Articles | Volume 20, issue 6
https://doi.org/10.5194/bg-20-1145-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1145-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The emergence of the tropical rainforest biome in the Cretaceous
Clément Coiffard
Structural and Functional Plant Diversity Group, Institute of
Biology, Freie Universität Berlin, Altensteinstraße
6, 14195 Berlin, Germany
Department of Geosciences, University of Tübingen, 72076
Tübingen, Germany
Geology Department, Faculty of Science, Mansoura University, 35516
Mansoura, Egypt
Palaeobotany Group, Institute of Geology and Palaeontology,
University of Münster, Münster 48149, Germany
Johan Renaudie
Museum für Naturkunde, Leibniz-Institut
für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany
Robert Bussert
Institute of Applied Geosciences, Technische
Universität Berlin, 10587 Berlin, Germany
Dieter Uhl
Senckenberg Research Institute and Natural History Museum Frankfurt,
60325 Frankfurt a.M., Germany
Related authors
No articles found.
Cécile Figus, Steve Bohaty, Johan Renaudie, and Jakub Witkowski
Clim. Past, 21, 1431–1441, https://doi.org/10.5194/cp-21-1431-2025, https://doi.org/10.5194/cp-21-1431-2025, 2025
Short summary
Short summary
We examine trends in biosiliceous fluxes and isotopic records in the North and South Atlantic, South Pacific, and Indian oceans during two climatic and biotic events: the Latest Danian Event (LDE; ~62.2 Ma) and the Early Late Palaeocene Event (ELPE; ~59.2 Ma). Our results show a peak during the LDE and following the ELPE.
Cécile Figus, Johan Renaudie, Or M. Bialik, and Jakub Witkowski
Biogeosciences, 22, 3029–3046, https://doi.org/10.5194/bg-22-3029-2025, https://doi.org/10.5194/bg-22-3029-2025, 2025
Short summary
Short summary
The synthesis of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the deposition of diatom-bearing sediments is mainly controlled by nutrient availability and ocean circulation in the Atlantic, Pacific, and Indian oceans. Comparison with shallow marine diatomites suggests that the peak in the number of diatom-bearing sites in the Atlantic is indirectly related to tectonic reorganizations that caused the cessation of shallow marine diatomite deposition between ~46 and ~44 Ma.
Johan Renaudie and David B. Lazarus
Biogeosciences, 22, 1929–1946, https://doi.org/10.5194/bg-22-1929-2025, https://doi.org/10.5194/bg-22-1929-2025, 2025
Short summary
Short summary
We provide a new compilation of rates at which sediments deposited in the deep sea over the last 70 million years. We highlight a bias, linked to the drilling process, that makes it more likely for high rates to be recovered for younger sediments than for older ones. Correcting for this bias, the record shows, contrary to prior estimates, a more stable history, thus providing some insights on the past mismatch between physico-chemical model estimates and observations.
Volkan Özen, David Lazarus, Johan Renaudie, and Gabrielle Rodrigues de Faria
EGUsphere, https://doi.org/10.5194/egusphere-2025-555, https://doi.org/10.5194/egusphere-2025-555, 2025
Short summary
Short summary
We studied diatom fossils from the Southern Ocean to understand how ocean productivity changed ~40–30 million years ago during a major climate shift marked by the onset of permanent Antarctic glaciation and global cooling. We found striking shifts in diatom productivity, revealing critical changes in ocean circulation and nutrient supply. Our results show how these microscopic organisms may have influenced climate, acting as a geological force that shaped global climate over time.
Cécile Figus, Or M. Bialik, Andrey Y. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
Clim. Past, 20, 2629–2644, https://doi.org/10.5194/cp-20-2629-2024, https://doi.org/10.5194/cp-20-2629-2024, 2024
Short summary
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Veronica Carlsson, Taniel Danelian, Pierre Boulet, Philippe Devienne, Aurelien Laforge, and Johan Renaudie
J. Micropalaeontol., 41, 165–182, https://doi.org/10.5194/jm-41-165-2022, https://doi.org/10.5194/jm-41-165-2022, 2022
Short summary
Short summary
This study evaluates the use of automatic classification using AI on eight closely related radiolarian species of the genus Podocyrtis based on MobileNet CNN. Species belonging to Podocyrtis are useful for middle Eocene biostratigraphy. Numerous images of Podocyrtis species from the tropical Atlantic Ocean were used to train and validate the CNN. An overall accuracy of about 91 % was obtained. Additional Podocyrtis specimens from other ocean realms were used to test the predictive model.
Cited articles
Abu El-Kheir, G. A.: Taphonomic conditions and assessment of the Late
Cretaceous vertebrates bearing sites in the Western Desert, Egyptian Journal of Geology, 64, 471–484, 2020.
Amante, C. and Eakins, B.: ETOPO1 Global Relief Model Converted to PanMap
Layer Format (NOAA-National Geophysical Data Center), https://doi.org/10.1594/PANGAEA.769615, 2009.
Barazi, N.: Sedimentologie und Stratigraphie des Abyad-Beckens (NW Sudan),
Berliner geowissenschaftliche Abhandlungen, Reihe A, 64, 1–86, 1985.
Belcher, C. M., Yearsley, J. M., Hadden, R. M., McElwain, J. C., and Rein,
G.: Baseline intrinsic flammability of Earth's ecosystems estimated from
paleoatmospheric oxygen over the past 350 million years, P. Natl. Acad. Sci. USA, 107,
22448–22453, 2010.
Brown, S. A., Scott, A. C., Glasspool, I. J., and Collinson, M. E.:
Cretaceous wildfires and their impact on the Earth system, Cretaceous
Res., 36, 162–190, 2012.
Carvalho, M. R., Jaramillo, C., de la Parra, F., Caballero-Rodríguez,
D., Herrera, F., Wing, S., Turner, B. L., D'Apolito, C., Romero-Báez,
M., Narváez, P., Martínez, C., Gutierrez, M., Labandeira, C.,
Bayona, G., Rueda, M., Paez-Reyes, M., Cárdenas, D., Duque, A., Crowley,
L. J., Santos, S., and Silvestro, D.: Extinction at the end-Cretaceous and
the origin of modern Neotropical rainforests, Science, 372, 63–68, 2021.
Chaboureau, A.-C., Sepulchre, P., Donnadieu, Y., and Franc, A.:
Tectonic-driven climate change and the diversification of angiosperms, P. Natl. Acad. Sci. USA,
111, 14066–14070, 2014.
Chamley, H.: Clay Minerals, in: Clay Sedimentology, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-85916-8_1,
ISBN 9783642859168, 1989.
Coiffard, C. and Mohr, B. A. R.: Lejalia sagenopteroides gen. nov. et comb. nov.: A new tropical
member of Araceae from Late Cretaceous strata of northern Gondwana (Jebel
Abyad, Sudan), Taxon, 64, 987–997, 2015.
Coiffard, C. and Mohr, B. A. R.: Afrocasia kahlertiana gen. et sp. nov., a new tropical member
of Araceae from Late Cretaceous strata of northern Gondwana (Baris, Egypt),
Taxon, 65, 1374–1384, 2016.
Coiffard, C. and Mohr, B. A. R.: Cretaceous tropical Alismatales in Africa:
diversity, climate and evolution, Bot. J. Linn. Soc.,
188, 117–131, 2018.
Coiffard, C., Kardjilov, N., Manke, I., and Bernardes-de Oliveira, M. E.:
Fossil evidence of core monocots in the Early Cretaceous, Nat. Plants, 5,
691–696, 2019.
Davis, C. C., Webb, C. O., Wurdack, K. J., Jaramillo, C. A., and Donoghue,
M. J.: Explosive radiation of Malpighiales supports a Mid-Cretaceous origin
of modern tropical rain forests, Am. Natural., 165, 36–65,
2005.
Dominik, W. and Schaal, S.: Anmerkungen zur Stratigraphie der Phosphate der
Ober-Kreide (Campan) der westlichen Wüste, Ägypten, Berliner
geowissenschaftliche Abhandlungen, Reihe A, 50, 153–175, 1984.
Eiserhardt, W. L. Couvreur, T. L. P., and Baker, W. J.: Plant phylogeny as a
window on the evolution of hyperdiversity in the tropical rainforest biome,
New Phytol., 214, 1408–1422, 2017.
El Atfy, H., Sallam, H., Jasper, A., and Uhl, D.: The first evidence of
paleo-wildfire from the Campanian (Late Cretaceous) of North Africa,
Cretaceous Res., 57, 306–310, 2016.
El Beialy, S.: Campanian-Maastrichtian palynomorphs from the Duwi
(Phosphate) Formation of the Hamrawein and Umm El Hueitat mines, Red Sea
Coast, Egypt. Rev. Palaeobot. Palynol., 85, 303–317, 1995.
Ellis, B., Daly, D., Hickey, L., Johnson, K., Mitchell, J., Wilf, P., and
Wing, S.: Manual of Leaf Architecture. Cornell University Press, ISBN 9780801475184, 2009.
Estrada-Ruiz, E., Upchurch, G. R., and Cevallos-Ferriz, S. R.: Flora and
climate of the Olmos Formation (upper Campanian–lower Maastrichtian),
Coahuila, Mexico: a preliminary report, Gulf Coast Assoc. Geol. Soc. Trans., 58, 273–283, 2008.
Hammer, Ø. Harper, D. A., and Ryan P. D.: PAST, Paleontological
statistics software package for education and data analysis, Palaeontol. Elec., 4, 1–9, 2001.
Herman, A. B. and Kvaček, J.: Late Cretaceous Grünbach
Flora of Austria, Naturhistorisches Museum, 1–222, 2010.
Herngreen, G. F. W., Kedves, M., Rovnina, L. V., and Smirnova, S. B.:
Cretaceous palynofloral provinces: a review, in: Palynology: Principles and
Applications Vol. 3, edited by: Jansonius, J. and McGregor D. C. (Eds.),
Dallas (TX): AASP Foundation, 1157–1188, 1996.
Jardiné, S. and Magloire L.: Palynologie et stratigraphie du Cretace
des basins du Sénégal et de Côte D'Ivoire, Mémoires du
Bureau de Recherches Géologiques Ministrie, 32, 187–245, 1965.
Kahlert, E.,Rüffle, L., and Gregor, H.: Die
Oberkreide-Flora (Campanian) von Baris (Ägypten) und ihre
ökologisch-geographischen Beziehungen unter
plattentektonischen Aspekten, Documenta naturae, 71 pp., 2009.
Klitzsch, E. and Hermina, M.: The Mesozoic, in: Stratigraphic lexicon and
explanatory notes to the geologic map of Egypt 1:500,000, edited by:
Hermina, M., Klitzsch, E., and List, F., Conoco Incorporation, 77–139,
1989.
Klitzsch, E. and Lejal-Nicol, A.: Flora and fauna from strata in southern
Egypt and northern Sudan. Berliner geowissenschaftliche Abhandlungen, Reihe
A, 50, 47–79, 1984.
Klitzsch, E. and Wycisk, P.: Geology of the sedimentary basins of northern
Sudan and bordering areas, Berliner geowissenschaftliche Abhandlungen, Reihe
A, 75, 97–136, 1987.
Kowalski, E. A. and Dilcher, D. L.: Warmer paleotemperatures for
terrestrial ecosystems, P. Natl. Acad. Sci. USA, 100, 167–170, 2003.
Krassilov, V.: Late Cretaceous (Turonian) Flora of Southern Negev, Israel,
Pensoft Publishers, Moscow, Russia, ISBN 9546422290, 2005.
Krebs, C. J.: Ecological methodology, New York, NY: Harper and Row Publishers Inc., 654 pp., ISBN 9780321021731, 1989.
Lejal-Nicol, A.: Flores nouvelles du Paleozoique et du Mesozoique d'Egypte
et du Soudan septentrional, Berliner geowissenschaftliche Abhandlungen,
Reihe A, 75, 151–248, 1987.
Li, S.-F., Jacques, F. M. B., Spicer, R. A., Su, T., Spicer, T. E. V., Yang,
J., and Zhou, Z.-K.: Artificial neural networks reveal a high-resolution
climatic signal in leaf physiognomy, Palaeogeogr. Palaeoclim. Palaeoeco., 442, 1–11, 2016.
Mahmoud, M. S.: Palynology and palaeoenvironment of the Quseir Formation
(Campanian) from central Egypt, J. Afr. Earth Sci., 36,
135–148, 2003.
Mayo, S. Bogner, J., and Boyce, P.: The Genera of Araceae (Continental
Printing, Belgium), The Trustees, Royal Botanic Gardens, Kew, 1–374, 1997.
Méon, H.: Palynologic studies of the Cretaceous–Tertiary boundary interval
at El Kef outcrop, northwestern Tunisia: paleogeographic implications,
Rev. Palaeobot. Palynol., 65, 85–94, 1990.
Miller, I. M., Brandon, M. T., and Hickey, L. J.: Using leaf margin analysis
to estimate the mid-Cretaceous (Albian) paleolatitude of the Baja BC block,
Earth Planet. Sc. Lett., 245, 95–114, 2006.
Mohr, B. A. R. and Friis, E. M.: Early angiosperms from the Lower
Cretaceous Crato Formation (Brazil), a preliminary report, Int. J. Plant Sci., 161, 155–167, 2000.
Mohr, B. A. R., Bernardes-de Oliveira, M. E., Barale, G., and Ouaja, M.:
Palaeogeographic distribution and ecology of Klitzschophyllites, an early Cretaceous
angiosperm in southern Laurasia and northern Gondwana, Cretaceous Res.,
27, 464–472, 2006.
Morley, R. J.: Origin and evolution of tropical rain forests, Chichester:
John Wiley and Sons, Ltd., 384 pp., 2000.
Nauheimer, L., Metzler, D., and Renner, S. S.: Global history of the ancient
monocot family Araceae inferred with models accounting for past continental
positions and previous ranges based on fossils, New Phytol., 195,
938–950, 2012.
Pan, A. D., Jacobs, B., Dransfield, J., and Baker, W. J.: The fossil history
of palms (Arecaceae) in Africa and new records from the late Oligocene
(28–27 Mya) of North-Western Ethiopia, Bot. J. Linn. Soc., 151, 69–81, 2006.
Schrank, E.: Nonmarine Cretaceous correlations in Egypt and northern Sudan:
palynological and palaeobotanical evidence, Cretaceous Res., 13,
351–368, 1992.
Schrank, E.: Palynology of the Yesomma Formation in northern Somalia: a
study of pollen, spores and associated phytoplankton from the Late
Cretaceous Palmae Province, Palaeontographica B, 231, 63–112, 1994.
Schwarz, T. and Germann, K.: Weathering surfaces, laterite‐derived sediments and associated mineral deposits in north-east Africa, in: Palaeoweathering, Palaeosurfaces and Related Continental Deposits, edited by: Thiry, M., Coincon, R. M., Wiley-Blackwell, 367–390, https://doi.org/10.1002/9781444304190.ch15, 1995.
Scott, A. C., Bowman, D. M., Bond, W. J., Pyne, S. J., and Alexander, M. E.: Fire on earth: an introduction, Wiley-Blackwell, 434 pp., ISBN 978-1-119-95357-9, 2013.
Spicer, R. A., Herman, A. B., Yang, J., and Spicer, T. E.: Why future
climate change is likely to be underestimated: evidence from palaeobotany,
J. Bot. Soc. Ben., 67, 75–88, 2013.
Spicer, R. A., Valdes, P., Spicer, T. E. V., Craggs, H. J., Srivastava, G.,
Mehrotra, R. C., and Yang, J.: New developments in CLAMP: Calibration using
global gridded meteorological data, Palaeogeogr. Palaeoclimatol. Palaeoeco.,
283, 91–98, 2009.
Thiry, M.: Palaeoclimatic interpretation of clay minerals in marine
deposits: an outlook from the continental origin, Earth-Sci. Rev., 49,
201–221, 2000.
Upchurch, G. R. and Wolfe, J.: Mid-Cretaceous to Early Tertiary vegetation
and climate: evidence from fossil leaves and woods, in: The origins of
angiosperms and their biological consequences, edited by: Friis, E. M.,
Chaloner, W. G. and Crane, P. H., Cambridge University Press, Cambridge,
UK), 75–105, 1987.
Wessel, P. and Luis, J. F.: The GMT/MATLAB Toolbox. Geochemistry,
Geophysics, Geosystems 18, 811–823, 2017.
White, F.: The Vegetation of Africa, Natural Resources Research UNESCO, 356 pp., ISBN 92-3-101955-4, 1983.
Widdowson, M.: Laterite and Ferricrete, in: Geochemical sediments and
landscapes, edited by: Nash, D. J. and McLaren, S. J., Blackwell Publishing,
Oxford, UK, 45–94, 2007.
Wilf, P., Johnson, K. R., Cuneo, N. R., Smith, M. E., Singer, B. S., and
Gandolfo, M. A.: Eocene plant diversity at Laguna del Hunco and
Río Pichileufú, Patagonia, Argentina,
Am. Natural., 165, 634–650, 2005.
Wilf, P., Wing, S. L., Greenwood, D. R., and Greenwood, C. L.: Using fossil
leaves as paleoprecipitation indicators: An Eocene example, Geology, 26,
203–206, 1998.
Wing, S. L., Herrera, F., Jaramillo, C. A., Gomez-Navarro,
C., Wilf, P., and Labandeira, C. C.: Late Paleocene fossils from the
Cerrejon Formation, Colombia, are the earliest record of
Neotropical rainforest, P. Natl. Acad. Sci. USA, 106, 18627–18632, 2009.
Wolfe, J.: Temperature parameters of humid to mesic forests of eastern Asia
and relation to forests of other regions of the northern hemisphere and
Australasia, U.S. Geological Survey Professional, Paper 1106, 1979.
Wycisk, P.: Correlation of the major late Jurassic-early Tertiary low- and
highstand cycles of southwest Egypt and north-west Sudan, Geol. Rundsch., 83, 759–772, 1994.
Short summary
Eighty-million-year-old fossil leaf assemblages suggest a widespread distribution of tropical rainforest in northeastern Africa.
Eighty-million-year-old fossil leaf assemblages suggest a widespread distribution of tropical...
Altmetrics
Final-revised paper
Preprint