatic and environmental changes between 59 and 15 ka cal BP. We also compare the response of Petén Itzá with other regional records to discern the possible climatic factors that influenced it. Short-term climate oscillations are also detected.
Matthias Bücker, Adrián Flores Orozco, Jakob Gallistl, Matthias Steiner, Lukas Aigner, Johannes Hoppenbrock, Ruth Glebe, Wendy Morales Barrera, Carlos Pita de la Paz, César Emilio García García, José Alberto Razo Pérez, Johannes Buckel, Andreas Hördt, Antje Schwalb, and Liseth Pérez
Solid Earth, 12, 439–461, https://doi.org/10.5194/se-12-439-2021, https://doi.org/10.5194/se-12-439-2021, 2021
Short summary
Short summary
We use seismic, electromagnetic, and geoelectrical methods to assess sediment thickness and lake-bottom geology of two karst lakes. An unexpected drainage event provided us with the unusual opportunity to compare water-borne measurements with measurements carried out on the dry lake floor. The resulting data set does not only provide insight into the specific lake-bottom geology of the studied lakes but also evidences the potential and limitations of the employed field methods.
Johannes Buckel, Eike Reinosch, Andreas Hördt, Fan Zhang, Björn Riedel, Markus Gerke, Antje Schwalb, and Roland Mäusbacher
The Cryosphere, 15, 149–168, https://doi.org/10.5194/tc-15-149-2021, https://doi.org/10.5194/tc-15-149-2021, 2021
Short summary
Short summary
This study presents insights into the remote cryosphere of a mountain range at the Tibetan Plateau. Small-scaled studies and field data about permafrost occurrence are very scarce. A multi-method approach (geomorphological mapping, geophysics, InSAR time series analysis) assesses the lower occurrence of permafrost the range of 5350 and 5500 m above sea level (a.s.l.) in the Qugaqie basin. The highest, multiannual creeping rates up to 150 mm/yr are observed on rock glaciers.
Ulrich Harms, Ulli Raschke, Flavio S. Anselmetti, Michael Strasser, Volker Wittig, Martin Wessels, Sebastian Schaller, Stefano C. Fabbri, Richard Niederreiter, and Antje Schwalb
Sci. Dril., 28, 29–41, https://doi.org/10.5194/sd-28-29-2020, https://doi.org/10.5194/sd-28-29-2020, 2020
Short summary
Short summary
Hipercorig is a new modular lake sediment coring instrument based on a barge and a hydraulic corer system driven by a down-the-hole hammer. Hipercorig's performance was tested on the two periglacial lakes, namely Mondsee and Constance, located on the northern edge of the Alpine chain. Up to 63 m of Holocene lake sediments and older meltwater deposits from the last deglaciation were recovered for the first time.
Sergio Cohuo, Laura Macario-González, Sebastian Wagner, Katrin Naumann, Paula Echeverría-Galindo, Liseth Pérez, Jason Curtis, Mark Brenner, and Antje Schwalb
Biogeosciences, 17, 145–161, https://doi.org/10.5194/bg-17-145-2020, https://doi.org/10.5194/bg-17-145-2020, 2020
Short summary
Short summary
We evaluated how freshwater ostracode species responded to long-term and abrupt climate fluctuations during the last 155 kyr in the northern Neotropical region. We used fossil records and species distribution modelling. Fossil evidence suggests negligible effects of long-term climate variations on aquatic niche stability. Models suggest that abrupt climate fluctuation forced species to migrate south to Central America. Micro-refugia and meta-populations can explain survival of endemic species.
Erik T. Brown, Margarita Caballero, Enrique Cabral Cano, Peter J. Fawcett, Socorro Lozano-García, Beatriz Ortega, Liseth Pérez, Antje Schwalb, Victoria Smith, Byron A. Steinman, Mona Stockhecke, Blas Valero-Garcés, Sebastian Watt, Nigel J. Wattrus, Josef P. Werne, Thomas Wonik, Amy E. Myrbo, Anders J. Noren, Ryan O'Grady, Douglas Schnurrenberger, and the MexiDrill Team
Sci. Dril., 26, 1–15, https://doi.org/10.5194/sd-26-1-2019, https://doi.org/10.5194/sd-26-1-2019, 2019
Short summary
Short summary
MexiDrill, the Basin of Mexico Drilling Program, recovered a continuous, high-resolution 400 000 year record of tropical North American environmental change. The field location, in the densely populated, water-stressed, Mexico City region, gives this record particular societal relevance. The record also contains a rich record of volcanic activity; knowledge of the history of the area's explosive volcanic eruptions will improve capacity for risk assessment of future activity.
Related subject area
Biodiversity and Ecosystem Function: Freshwater
Arctic aquatic graminoid tundra responses to nutrient availability
Stable isotopic composition of top consumers in Arctic cryoconite holes: revealing divergent roles in a supraglacial trophic network
Experimental tests of water chemistry response to ornithological eutrophication: biological implications in Arctic freshwaters
Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?
Significance of climate and hydrochemistry on shape variation – a case study on Neotropical cytheroidean Ostracoda
Assembly processes of gastropod community change with horizontal and vertical zonation in ancient Lake Ohrid: a metacommunity speciation perspective
Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard
Unusual biogenic calcite structures in two shallow lakes, James Ross Island, Antarctica
Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes
Constant diversification rates of endemic gastropods in ancient Lake Ohrid: ecosystem resilience likely buffers environmental fluctuations
Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forested stream
Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes
Explosive demographic expansion by dreissenid bivalves as a possible result of astronomical forcing
Phytoplankton community structure in the Lena Delta (Siberia, Russia) in relation to hydrography
Lacustrine mollusc radiations in the Lake Malawi Basin: experiments in a natural laboratory for evolution
DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages
Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe
Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa
Spatially explicit analysis of gastropod biodiversity in ancient Lake Ohrid
A freshwater biodiversity hotspot under pressure – assessing threats and identifying conservation needs for ancient Lake Ohrid
Stratigraphic analysis of lake level fluctuations in Lake Ohrid: an integration of high resolution hydro-acoustic data and sediment cores
Sediment core fossils in ancient Lake Ohrid: testing for faunal change since the Last Interglacial
Testing the spatial and temporal framework of speciation in an ancient lake species flock: the leech genus Dina (Hirudinea: Erpobdellidae) in Lake Ohrid
Native Dreissena freshwater mussels in the Balkans: in and out of ancient lakes
Christian G. Andresen and Vanessa L. Lougheed
Biogeosciences, 18, 2649–2662, https://doi.org/10.5194/bg-18-2649-2021, https://doi.org/10.5194/bg-18-2649-2021, 2021
Short summary
Short summary
Aquatic tundra plants dominate productivity and methane fluxes in the Arctic coastal plain. We assessed how environmental nutrient availability influences production of biomass and greenness of aquatic tundra. We found phosphorous to be the main nutrient limiting biomass productivity and greenness in Arctic aquatic grasses. This study highlights the importance of nutrient pools and mobilization between terrestrial–aquatic systems and their influence on regional carbon and energy feedbacks.
Tereza Novotná Jaroměřská, Jakub Trubač, Krzysztof Zawierucha, Lenka Vondrovicová, Miloslav Devetter, and Jakub D. Žárský
Biogeosciences, 18, 1543–1557, https://doi.org/10.5194/bg-18-1543-2021, https://doi.org/10.5194/bg-18-1543-2021, 2021
Short summary
Short summary
Cryoconite holes are ponds on the glacier surface that play an important role in glacier nutrient pathways. This paper presents the first description of the carbon and nitrogen isotopic composition of cryoconite consumers (tardigrades and rotifers) and their potential food. We showed that consumers differ in nitrogen isotopes and carbon isotopes vary between taxa and between glaciers. The study contributes to improving knowledge about cryoconite hole functioning and cryoconite trophic networks.
Heather L. Mariash, Milla Rautio, Mark Mallory, and Paul A. Smith
Biogeosciences, 16, 4719–4730, https://doi.org/10.5194/bg-16-4719-2019, https://doi.org/10.5194/bg-16-4719-2019, 2019
Short summary
Short summary
Across North America and Europe, goose populations have increased exponentially in response to agricultural intensification. By using an experimental approach, we empirically demonstrated that geese act as bio-vectors, making terrestrial nutrients more bioavailable to freshwater systems. The study revealed that the nutrient loading from goose faeces has the potential to change phytoplankton community composition, with a shift toward an increased presence of cyanobacteria.
Gwenaël Abril and Alberto V. Borges
Biogeosciences, 16, 769–784, https://doi.org/10.5194/bg-16-769-2019, https://doi.org/10.5194/bg-16-769-2019, 2019
Short summary
Short summary
Based on classical concepts in ecology, and a literature survey, we highlight the importance of flooded land as a preferential source of atmospheric carbon to aquatic systems at the global scale. Studies in terrestrial and aquatic ecosystems could be reconciled by considering the occurrence of an efficient wetland CO2 pump to river systems. New methodological approaches coupling hydrology and ecology are also necessary to improve scientific knowledge on carbon fluxes at the land–water interface.
Claudia Wrozyna, Thomas A. Neubauer, Juliane Meyer, Maria Ines F. Ramos, and Werner E. Piller
Biogeosciences, 15, 5489–5502, https://doi.org/10.5194/bg-15-5489-2018, https://doi.org/10.5194/bg-15-5489-2018, 2018
Short summary
Short summary
How environmental change affects a species' phenotype is crucial for taxonomy and biodiversity assessments and for their application as paleoecological indicators. Morphometric data of a Neotropical ostracod species, as well as several climatic and hydrochemical variables, were used to investigate the link between morphology and environmental conditions. Temperature seasonality, annual precipitation, and chloride and sulphate concentrations were identified as drivers for ostracod ecophenotypy.
Torsten Hauffe, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 2901–2911, https://doi.org/10.5194/bg-13-2901-2016, https://doi.org/10.5194/bg-13-2901-2016, 2016
T. R. Vonnahme, M. Devetter, J. D. Žárský, M. Šabacká, and J. Elster
Biogeosciences, 13, 659–674, https://doi.org/10.5194/bg-13-659-2016, https://doi.org/10.5194/bg-13-659-2016, 2016
Short summary
Short summary
The diversity of microalgae and cyanobacteria in cryoconites on three high-Arctic glaciers was investigated. Possible bottom-up controls via nutrient limitation, wind dispersal, and hydrological stability were measured. Grazer populations were quantified to estimate the effect of top-down controls. Nutrient limitation appeared to be the most important control on the diversity and competition outcomes of microalgae and cyanobacteria.
J. Elster, L. Nedbalová, R. Vodrážka, K. Láska, J. Haloda, and J. Komárek
Biogeosciences, 13, 535–549, https://doi.org/10.5194/bg-13-535-2016, https://doi.org/10.5194/bg-13-535-2016, 2016
J. Comte, C. Lovejoy, S. Crevecoeur, and W. F. Vincent
Biogeosciences, 13, 175–190, https://doi.org/10.5194/bg-13-175-2016, https://doi.org/10.5194/bg-13-175-2016, 2016
Short summary
Short summary
Thaw ponds and lakes varied in their bacterial community structure. A small number of taxa occurred in high abundance and dominated many of the communities. Nevertheless, there were taxonomic differences among different valleys implying some degree of habitat selection. Association networks were composed of a limited number of highly connected OTUs. These "keystone species" were not merely the abundant taxa, whose loss would greatly alter the structure and functioning of these aquatic ecosystem.
K. Föller, B. Stelbrink, T. Hauffe, C. Albrecht, and T. Wilke
Biogeosciences, 12, 7209–7222, https://doi.org/10.5194/bg-12-7209-2015, https://doi.org/10.5194/bg-12-7209-2015, 2015
Short summary
Short summary
Based on our molecular data and performed analyses we found that the gastropods studied represent a comparatively old group that most likely evolved with a constant rate of diversification. However, preliminary data of the SCOPSCO deep-drilling program indicate signatures of environmental/climatic perturbations in Lake Ohrid. We therefore propose that the constant rate observed has been caused by a potential lack of catastrophic environmental events and/or a high ecosystem resilience.
S. Bernal, A. Lupon, M. Ribot, F. Sabater, and E. Martí
Biogeosciences, 12, 1941–1954, https://doi.org/10.5194/bg-12-1941-2015, https://doi.org/10.5194/bg-12-1941-2015, 2015
Short summary
Short summary
Terrestrial inputs are considered the major driver of longitudinal patterns of nutrient concentration. Yet we show that longitudinal trends result from hydrological mixing with terrestrial inputs and in-stream processes. We challenge the idea that nutrient concentrations decrease downstream when in-stream net uptake is high. Conversely, in-stream processes can strongly affect stream nutrient chemistry and fluxes even in the absence of consistent longitudinal trends in nutrient concentration.
P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, V. E. Villafañe, and E. W. Helbling
Biogeosciences, 12, 697–712, https://doi.org/10.5194/bg-12-697-2015, https://doi.org/10.5194/bg-12-697-2015, 2015
Short summary
Short summary
Under UVR and stratification,the commensalistic algae-bacteria interaction was strengthened in the high-UVR lake, where excretion of organic carbon rates exceeded the bacterial carbon demand,but did not occur in the low-UVR lake.The greater UVR damage to algae and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates these lakes would be especially vulnerable to UVR. These results have implications for the C cycle in lakes of the Mediterranean region.
M. Harzhauser, O. Mandic, A. K. Kern, W. E. Piller, T. A. Neubauer, C. Albrecht, and T. Wilke
Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, https://doi.org/10.5194/bg-10-8423-2013, 2013
A. C. Kraberg, E. Druzhkova, B. Heim, M. J. G. Loeder, and K. H. Wiltshire
Biogeosciences, 10, 7263–7277, https://doi.org/10.5194/bg-10-7263-2013, https://doi.org/10.5194/bg-10-7263-2013, 2013
D. Van Damme and A. Gautier
Biogeosciences, 10, 5767–5778, https://doi.org/10.5194/bg-10-5767-2013, https://doi.org/10.5194/bg-10-5767-2013, 2013
I. Domaizon, O. Savichtcheva, D. Debroas, F. Arnaud, C. Villar, C. Pignol, B. Alric, and M. E. Perga
Biogeosciences, 10, 3817–3838, https://doi.org/10.5194/bg-10-3817-2013, https://doi.org/10.5194/bg-10-3817-2013, 2013
E. W. Helbling, P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, M. Villar-Argaiz, and V. E. Villafañe
Biogeosciences, 10, 1037–1050, https://doi.org/10.5194/bg-10-1037-2013, https://doi.org/10.5194/bg-10-1037-2013, 2013
C. H. Hsieh, Y. Sakai, S. Ban, K. Ishikawa, T. Ishikawa, S. Ichise, N. Yamamura, and M. Kumagai
Biogeosciences, 8, 1383–1399, https://doi.org/10.5194/bg-8-1383-2011, https://doi.org/10.5194/bg-8-1383-2011, 2011
T. Hauffe, C. Albrecht, K. Schreiber, K. Birkhofer, S. Trajanovski, and T. Wilke
Biogeosciences, 8, 175–188, https://doi.org/10.5194/bg-8-175-2011, https://doi.org/10.5194/bg-8-175-2011, 2011
G. Kostoski, C. Albrecht, S. Trajanovski, and T. Wilke
Biogeosciences, 7, 3999–4015, https://doi.org/10.5194/bg-7-3999-2010, https://doi.org/10.5194/bg-7-3999-2010, 2010
K. Lindhorst, H. Vogel, S. Krastel, B. Wagner, A. Hilgers, A. Zander, T. Schwenk, M. Wessels, and G. Daut
Biogeosciences, 7, 3531–3548, https://doi.org/10.5194/bg-7-3531-2010, https://doi.org/10.5194/bg-7-3531-2010, 2010
C. Albrecht, H. Vogel, T. Hauffe, and T. Wilke
Biogeosciences, 7, 3435–3446, https://doi.org/10.5194/bg-7-3435-2010, https://doi.org/10.5194/bg-7-3435-2010, 2010
S. Trajanovski, C. Albrecht, K. Schreiber, R. Schultheiß, T. Stadler, M. Benke, and T. Wilke
Biogeosciences, 7, 3387–3402, https://doi.org/10.5194/bg-7-3387-2010, https://doi.org/10.5194/bg-7-3387-2010, 2010
T. Wilke, R. Schultheiß, C. Albrecht, N. Bornmann, S. Trajanovski, and T. Kevrekidis
Biogeosciences, 7, 3051–3065, https://doi.org/10.5194/bg-7-3051-2010, https://doi.org/10.5194/bg-7-3051-2010, 2010
Cited articles
Alahuhta, J., Toivanen, M., and Hjort, J.: Geodiversity–biodiversity relationship needs more empirical evidence, Nat. Ecol. Evol., 4, 2–3, https://doi.org/10.1038/s41559-019-1051-7, 2020.
Albert, J. S. and Reis, R. E. (Eds.): Historical Biogeography of Neotropical Freshwater Fishes, University of California Press, Berkeley, CA, https://doi.org/10.1525/california/9780520268685.001.0001, 2011.
Alcocer, J. and Bernal-Brooks, F. W.: Limnology in Mexico, Hydrobiologia, 644, 15–68, https://doi.org/10.1007/s10750-010-0211-1, 2010.
Alcocer, J., Lugo, A., Marín, L., and Escobar, E.: Hydrochemistry of waters from five cenotes and evaluation of their suitability for drinking-water supplies, northeastern Yucatan, Mexico, Hydrogeol. J., 6, 293–301, https://doi.org/10.1007/s100400050152, 1998.
Antonelli, A., Zizka, A., Carvalho, F. A., Scharn, R., Bacon, C. D., Silvestro, D., and Condamine, F. L.: Amazonia is the primary source of Neotropical biodiversity, P. Natl. Acad. Sci. USA, 115, 6034–6039, https://doi.org/10.1073/pnas.1713819115, 2018.
Armienta, M., Vilaclara, G., De la Cruz-Reyna, S., Ramos, S., Ceniceros, N., Cruz, O., Aguayo, A., and Arcega-Cabrera, F.: Water chemistry of lakes related to active and inactive Mexican volcanoes, J. Volcanol. Geoth. Res., 178, 249–258, https://doi.org/10.1016/j.jvolgeores.2008.06.019, 2008.
Armienta, M. A., De la Cruz-Reyna, S., and Macías, J. L.: Chemical characteristics of thecrater lakes of Popocatépetl, El Chichon, and Nevado de Toluca volcanoes, Mexico, J. Volcanol. Geoth. Res., 97, 105–125, https://doi.org/10.1016/S0377-0273(99)00157-2, 2000.
Azim, M. E.: Photosynthetic Periphyton and Surfaces, in: Encyclopedia of Inland Waters, edited by: Gene, E. L., Academic Press, 184–191, https://doi.org/10.1016/B978-012370626-3.00144-7, 2009.
Bacon, C. D., Silvestro, D., Jaramillo, C., Smith, B. T., Chakrabarty, P., and Antonelli, A.: Biological evidence supports an early and complex emergence of the Isthmus of Panama, P. Natl. Acad. Sci. USA, 112, 6110–6115, https://doi.org/10.1073/pnas.1423853112, 2015.
Baker, P. A., Seltzer, G. O., Fritz, S. C., Dunbar, R. B., Grove, M., Tapia, P., Cross, S., Rowe, H., and Broda, J.: The history of South American tropical climate for the past 25 000 years, Science, 291, 640–643, https://doi.org/10.1126/science.291.5504.640, 2001.
Baker, P. A., Fritz, S. C., Dick, C. W., Battisti, D. S., Vargas, O. M., Asner, G. P., Martin, R. E., Wheatley, A., and Prates, I.: Beyond Refugia: New Insights on Quaternary Climate Variation and the Evolution of Biotic Diversity in Tropical South America, in: Neotropical Diversification: Patterns and Processes, Fascinating Life Sciences, edited by: Rull, V. and Carnaval, A., Springer, Cham, 51–70, https://doi.org/10.1007/978-3-030-31167-4_3, 2020.
Bautista, F., Palacio, G., Quintana, P., and Zinck, A. J.: Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatán, Mexico, Geomorphology, 135, 308–321, https://doi.org/10.1016/j.geomorph.2011.02.014, 2011.
Behling, H., Arz, H. W., Patzold, J., and Wefer, G.: Late Quaternary vegetational and climate dynamics in northeastern Brazil, inferences from marine core GeoB 3104-1, Quaternary Sci. Rev., 19, 981–994, https://doi.org/10.1016/S0277-3791(99)00046-3, 2000.
Bouimetarhan, I., Chiessi, C., Gonzalez-Arango, C. G., Dupont, L., Voigt, I., Prange, M., and Zonneveld, K.: Intermittent development of forest corridors in northeastern Brazil during the last deglaciation: climatic and ecologic evidence, Quaternary Sci. Rev., 192, 86–96, https://doi.org/10.1016/j.quascirev.2018.05.026, 2018.
Bravo-Cuevas, V., González-Rodríguez, K., Cabral-Perdomo, M., Cuevas-Cardona, C., and Pulido-Silva, M.: Geodiversity and its implications in the conservation of biodiversity: Some case studies in central Mexico, CIENCIA Ergo-Sum, 28, 1–15, https://doi.org/10.30878/ces.v28n3a8, 2021.
Brezonik, P. and Fox, J.: The limnology of selected Guatemalan lakes, Hydrobiologia, 45, 467–487, https://doi.org/10.1007/BF00012032, 1974.
Bryson, R., Riddle, B., Graham, M., Smith, B., and Prendini, L.: As Old as the hills: montane scorpions in Southwestern North America reveal ancient associations between biotic diversification and landscape history, PLoS One, 8, e52822, https://doi.org/10.1371/journal.pone.0052822, 2013.
Carnaval, A. C. and Moritz, C.: Historical climate modeling predicts patterns of current biodiversity in the Brazilian Atlantic forest, J. Biogeogr., 35, 1187–1201, https://doi.org/10.1111/j.1365-2699.2007.01870.x, 2008.
Carr, M.: Symmetrical and segmented variation of physical and geochemical characteristics of the Central American volcanic front, J. Volcanol. Geoth. Res., 20, 231–252, https://doi.org/10.1016/0377-0273(84)90041-6, 1984.
CEPF (Critical Ecosystem Partnership Fund): The Biodiversity hotspots, https://www.cepf.net/our-work/biodiversity-hotspots, last access: 1 November 2021.
Cervantes-Martínez, A., Elías-Gutiérrez, M., and Suárez-Morales, E.: Limnological and morphometrical data of eight karstic systems “cenotes” of the Yucatán Peninsula, Mexico, during the dry season (February–May, 2001), Hydrobiologia, 482, 167–177, https://doi.org/10.1023/A:1021260131757, 2002.
Chao, A. and Shen, T. J.: Nonparametric estimation of Shannon's index of diversity when there are unseen species in sample, Environ. Ecol. Stat., 10, 429–443, https://doi.org/10.1023/A:1026096204727, 2003.
Chavent, M., Kuentz-Simonet, V., Labenne, A., and Saracco, J.: Multivariate analysis of mixed data: The R package PCAmixdata, arXiv [preprint], https://doi.org/10.48550/arXiv.1411.4911, 18 November 2014.
Clarke, K.: Non-parametric multivariate analyses of changes in community structure, Aust. J. Ecol., 18, 117–143, https://doi.org/10.1111/j.1442-9993.1993.tb00438.x, 1993.
Cohuo, S., Macario-González, L., Pérez, L., and Schwalb, L.: Overview of Neotropical-Caribbean freshwater ostracode fauna (Crustacea, Ostracoda): identifying areas of endemism and assessing biogeographical affinities, Hydrobiologia, 786, 5–21, https://doi.org/10.1007/s10750-016-2747-1, 2016.
Cohuo, S., Macario-González, L., Pérez, L., Sylvestre, F., Paillès, C., Curtis, J., Kutterolf, S., Wojewódka, M., Zawisza, E., Szeroczynska, K., and Schwalb, A.: Ultrastructure and aquatic community response to Heinrich Stadial (HS5a–HS1) in the continental northern Neotropics, Quaternary Sci. Rev., 19, 75–91, https://doi.org/10.1016/j.quascirev.2018.07.015, 2018.
Cohuo, S., Macario-González, L., Wagner, S., Naumann, K., Echeverría-Galindo, P., Pérez, L., Curtis, J., Brenner, M., and Schwalb, A.: Influence of late Quaternary climate on the biogeography of Neotropical aquatic species as reflected by non-marine ostracodes, Biogeosciences, 17, 145–161, https://doi.org/10.5194/bg-17-145-2020, 2020.
Crofts, R.: Linking geoconservation with biodiversity conservation in protected areas, Int. J. Geoheritage Parks, 7, 211–217, https://doi.org/10.1016/j.ijgeop.2019.12.002, 2019.
De Albuquerque, F. S., Benito, B., Beier, P., Assunção-Albuquerque, M. J., and Cayuela, L.: Supporting underrepresented forests in Mesoamerica, Nat. Conservacao, 13, 152–158, https://doi.org/10.1016/j.ncon.2015.02.001, 2015.
de Paula Silva, J., Alves, G. B., Ross, J. L. S., do Nascimiento, M. A., Felini, M. G., Manosso, F. C., and Pereira, D. I.: The Geodiversity of Brazil: Quantification, Distribution, and Implications for Conservation Areas, Geoheritage, 13, 75, https://doi.org/10.1007/s12371-021-00598-0, 2021.
DeClerck, F., Chazdon, R., Robin, H., Karen, D., Milder, J., Finegan, B., Martínez-Salinas, A., Imbach, P., Canet, L., and Ramos, Z.: Biodiversity conservation in human-modified landscapes of Mesoamerica: Past, present and future, Biol. Conserv., 143, 2301–2313, https://doi.org/10.1016/j.biocon.2010.03.026, 2010.
Delgado-Martínez, C. M., Alvarado, F., Mendoza, E., Flores-Hernández, S., Navarrete, A., Navarrete, E., and Botello, F.: An ignored role of sartenejas to mitigate water shortage hazards for tropical forest vertebrates, Ecology, 99, 758–760, https://doi.org/10.1002/ecy.2078, 2018.
Dengo, G., Bohenberger, O., and Bonis, S.: Tectonics and volcanism along the Pacific Marginal Zone of Central America, Geol. Rundsch., 59, 1215–1235, https://doi.org/10.1007/BF02042290, 1970.
Dull, R. A., Southon, J. R., and Sheets, P.: Volcanism, Ecology and Culture: A Reassessment of the Volcan Ilopango Tbj eruption in the Southern Maya Realm, Lat. Am. Antiq., 12, 25–44, https://doi.org/10.2307/971755, 2001.
Echeverría-Galindo, P. G., Pérez, L., Correa-Metrio, A., Avendaño, C., Moguel, B., Brenner, M., Cohuo, S., Macario, L., and Schwalb, A.: Tropical freshwater ostracodes as environmental indicators across an altitude gradient in Guatemala and Mexico, Rev. Biol. Trop., 67, 1037–1058, https://doi.org/10.15517/rbt.v67i4.33278, 2019.
Ellison, A. M.: Wetlands of Central America, Wetl. Ecol. Manag., 12, 3–55, https://doi.org/10.1023/B:WETL.0000016809.95746.b1, 2004.
Erdlac, T. and Anderson, H.: The Chixoy-Polochic fault and its associated fractures in western Guatemala, Geol. Soc. Am. Bull., 93, 57–67, https://doi.org/10.1130/0016-7606(1982)93<57:TCFAIA>2.0.CO;2, 1982.
Estrada-Medina, H., Bautista, F., Jiménez-Osornio, J. J., González-Iturbe, J. A., and Aguilar-Cordero, W.: Maya and WRB Soil Classification in Yucatan, Mexico: Differences and Similarities, Int. Sch. Res. Notices, 634260, 1–10, https://doi.org/10.1155/2013/634260, 2013.
Etienne, R. and Apol, M.: Estimating speciation and extinction rates from diversity data and the fossil record, Evolution, 63, 244–255, https://doi.org/10.1111/j.1558-5646.2008.00537.x, 2009.
Fabrigar, L. R., MacCallum, R. C., Wegener, D. T., and Strahan, E. J.: Evaluating the use of exploratory factor analysis in psychological research, Psychol. Methods, 4, 272–299, https://doi.org/10.1037/1082-989X.4.3.272, 1999.
Fan, Y., Chen, J., Shirkey, G., John, R., Wu, S., Park, H., and Shao, C.: Applications of structural equation modeling (SEM) in ecological studies: an updated review, Ecol. Process., 5, 19, https://doi.org/10.1186/s13717-016-0063-3, 2016.
Franco-Gaviria, F., Caballero-Rodríguez, D., Correa-Metrio, A., Pérez, L., Schwalb, A., Cohuo, S., and Macario-González, L.: The human impact imprint on modern pollen spectra of the Maya lands, B. Soc. Geol. Mex., 70, 61–78, 2018.
Garrity, C. and Soller, C.: Database of the Geologic Map of North America; adapted from the map by: Reed Jr., J. C. et al. (2005), US Geological Survey Data Series 424, https://doi.org/10.3133/ds424, 2009.
Gillespie, R. and Roderick, G.: Geology and climate drive diversification, Nature, 509, 297–298, https://doi.org/10.1038/509297a, 2014.
Golombek, M. P. and Carr, M. J.: Tidal triggering of seismic and volcanic phenomena during the 1879–1880 eruption of Islas Quemadas volcano in El Salvador, Central America, J. Volcanol. Geoth. Res., 3, 299–307, https://doi.org/10.1016/0377-0273(78)90040-9, 1978.
Gray, M. (Ed.): Geodiversity: Valuing and conserving abiotic nature, John Wiley & Sons, Chichester, ISBN 0470848952, 2004.
Gray, M.: Geodiversity: The Backbone of Geoheritage and Geoconservation, in: Geoheritage Assessment, protection, and management, edited by: Reynard, E. and Brilha, J., Elsevier, Amsterdam, 13–25, https://doi.org/10.1016/B978-0-12-809531-7.00001-0, 2018.
Gray, M.: Geodiversity, geoheritage and geoconservation for society, International Journal of Geoheritage and Parks, 7, 226–236, https://doi.org/10.1016/j.ijgeop.2019.11.001, 2019.
Haberyan, K. and Horn, S.: Chemical and Physical Characteristics of Seven Lakes in Costa Rica, Brenesia, 51, 85–95,1999.
Haberyan, K., Horn, S., and Umaña, G.: Basic limnology of fifty-one lakes in Costa Rica, Rev. Biol. Trop., 51, 107–122, 2003.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontol. Electron., 4, 1–9, 2001.
Hartmann, G.: Beitrag zur Kenntnis des Nicaragua-Sees unter besonderer Berücksichtigung seiner Ostracoden (mit Beschreibung von 5 neuen Arten), Zool. Anz., 162, 269–294, 1959.
Hastenrath, S.: Rainfall distribution and regime in Central America, Arch. Meteor. Geophy. B, 15, 201–241, https://doi.org/10.1007/BF02243853, 1967.
Higuti, J., Conceição, E. O., Campos, R., Ferreira, V. G., Rosa, J., Pinto, M. B. O., and Martens, K.: Periphytic community structure of Ostracoda (Crustacea) in the river-floodplain system of the Upper Paraná River, Acta Limnol. Bras., 29, e120, https://doi.org/10.1590/S2179-975X12217, 2017.
Hildebrand, A. R., Pilkington, M., Connors, M., Ortiz-Aleman, C., and Chavez, R. E.: Size and structure of the Chicxulub crater revealed by horizontal gravity gradients and cenotes, Nature, 376, 415–417, https://doi.org/10.1038/376415a0, 1995.
Hodell, D. A., Brenner, M., and Curtis, J.: Terminal Classic drought in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico), Quaternary Sci. Rev., 24, 1413–1427, https://doi.org/10.1016/j.quascirev.2004.10.013, 2005.
Horn, S. and Haberyan, K.: Costa Rican lakes: physical and chemical properties, Nat. Geog. Res. Explor., 9, 86–103, 1993.
Hu, A., Wang, J., Sun, H., Niu, B., Si, G., Wang, J., Yeh, C., Zhu, X., Lu, X., Zhou, J., Yang, Y., Ren, M., Hu, Y., Dong, H. D., and Zhang, G.: Mountain biodiversity and ecosystem functions: interplay between geology and contemporary environments, ISME J., 14, 931–944, https://doi.org/10.1038/s41396-019-0574-x, 2020.
Hu, L. and Bentler, P. M.: Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives, Struct. Equ. Modeling, 6, 1–55, https://doi.org/10.1080/10705519909540118, 1999.
Hulsey, C. D., Hollingsworth, P. R., and Fordyce, J. A.: Temporal diversification of Central American cichlids, BMC Evol. Biol., 10, 279, https://doi.org/10.1186/1471-2148-10-279, 2010.
Huston, M. A.: Biological Diversity: the coexistence of species on changing landscapes, Cambridge University Press, 681 + xix pp., ISBN 0521369304, 1995.
Jakobsen, J. C., Gluud, C., Wetterslev, J., and Winkel, P.: When and how should multiple imputation be used for handling missing data in randomised clinical trials – a practical guide with flowcharts, BMC Med. Res. Methodol., 17, 162, https://doi.org/10.1186/s12874-017-0442-1, 2017.
Jiménez-Alfaro, B., Girardello, M., Chytry, M., Svenning, J. C., Willner, W., Gegou, J. C., Agrillo, E., Campos, J. A., Jandt, U., Kącki, Z., Šilc, U., Slezák, M., Tichý, L., Tsiripidis., L., Turtureanu, P. D., Ujházyová, M., and Wohlgemuth, T.: History and environment shape species pools and community diversity in European beech forests, Nat. Ecol. Evol., 2, 483–490, https://doi.org/10.1038/s41559-017-0462-6, 2018.
Jury, M.: Long-term variability and trends in the Caribbean Sea, Int. J. Oceanogr., 2011, 465810, https://doi.org/10.1155/2011/465810, 2011.
Karanovic, I. (Ed.): Recent Freshwater Ostracods of the World, Crustacea, Ostracoda, Podocopida, Springer, Berlin, ISBN 978-3-6422-1809-5, 2012.
Last, W. M.: Mineralogical analysis of lake sediments, in: Tracking Environmental Change Using Lake Sediments, edited by: Last, W. M. and Smol, J. P., Physical and Geochemical Methods, Springer, Dordrecht, 143–188, ISBN 978-1-4020-0628-9, 2002.
Legendre, P. and Legendre, L. (Eds.): Numerical Ecology, Elsevier Scientific, Oxford, ISBN 9780444538697, 1998.
Löffler, H.: Contribution to the limnology of high mountain lakes in Central America, Int. Rev. Hydrobiol., 57, 397–408, https://doi.org/10.1002/iroh.19720570304, 1972.
Lorenschat, J., Peìrez, L., Correa-Metrio, A., Brenner, M., Von Bramann, U., and Schwalb, A.: Diversity and spatial distribution of extant freshwater ostracodes (Crustacea) in ancient Lake Ohrid (Macedonia/Albania), Diversity, 6, 524–550, https://doi.org/10.3390/d6030524, 2014.
Macario-González, L. A.: Ostracode relative abundances in surface sediments in Northern Neotropics (southern Mexico, Yucatán Peninsula to Nicaragua), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.940254, 2022.
Macario-González, L., Cohuo, S., Elías, M., Vences, M., Perez, L., and Schwalb, A.: Integrative taxonomy of freshwater ostracodes (Crustacea: Ostracoda) of the Yucatán Peninsula, implications for paleoenvironmental reconstructions in the northern Neotropical region, Zool. Anz., 275, 20–36, https://doi.org/10.1016/j.jcz.2018.04.002, 2018.
Macario-González, L. A., Cohuo, S., Hoelzmann, P., Perez, L., Elías-Gutiérrez, M., Caballero, M., Oliva, A., Palmieri, M., Álvarez, M. R., and Schwalb, A.: Limnological, sedimentological, mineralogical and geological data of 76 aquatic ecosystems of the northern Neotropics (from Yucatán Peninsula Mexico to Nicaragua) sampled in 2013, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.940538, 2022.
Magaña, V., Amador, J., and Medina, S.: The midsummer drought over Mexico and Central America, J. Climate, 12, 1577–1588, https://doi.org/10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2, 1999.
Margalef, R.: La teoría de la información en Ecología, Mems R. Acad. Cienc. Artes de Barcelona, 32, 373–436, 1957.
Marshall, J.: Geomorphology and physiographic provinces of Central America, in: Central America: Geology,
Resources and Hazards, edited by: Bundschuh, J. and Alvarado,
G., Taylor and Francis Group, London, 75–122, ISBN 9780429074370, 2007.
Marshall, J. S., Idleman, B. D., Gardner, T. W., and Fisher, D. M.: Landscape evolution within a retreating volcanic arc, Costa Rica, Central America, Geology, 31, 419–422, https://doi.org/10.1130/0091-7613(2003)031<0419:LEWARV>2.0.CO;2, 2003.
Martiny, J. B., Bohannan, B. J., Brown, J. H., Colwell, R. K., Fuhrman, J. A., Green, J. L., Horner-Devine, M. C., Kane, M., Krumins, J. A., Kuske, C. R., Morin, P. J., Naeem, S., Ovreås, L., Reysenbach, A. L., Smith, V. H., and Staley, J. T.: Microbial biogeography: putting microorganisms on the map, Nat. Rev. Microbiol., 4, 102–112, https://doi.org/10.1038/nrmicro1341, 2006.
Matamoros, W. A., McMahan, C. D., Chakrabarty, P., Albert, J. S., and Schaefer, J. F.: Derivation of the freshwater fish fauna of Central America revisited: Myers's hypothesis in the twenty-first century, Cladistics, 31, 177–188, https://doi.org/10.1111/cla.12081, 2015.
Matzke-Karasz, R., Serrano-Sánchez, M. d. L., Pérez, L., Keyser, D., Pipík, R., and Vega, F. J.: Abundant assemblage of Ostracoda (Crustacea) in Mexican Miocene amber sheds light on the evolution of the brackish-water tribe Thalassocypridini, Hist. Biol., 31, 65–101, https://doi.org/10.1080/08912963.2017.1340471, 2019.
McCullough, I., Fergus, E., and Scott, C.: Macrosystems Limnology and Beyond: Re-Envisioning the Scale of Limnology, in: Encyclopedia of Inland Waters, edited by: Cheruvelil, K., Elsevier, USA, https://doi.org/10.1016/B978-0-12-819166-8.00026-8, 2021.
McKaye, K. R., Ryan, J. D., Stauffer, J. R., Lopez-Perez, J. L., Vega, G. I., and van den Berghe, E. P.: African Tilapia in Lake Nicaragua, BioScience, 45, 406–411, https://doi.org/10.2307/1312721, 1995.
Miller, R. R.: Geographical distribution of Central American freshwater fishes, Copeia, 1966, 773–802, https://doi.org/10.2307/1441406, 1966.
Mittelbach, G. G., Schemske, D. W., Cornell, H. V., Allen, A. P., Brown, J. M., Bush, M. B., Harrison, S. P., Hurlbert, S. P., Knowlton, N., Lessios, H. A., McCain, C. M., McCune, A. R., McDade, L. A., McPeek, M. A., Near, T. I., Price, T. D., Ricklefs, R. E., Roy, K., Sax, D. F., Schluter, D., Sobel, A. M., and Turelli, M.: Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography, Ecol. Lett., 10, 315–331, https://doi.org/10.1111/j.1461-0248.2007.01020.x, 2007.
Moguel, B., Pérez, L., Alcaraz, L. D., Blaz, J., Caballero, M., Muñoz-Velasco, I., Becerra, A., Laclette, J. P., Ortega-Guerrero, B., Romero-Oliva, C. S., Herrera-Estrella, L., and Lozano-García, S.: Holocene life and microbiome profiling in ancient tropical Lake Chalco, Mexico, Sci. Rep.-UK, 11, 13848, https://doi.org/10.1038/s41598-021-92981-8, 2021.
Molnar, P. and Sykes, L.: Tectonics of the Caribbean and Middle American regions from focal mechanisms and seismicity, Geol. Soc. Am. Bull., 80, 1639–1684, https://doi.org/10.1130/0016-7606(1969)80[1639:TOTCAM]2.0.CO;2, 1969.
Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J. C., Valencia, V., Ayala, C., Pérez-Angel, L. C., Rodríguez-Parra, L. A., Ramírez, V., and Niño, H.: Middle Miocene closure of the Central American Seaway, Science, 348, 226–229, https://doi.org/10.1126/science.aaa2815, 2015.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., and Kent, J.: Biodiversity hotspots for conservation priorities, Nature, 403, 853–858, https://doi.org/10.1038/35002501, 2000.
Newhall, C. G. and Dzurisin, D.: Historical unrest at large calderas of the world, US Geol. Surv. Bull., 2, 210–213, https://doi.org/10.3133/b1855, 1988.
Obrist-Farner, J. and Rice, P. M.: Nixtun-Ch'ich' and its environmental impact: Sedimentological and archaeological correlates in a core from Lake Petén Itzá in the southern Maya lowlands, Guatemala, J. Archaeol. Sci. Rep., 26, 101868, https://doi.org/10.1016/j.jasrep.2019.05.033, 2019.
Obrist-Farner, J., Brenner, M., Stone, J., Wojewódka, M., Bauersachs, T., Eckert, A., Locmelis, M., Curtis, J., Zimmerman, S., Correa-Metrio, A., Schwark, L., Duarte, E., Schwalb, A., Niewerth, E., Echeverría Galindo, P., and Pérez, L.: New estimates of the magnitude of the sea-level jump during the 8.2 ka event, Geology, 50, 86–90, https://doi.org/10.1130/G49296.1, 2021.
Ojeda, R. A., Stadler, J., and Brandl, R.: Diversity of mammals in the tropical-temperate neotropics: Hotspots on a regional scale, Biodivers. Conserv., 12, 1431–1444, https://doi.org/10.1023/A:1023625125032, 2003.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., and Wagner, H.: vegan: Community Ecology Package, R package version 2.4-5, https://CRAN.R-project.org/package=vegan (last access: 4 April 2022), 2017.
Patton, J. L., da Silva, M. N. F., and Malcolm, J. R.: Gene genealogy and differentiation among arboreal spiny rats (Rodentia: Echimyidae) of the Amazon Basin: a test of the riverine barrier hypothesis, Evolution, 48, 1314–1323, https://doi.org/10.1111/j.1558-5646.1994.tb05315.x, 1994.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Pérez, L., Lorenschat, J., Brenner, M., Scharf, B., and Schwalb, A.: Extant freshwater ostracodes (Crustacea: Ostracoda) from Lago Petén Itzá, Guatemala, Rev. Biol. Trop., 58, 871–895, https://doi.org/10.15517/rbt.v58i2.5252, 2010.
Pérez, L., Bugja, R., Lorenschat, J., Brenner, M., Curtis, J., Hoelzmann, P., Islebe, G., Scharf, B., and Schwalb, A.: Aquatic ecosystems of the Yucatán Peninsula (Mexico), Belize, and Guatemala, Hydrobiologia, 661, 407–433, https://doi.org/10.1007/s10750-010-0552-9, 2011a.
Pérez, L., Frenzel, P., Brenner, M., Escobar, J., Hoelzmann, P., Scharf, B., and Schwalb, A.: Late Quaternary (24–10 ka BP) environmental history of the Neotropical lowlands inferred from ostracodes in sediments of Lago Petén Itzá, Guatemala, J. Paleolimnol., 46, 59–74, https://doi.org/10.1007/s10933-011-9514-0, 2011b.
Pérez, L., Lorenschat, J., Massaferro, J., Paillès, C., Sylvestre, F., Hollwedel, W., Brandorff, G. O., Brenner, M., Islebe, G., Lozano, M. S., Scharf, B., and Schwalb, A.: Bioindicators of climate and trophic state in lowland and highland aquatic ecosystems of the Northern Neotropics, Rev. Biol. Trop., 61, 603–644, 2013.
Pérez-Ceballos, R., Pacheco-Ávila, J., Euán-Ávila, J. I., and Hernández-Arana, H.: Regionalization based on water chemistry and physicochemical traits in the ring of cenotes, Yucatan, Mexico, J. Cave Karst Stud., 74, 90–102, https://doi.org/10.4311/2011es0222, 2012.
Perry, E., Velazquez-Oliman, G., and Marin, L.: The Hydrogeochemistry of the Karst Aquifer System of the Northern Yucatan Peninsula, Mexico, Int. Geol. Rev., 44, 191–221, https://doi.org/10.2747/0020-6814.44.3.191, 2002.
Perry, E., Paytan, A., Pedersen, B., and Velazquez-Oliman, G.: Groundwater geochemistry of the Yucatan Peninsula, Mexico: Constraints on stratigraphy and hydrogeology, J. Hydrol., 367, 27–40, https://doi.org/10.1016/j.jhydrol.2008.12.026, 2009.
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 5 February 2022), 2017.
Reed, J. C., Wheeler, J. O., and Tucholke, B. E.: Decade of North American Geology, Geologic Map of North America, 1:5 000 000 continent scale map 001, Geological Society of America Inc., Boulder, CO, https://doi.org/10.1130/DNAG-CSMS-v1, 2005.
Ren, Y., Lü, Y., Hu, J., and Yin, L.: Geodiversity Underpins Biodiversity but the Relations Can Be Complex: Implications from Two Biodiversity Proxies, Glob. Ecol. Conserv., 31, e01830, https://doi.org/10.1016/j.gecco.2021.e01830, 2021.
Roessler, E. W.: Estudios sobre los ostracodos de agua dulce en Colombia – 6, Parte 4: Estudio taxonómico del grupo Strandesia psittacea psittacea (Sars, 1901), Caldasia, 16, 215–230, 1990a.
Roessler, E. W.: Estudios taxonómicos, ontogenéticos, ecológicos y etológicos sobre los ostrácodos de agua dulce en Colombia (Ostracoda, Podocopida, Cyprididae) – 6: Estudio taxonómico del género Strandesia Stuhlmann, 1888 – Parte 3: El grupo Strandesia elliptica (Sars, 1901), Revista Acad. Colomb. Ci. Exact., 17, 795–804, 1990b.
Rosa, J., Petsch, D. K., Martens, K., and Higuti, J.: Species' traits and taxonomic distance can predict the hatching phenology of ostracod (Crustacea) resting eggs from tropical floodplain lakes, Int. Rev. Hydrobiol., 106, 226–238, https://doi.org/10.1002/iroh.202102105, 2021.
Rosencrantz, E.: Structure and tectonics of the Yucatan Basin, Caribbean Sea, as determined from seismic reflection studies, Tectonics, 9, 1037–1059, https://doi.org/10.1029/TC009i005p01037, 1990.
Rosseel, Y.: Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BETA), J. Stat. Softw., 48, 1–36, https://cutt.ly/xgwlRZJ (last access: 4 April 2022), 2012.
Rossetti, D. P. and Toledo, P. M.: Biodiversity from a Historical Geology Perspective: A Case Study from Marajó Island, Lower Amazon, Geobiology, 4, 215–223, https://doi.org/10.1111/j.1472-4669.2006.00080.x, 2006.
Rossi, V., Martorella, A., and Menozzi, P.: Hatching phenology and voltinism of Heterocypris barbara (Crustacea: Ostracoda from Lampedusa (Sicily, Italy), J. Limnol., 72, e:18, https://doi.org/10.4081/jlimnol.2013.e18, 2013.
Rull, V.: Neotropical biodiversity: timing and potential drivers, Trends Ecol. Evol., 26, 508–513, https://doi.org/10.1016/j.tree.2011.05.011, 2011.
Saint-Loup, R., Felix, T., Maqueda, A., Schiller, A., and Renard, P.: A survey of groundwater quality in Tulum region, Yucatan Peninsula, Mexico, Environ. Earth Sci., 77, 1–20, https://doi.org/10.1007/s12665-018-7747-1, 2018.
Saldarriaga, A. T. and Martínez, J. I.: Ecology of non–marine ostracoda from La Fe reservoir (El Retiro, Antioquia) and their potential application in paleoenvironmental studies, Rev. Acad. Col. Cienc., 34, 397–409, 2010.
Sánchez-Sánchez, J. A., Álvarez-Legorreta, T., Pacheco-Ávila, J. G., González-Herrera, R. A., and Carrillo-Bribiezca, L.: Caracterización hidrogeoquímica de las aguas subterráneas del sur del Estado de Quintana Roo, México, Rev. Mex. Cienc. Geol., 32, 62–76, 2015.
Sarstedt, M. and Ringle, C. M.: Structural Equation Models: From Paths to Networks (Westland 2019), Psychometrika, 85, 841–844, https://doi.org/10.1007/s11336-020-09719-0, 2020.
Schmitter-Soto, J., Comín, F., Escobar-Briones, E., Herrera, J., Alcocer, J., Suarez-Morales, E., Elías-Gutiérrez, M., Díaz, V., Marin, L., and Steinich, B.: Hydrogeochemical and biological characteristics of cenotes in the Yucatan Peninsula (SE Mexico), Hydrobiologia, 467, 215–228, https://doi.org/10.1023/A:1014923217206, 2002a.
Schmitter-Soto, J., Escobar-Briones, E., Alcocer, J., Suarez-Morales, E., Elías-Gutiérrez, M., and Marín, L.: Los cenotes de la Península de Yucatán, in: Lagos y Presas de México, edited by: De La Lanza, G. and García-Calderón, J. L., AGT, México, 338–376, ISBN 9789684631045, 2002b.
Schrodt, F., Bailey, J. J., Kissling, W. D., Rijsdijk, K. F., Seijmonsbergen, A. C., van Ree, D., Hjort, J., Lawley, R. S., Williams, C. N., Anderson, M. G., Beier, P., van Beukering, P., Boyd, D. S., Brilha, J., Carcavilla, L., Dahlin, K. M., Gill, J. C., Gordon, J. E., Gray, M., Grundy, M., Hunter, M. L., Lawler, J. J., Monge-Ganuzas, M., Royse, K. R., Stewart, I., Record, S., Turner, W., Zarnetske, P. L., and Field, R.: To advance sustainable stewardship, we must document not only biodiversity but geodiversity, P. Natl. Acad. Sci. USA, 116, 16155–16158, https://doi.org/10.1073/pnas.1911799116, 2019.
Sigala, I., Caballero, M., Correa-Metrio, A., Lozano-García, S., Vázquez, G., Pérez-Alvarado, L., and Zawisza, E.: Basic limnology of 30 continental waterbodies of the Transmexican Volcanic Belt across climatic and environmental gradients, B. Soc. Geol. Mex., 69, 313–370, https://doi.org/10.18268/bsgm2017v69n2a3, 2017.
Sluys, R.: Ostracods (Ostracoda, Crustacea) from two freshwater lakes near Maarssen, the Netherlands, Hydrobiol. Bull., 15, 92–93, https://doi.org/10.1007/BF02260263, 1981.
Smith, G. R., Badgley, C., Eiting, T. P., and Larson, P. S.: Species diversity gradients in relation to geological history in North American freshwater fishes, Evol. Ecol. Res., 12, 693–726, 2010.
Socki, R., Perry, E., and Romanek, C.: Stable isotope systematics of two cenotes from the northern Yucatan Peninsula, Mexico, Limnol. Oceanogr., 47, 1808–1818, https://doi.org/10.4319/lo.2002.47.6.1808, 2002.
Soto, D. X., Sánchez-Murillo, R., Ortega, L., Quiroz-Londoño, O. M., Araguás-Araguás, L. J., and Martins, V.: Environmental isotope applications in Latin America and the Caribbean region, Isot. Environ. Healt. S., 56, 387–390, https://doi.org/10.1080/10256016.2020.1839448, 2020.
Steinbauer, M. J., Field, R., Grytnes, J., Trigas, P., Ah-Peng, C., Attorre, F., Birks, H. J. B., Borges, P. A. V., Cardoso, P., Chou, C., Sanctis, M. D., de Sequeira, M. M., Duarte, M. C., Elias, R. B., Fernández-Palacios, J. M., Gabriel, R., Gereau, R. E., Gillespie, R. G., Greimler, J., Harter, D. E. V., Huang, T., Irl, S. D. H., Jeanmonod, D., Jentsch, A., Jump, A. S., Kueffer, C., Nogué, S., Otto, R., Price, J., Romeiras, M. M., Strasberg, D., Stuessy, T., Svenning, J., Vetaas, O. R., Beierkuhnlein, C., and Gillespie, T.: Topography-driven isolation, speciation and a global increase of endemism with elevation, Global Ecol. Biogeogr., 25, 1097–1107, https://doi.org/10.1111/geb.12469, 2016.
Steinich, B. and Marín, L. E.: Hydrogeological investigations in northwestern Yucatán, México, using resistivity surveys, Groundwater, 34, 640–646, https://doi.org/10.1111/j.1745-6584.1996.tb02051.x, 1996.
Stoiber, R. E. and Carr, M. J.: Quaternary volcanic and tectonic segmentation of Central America, B. Volcanol., 37, 304–325, https://doi.org/10.1007/BF02597631, 1973.
Taylor, M. and Alfaro, E.: Climate of Central America and the Caribbean, in: The Encyclopedia of World Climatology, edited by: Oliver, J., Springer Press, Dordrecht, the Netherlands, 183–189, https://doi.org/10.1007/1-4020-3266-8_37, 2005.
Umaña, G., Haberyan, K., and Horn, S.: Limnology in Costa Rica, in: Limnology in Developing Countries, edited by: Wetzel, R. and Gopal, B., International Scientific Publications, New Delhi, 33–62, ISBN 9788186047194, 1999.
Vallance, J. W. and Calvert, A. T.: Volcanism during the past 84 ka at Atitlan caldera, Guatemala, V32D-1050, 8–12 December 2003, San Francisco, California, AGU, Fall Meeting 2003, 2003.
Vartanyan, G.: Influence of Modern Geological Processes on Evolution of Ecosystems, in: Geology and Ecosystems, edited by: Zektser, I. S., Marker, B., Ridgway, J., Rogachevskaya, L., and Vartanyan, G., Springer, Boston, MA, https://doi.org/10.1007/0-387-29293-4_3, 2006a.
Vartanyan, G.: The Geological Environment and Ecosystems, in: Geology and Ecosystems, edited by: Zektser, I. S., Marker, B., Ridgway, J., Rogachevskaya, L., and Vartanyan, G., Springer, Boston, MA, https://doi.org/10.1007/0-387-29293-4_2, 2006b.
Vázquez-Domínguez, E. and Arita, H.: The Yucatán peninsula: biogeographical history 65 million years in the making, Ecology, 33, 212–219, https://doi.org/10.1111/j.1600-0587.2009.06293.x, 2010.
Vogel, S., Maerker, M., Rellini, I., Hoelzmann, P., Wulf, S., Robinson, M., Steinhübel, L., Maio, G. D., Imperatore, C., Kastenmeier, P., Liebmann, L., Esposito, D., and Seiler, F. M.: From a stratigraphic sequence to a landscape evolution model: Late Pleistocene and Holocene volcanism, soil formation and land use in the shade of Mount Vesuvius (Italy), Quatern. Int., 394, 155–179, https://doi.org/10.1016/j.quaint.2015.02.033, 2016.
Waliser, D. E., Shi, Z., Lanzante, J. R., and Oort, A. H.: The Hadley circulation: assessing NCEP/NCAR reanalysis and sparse in-situ estimates, Clim. Dynam., 15, 719–735, https://doi.org/10.1007/s003820050312, 1999.
Wallace, A.: On the insects used for food by the Indians of the Amazon, T. Roy. Ent. Soc. London, 7, 241–244, https://doi.org/10.1111/j.1365-2311.1854.tb02224.x, 1853.
Wehrtmann, I., Ramirez, A., and Perez-Reyes, O.: Freshwater Decapod Diversity and Conservation in Central America and the Caribbean, in: A Global Overview of the Conservation of Freshwater Decapod Crustaceans, edited by: Kawai, T. and Cumberlidge, N., Springer, Cham, https://doi.org/10.1007/978-3-319-42527-6_9, 2016.
Zarnetske, P. L., Read, Q. D., Record, S., Gaddis, K. D., Pau, S., Hobi, M. L., Malone, S. L., Constanza, J., Dahlin, K. M., Latimer, A. M., Wilson, A. M., Grady, J. M., Ollinger, S. V., and Finley, A. O.: Towards connecting biodiversity and geodiversity across scales with satellite remote sensing, Global Ecol. Biogeogr., 28, 548–556, https://doi.org/10.1111/geb.12887, 2019.
Short summary
We evaluate the relationships between geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. Geological, limnological, geochemical, and mineralogical characteristics of 76 systems reveal two main limnological regions and seven subregions. Water ionic and sediment composition are the most influential. Geodiversity strongly influences limnological conditions, which in turn influence ostracode composition and distribution.
We evaluate the relationships between geodiversity, limnological conditions, and freshwater...
Altmetrics
Final-revised paper
Preprint