Articles | Volume 20, issue 12
https://doi.org/10.5194/bg-20-2317-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-2317-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The fossil bivalve Angulus benedeni benedeni: a potential seasonally resolved stable-isotope-based climate archive to investigate Pliocene temperatures in the southern North Sea basin
Nina M. A. Wichern
CORRESPONDING AUTHOR
Institute of Geology and Paleontology, Westfälische
Wilhelms-Universität, 48149 Münster, Germany
Invited contribution by Nina M. A. Wichern, recipient of the EGU Stratigraphy, Sedimentology and Palaeontology Outstanding Student and PhD candidate Presentation Award 2022.
Niels J. de Winter
Department of Earth Sciences, Faculty of Science, Vrije Universiteit
Amsterdam, Amsterdam, 1081 HV, the Netherlands
Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB,
the Netherlands
Analytical, Environmental, and Geochemistry, Vrije Universiteit
Brussel, Brussels, 1050, Belgium
Andrew L. A. Johnson
School of Built and Natural Environment, University of Derby, Derby,
DE22 1GB, UK
Stijn Goolaerts
OD Earth & History of Life and Scientific Service of Heritage,
Royal Belgian Institute of Natural Sciences, Brussels, 1000, Belgium
Frank Wesselingh
Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB,
the Netherlands
Naturalis Biodiversity Center, Leiden, 2333 CR, the Netherlands
Maartje F. Hamers
Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB,
the Netherlands
Pim Kaskes
Analytical, Environmental, and Geochemistry, Vrije Universiteit
Brussel, Brussels, 1050, Belgium
Philippe Claeys
Analytical, Environmental, and Geochemistry, Vrije Universiteit
Brussel, Brussels, 1050, Belgium
Martin Ziegler
Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB,
the Netherlands
Related authors
Nina M. A. Wichern, Or M. Bialik, Theresa Nohl, Lawrence M. E. Percival, R. Thomas Becker, Pim Kaskes, Philippe Claeys, and David De Vleeschouwer
Clim. Past, 20, 415–448, https://doi.org/10.5194/cp-20-415-2024, https://doi.org/10.5194/cp-20-415-2024, 2024
Short summary
Short summary
Middle–Late Devonian sedimentary rocks are often punctuated by anoxic black shales. Due to their semi-regular nature, anoxic events may be linked to periodic changes in the Earth’s climate caused by astronomical forcing. We use portable X-ray fluorescence elemental records, measured on marine sediments from Germany, to construct an astrochronological framework for the Kellwasser ocean anoxic Crisis. Results suggest that the Upper Kellwasser event was preceded by a specific orbital configuration.
Rute Coimbra, Niels de Winter, Maria Ríos, Rui Bernardino, Darío Estraviz-López, Priscila Lohmann, Roberta Martino, Aurora Grandal-d'Anglade, Fernando Rocha, and Philippe Claeys
EGUsphere, https://doi.org/10.5194/egusphere-2025-1770, https://doi.org/10.5194/egusphere-2025-1770, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
To understand human impact on climate and biodiversity, we studied fossil teeth of Gomphotherium from Miocene Portugal. Chemical patterns, like those in modern elephants, show seasonal diet changes and geophagy during dry periods. This suggests dry seasons shaped animal behavior and ecosystems, offering insights into how land life responded to past warming—and how it might react to future climate change.
Niels J. de Winter, Najat al Fudhaili, Iris Arndt, Philippe Claeys, René Fraaije, Steven Goderis, John Jagt, Matthias López Correa, Axel Munnecke, Jarosław Stolarski, and Martin Ziegler
EGUsphere, https://doi.org/10.5194/egusphere-2025-2308, https://doi.org/10.5194/egusphere-2025-2308, 2025
Short summary
Short summary
To test the tolerance of past shallow marine ecosystems to extreme climates, we collected and compiled stable and clumped isotope data from rudist bivalves that lived in tropical shallow marine waters in present-day Oman during the Campanian (75 million years ago). Our dataset shows that these animals were able to withstand exceptionally warm temperatures, exceeding 40 °C, during hot summers. Our finding highlights how seasonal climate extremes impact marine biodiversity.
Marion Peral, Marta Marchegiano, Weronika Wierny, Inigo A. Müller, Johan Vellekoop, Zofia Dubicka, Maciej J. Bojanowski, Steven Goderis, and Philippe Claeys
EGUsphere, https://doi.org/10.5194/egusphere-2025-502, https://doi.org/10.5194/egusphere-2025-502, 2025
Short summary
Short summary
Around 70 million years ago, during the Late Cretaceous, Earth’s climate was undergoing long-term cooling despite high CO₂ levels. Using an advanced temperature reconstruction technique, we analyzed foraminifer fossils from the European Chalk Sea. Our results show highly variable surface waters, likely influenced by freshwater inputs or upwelling, while deeper waters remained warm and stable, possibly influenced by shifting ocean currents. This improves our understanding of past ocean dynamics.
Jingjing Guo, Martin Ziegler, Louise Fuchs, Youbin Sun, and Francien Peterse
Clim. Past, 21, 343–355, https://doi.org/10.5194/cp-21-343-2025, https://doi.org/10.5194/cp-21-343-2025, 2025
Short summary
Short summary
In this study, we use the distribution of soil bacterial membrane lipids stored on the Chinese Loess Plateau (CLP) to quantitatively reconstruct variations in precipitation amount over the past 130 kyr. The precipitation record shows orbital- and millennial-scale variations and varies at precession and obliquity scale. The application of this precipitation proxy across the CLP indicates a more pronounced spatial gradient during glacials, when the western CLP experiences more arid conditions.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past, 21, 79–93, https://doi.org/10.5194/cp-21-79-2025, https://doi.org/10.5194/cp-21-79-2025, 2025
Short summary
Short summary
Based on dinoflagellate cyst assemblages and sea surface temperature records west of offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes affected atmosphere–ocean CO2 exchange in the Southern Ocean.
Nina M. A. Wichern, Or M. Bialik, Theresa Nohl, Lawrence M. E. Percival, R. Thomas Becker, Pim Kaskes, Philippe Claeys, and David De Vleeschouwer
Clim. Past, 20, 415–448, https://doi.org/10.5194/cp-20-415-2024, https://doi.org/10.5194/cp-20-415-2024, 2024
Short summary
Short summary
Middle–Late Devonian sedimentary rocks are often punctuated by anoxic black shales. Due to their semi-regular nature, anoxic events may be linked to periodic changes in the Earth’s climate caused by astronomical forcing. We use portable X-ray fluorescence elemental records, measured on marine sediments from Germany, to construct an astrochronological framework for the Kellwasser ocean anoxic Crisis. Results suggest that the Upper Kellwasser event was preceded by a specific orbital configuration.
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Sarah Wauthy, Jean-Louis Tison, Mana Inoue, Saïda El Amri, Sainan Sun, François Fripiat, Philippe Claeys, and Frank Pattyn
Earth Syst. Sci. Data, 16, 35–58, https://doi.org/10.5194/essd-16-35-2024, https://doi.org/10.5194/essd-16-35-2024, 2024
Short summary
Short summary
The datasets presented are the density, water isotopes, ions, and conductivity measurements, as well as age models and surface mass balance (SMB) from the top 120 m of two ice cores drilled on adjacent ice rises in Dronning Maud Land, dating from the late 18th century. They offer many development possibilities for the interpretation of paleo-profiles and for addressing the mechanisms behind the spatial and temporal variability of SMB and proxies observed at the regional scale in East Antarctica.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Andrew L. A. Johnson, Annemarie M. Valentine, Bernd R. Schöne, Melanie J. Leng, and Stijn Goolaerts
Clim. Past, 18, 1203–1229, https://doi.org/10.5194/cp-18-1203-2022, https://doi.org/10.5194/cp-18-1203-2022, 2022
Short summary
Short summary
Determining seasonal temperatures demands proxies that record the highest and lowest temperatures over the annual cycle. Many record neither, but oxygen isotope profiles from shells in principle record both. Oxygen isotope data from late Pliocene bivalve molluscs of the southern North Sea basin show that the seasonal temperature range was at times much higher than previously estimated and higher than now. This suggests reduced oceanic heat supply, in contrast to some previous interpretations.
Matthias Sinnesael, Alfredo Loi, Marie-Pierre Dabard, Thijs R. A. Vandenbroucke, and Philippe Claeys
Geochronology, 4, 251–267, https://doi.org/10.5194/gchron-4-251-2022, https://doi.org/10.5194/gchron-4-251-2022, 2022
Short summary
Short summary
We used new geochemical measurements to study the expression of astronomical climate cycles recorded in the Ordovician (~ 460 million years ago) geological sections of the Crozon Peninsula (France). This type of geological archive is not often studied in this way, but as they become more important going back in time, a better understanding of their potential astronomical cycles is crucial to advance our knowledge of deep-time climate dynamics and to construct high-resolution timescales.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Niels J. de Winter
Geosci. Model Dev., 15, 1247–1267, https://doi.org/10.5194/gmd-15-1247-2022, https://doi.org/10.5194/gmd-15-1247-2022, 2022
Short summary
Short summary
ShellChron is a tool for determining the relative age of samples in carbonate (climate) archives based on the seasonal variability in temperature and salinity or precipitation recorded in stable oxygen isotope measurements. The model allows dating of fossil archives within a year, which is important for climate reconstructions on the sub-seasonal to decadal scale. In this paper, I introduce ShellChron and test it on a range of real and virtual datasets to demonstrate its use.
Niels J. de Winter, Tobias Agterhuis, and Martin Ziegler
Clim. Past, 17, 1315–1340, https://doi.org/10.5194/cp-17-1315-2021, https://doi.org/10.5194/cp-17-1315-2021, 2021
Short summary
Short summary
Climate researchers often need to compromise in their sampling between increasing the number of measurements to obtain higher time resolution and combining measurements to improve the reliability of climate reconstructions. In this study, we test several methods for achieving the optimal balance between these competing interests by simulating seasonality reconstructions using stable and clumped isotopes. Our results inform sampling strategies for climate reconstructions in general.
Cited articles
Al-Aasm, I. S. and Veizer, J.: Diagenetic stabilization of aragonite and
low-Mg calcite, I.: Trace elements in rudists, J. Sediment. Petrol., 56,
138–152, https://doi.org/10.1306/212F88A5-2B24-11D7-8648000102C1865D, 1986.
Balson, P. S., Mathers, S. J., and Zalasiewicz, J. A.: The lithostratigraphy
of the Coralline Crag (Pliocene) of Suffolk, Proc. Geol. Assoc., 104,
59–70, https://doi.org/10.1016/S0016-7878(08)80155-1, 1993.
Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F.
M., Fernandez, A., Hodell, D. A., Jaggi, M., Meckler, A. N., Millan, I., and
Ziegler, M.: Reducing Uncertainties in Carbonate Clumped Isotope Analysis
Through Consistent Carbonate-Based Standardization, Geochem. Geophy.
Geosy., 19, 2895–2914, https://doi.org/10.1029/2017GC007385, 2018.
Bernasconi, S. M., Daëron, M., Bergmann, K. D., Bonifacie, M., Meckler,
A. N., Affek, H. P., Anderson, N., Bajnai, D., Barkan, E., Beverly, E.,
Blamart, D., Burgener, L., Calmels, D., Chaduteau, C., Clog, M.,
Davidheiser-Kroll, B., Davies, A., Dux, F., Eiler, J., Elliott, B., Fetrow,
A. C., Fiebig, J., Goldberg, S., Hermoso, M., Huntington, K. W., Hyland, E.,
Ingalls, M., Jaggi, M., John, C. M., Jost, A. B., Katz, S., Kelson, J.,
Kluge, T., Kocken, I. J., Laskar, A., Leutert, T. J., Liang, D., Lucarelli,
J., Mackey, T. J., Mangenot, X., Meinicke, N., Modestou, S. E., Müller,
I. A., Murray, S., Neary, A., Packard, N., Passey, B. H., Pelletier, E.,
Petersen, S., Piasecki, A., Schauer, A., Snell, K. E., Swart, P. K.,
Tripati, A., Upadhyay, D., Vennemann, T., Winkelstern, I., Yarian, D.,
Yoshida, N., Zhang, N., and Ziegler, M.: InterCarb: A Community Effort to
Improve Interlaboratory Standardization of the Carbonate Clumped Isotope
Thermometer Using Carbonate Standards, Geochem. Geophy. Geosy., 22,
e2020GC009588, https://doi.org/10.1029/2020GC009588, 2021.
Bieler, R., Mikkelsen, P. M., Collins, T. M., Glover, E. A., González,
V. L., Graf, D. L., Harper, E. M., Healy, J., Kawauchi, G. Y., Sharma, P.
P., Staubach, S., Strong, E. E., Taylor, J. D., Tëmkin, I., Zardus, J.
D., Clark, S., Guzmán, A., McIntyre, E., Sharp, P., and Giribet, G.:
Investigating the Bivalve Tree of Life – an exemplar-based approach
combining molecular and novel morphological characters, Invert. Systematics,
28, 32–115, https://doi.org/10.1071/IS13010, 2014.
Brand, U. and Veizer, J.: Chemical Diagenesis of a Multicomponent Carbonate
System; 1: Trace Elements, J. Sediment. Res., 50, 1219–1236,
https://doi.org/10.1306/212F7BB7-2B24-11D7-8648000102C1865D, 1980.
Brand, W. A., Assonov, S. S., and Coplen, T. B.: Correction for the 17O
interference in δ(13C) measurements when analyzing CO2 with stable
isotope mass spectrometry (IUPAC Technical Report), Pure Appl. Chem., 82,
1719–1733, https://doi.org/10.1351/PAC-REP-09-01-05, 2010.
Butler, P. G., Wanamaker Jr., A. D., Scourse, J. D., Richardson, C. A., and
Reynolds, D. J.: Variability of marine climate on the North Icelandic Shelf
in a 1357-year proxy archive based on growth increments in the bivalve
Arctica islandica, Palaeogeogr. Palaeocl., 373,
141–151, https://doi.org/10.1016/j.palaeo.2012.01.016, 2013.
Carré, M., Bentaleb, I., Blamart, D., Ogle, N., Cardenas, F., Zevallos,
S., Kalin, R. M., Ortlieb, L., and Fontugne, M.: Stable isotopes and
sclerochronology of the bivalve Mesodesma donacium: potential application to
Peruvian paleoceanographic reconstructions, Palaeogeogr.
Palaeocl., 228, 4–25,
https://doi.org/10.1016/j.palaeo.2005.03.045, 2005.
Casella, L. A., Griesshaber, E., Yin, X., Ziegler, A., Mavromatis, V.,
Müller, D., Ritter, A.-C., Hippler, D., Harper, E. M., Dietzel, M.,
Immenhauser, A., Schöne, B. R., Angiolini, L., and Schmahl, W. W.:
Experimental diagenesis: insights into aragonite to calcite transformation
of Arctica islandica shells by hydrothermal treatment, Biogeosciences, 14,
1461–1492, https://doi.org/10.5194/bg-14-1461-2017, 2017.
Chauvaud, L., Lorrain, A., Dunbar, R. B., Paulet, Y.-M., Thouzeau, G., Jean,
F., Guarini, J.-M., and Mucciarone, D.: Shell of the Great Scallop Pecten
maximus as a high-frequency archive of paleoenvironmental changes, Geochem.
Geophy. Geosy., 6,
Q08001, https://doi.org/10.1029/2004GC000890, 2005.
Checa, A. G., Harper, E. M., and González-Segura, A.: Structure and
crystallography of foliated and chalk shell microstructures of the oyster
Magallana: the same materials grown under different conditions, Sci. Rep.,
8, 7507, https://doi.org/10.1038/s41598-018-25923-6, 2018.
Cochran, J. K., Kallenberg, K., Landman, N. H., Harries, P. J., Weinreb, D.,
Turekian, K. K., Beck, A. J., and Cobban, W. A.: Effect of diagenesis on the
Sr, O, and C isotope composition of late Cretaceous mollusks from the
Western Interior Seaway of North America, Am. J. Sci., 310, 69–88,
https://doi.org/10.2475/02.2010.01, 2010.
Crippa, G., Griesshaber, E., Checa, A. G., Harper, E. M., Simonet Roda, M.,
and Schmahl, W. W.: Orientation patterns of aragonitic crossed-lamellar,
fibrous prismatic and myostracal microstructures of modern Glycymeris
shells, J. Struct. Biol., 212, 107653,
https://doi.org/10.1016/j.jsb.2020.107653, 2020.
Cusack, M.: Biomineral electron backscatter diffraction for palaeontology,
Palaeontology, 59, 171–179, https://doi.org/10.1111/pala.12222, 2016.
Deckers, J., Louwye, S., and Goolaerts, S.: The internal division of the
Pliocene Lillo Formation: correlation between Cone Penetration Tests and
lithostratigraphic type sections, Geol. Belgica, 23, 333–343,
https://doi.org/10.20341/gb.2020.027, 2020.
De Meuter, F. J. and Laga, P. G.: Lithostratigraphy and biostratigraphy
based on benthonic foraminifera of the Neogene deposits of northern Belgium,
Bulletin van de Belgische Vereniging voor Geologie, 85, 133–152, 1976.
De Schepper, S., Head, M. J., and Louwye, S.: Pliocene dinoflagellate cyst
stratigraphy, palaeoecology and sequence stratigraphy of the Tunnel-Canal
Dock, Belgium, Geol. Mag., 146, 92–112,
https://doi.org/10.1017/S0016756808005438, 2009.
Dettman, D. L., Reische, A. K., and Lohmann, K. C.: Controls on the stable
isotope composition of seasonal growth bands in aragonitic fresh-water
bivalves (unionidae), Geochim. Cosmochim. Ac., 63, 1049–1057,
https://doi.org/10.1016/S0016-7037(99)00020-4, 1999.
de Winter, N. J. and Claeys, P.: Micro X-ray fluorescence (μXRF) line
scanning on Cretaceous rudist bivalves: A new method for reproducible trace
element profiles in bivalve calcite, Sedimentology, 64, 231–251,
https://doi.org/10.1111/sed.12299, 2017.
de Winter, N. J., Sinnesael, M., Makarona, C., Vansteenberge, S., and
Claeys, P.: Trace element analyses of carbonates using portable and
micro-X-ray fluorescence: performance and optimization of measurement
parameters and strategies, J. Anal. At. Spectrom., 32, 1211–1223,
https://doi.org/10.1039/C6JA00361C, 2017a.
de Winter, N. J., Goderis, S., Dehairs, F., Jagt, J. W. M., Fraaije, R. H. B.,
van Malderen, S. J. M., Vanhaecke, F., and Claeys, P.: Tropical seasonality
in the late Campanian (late Cretaceous): Comparison between multiproxy
records from three bivalve taxa from Oman, Palaeogeogr.
Palaeocl., 485, 740–760,
https://doi.org/10.1016/j.palaeo.2017.07.031, 2017b.
de Winter, N. J., Vellekoop, J., Clark, A. J., Stassen, P., Speijer, R. P., and
Claeys, P.: The Giant Marine Gastropod Campanile Giganteum (Lamarck, 1804)
as a High-Resolution Archive of Seasonality in the Eocene Greenhouse World,
Geochem. Geophy. Geosy., 21, e2019GC008794,
https://doi.org/10.1029/2019GC008794, 2020.
de Winter, N. J., Agterhuis, T., and Ziegler, M.: Optimizing sampling
strategies in high-resolution paleoclimate records, Clim. Past, 17,
1315–1340, https://doi.org/10.5194/cp-17-1315-2021, 2021a.
de Winter, N. J., Dämmer, L. K., Falkenroth, M., Reichart, G.-J.,
Moretti, S., Martínez-García, A., Höche, N., Schöne, B.
R., Rodiouchkina, K., Goderis, S., Vanhaecke, F., van Leeuwen, S. M., and
Ziegler, M.: Multi-isotopic and trace element evidence against different
formation pathways for oyster microstructures, Geochim. Cosmochim. Ac.,
308, 326–352, https://doi.org/10.1016/j.gca.2021.06.012, 2021b.
de Winter, N. J., Witbaard, R., Kocken, I. J., Müller, I. A., Guo, J.,
Goudsmit, B., and Ziegler, M.: Temperature Dependence of Clumped Isotopes
(Δ47) in Aragonite, Geophys. Res. Lett., 49, e2022GL099479,
https://doi.org/10.1029/2022GL099479, 2022.
Dowsett, H. J., Robinson, M., Haywood, A. M., Salzmann, U., Hill, D. J.,
Sohl, L., Chandler, M. A., Williams, M., Foley, K., and Stoll, D.: The
PRISM3D paleoenvironmental reconstruction, Stratigraphy, 7, 123–139, 2010.
Dowsett, H. J., Robinson, M. M., Haywood, A. M., Hill, D. J., Dolan, A. M.,
Stoll, D. K., Chan, W.-L., Abe-Ouchi, A., Chandler, M. A., Rosenbloom, N.
A., Otto-Bliesner, B. L., Bragg, F. J., Lunt, D. J., Foley, K. M., and
Riesselman, C. R.: Assessing confidence in Pliocene sea surface temperatures
to evaluate predictive models, Nat. Clim. Change, 2, 365–371,
https://doi.org/10.1038/NCLIMATE1455, 2012.
Dowsett, H. J., Foley, K. M., Stoll, D. K., Chandler, M. A., Sohl, L. E.,
Bentsen, M., Otto-Bliesner, B. L., Bragg, F. J., Chan, W.-L., Contoux, C.,
Dolan, A. M., Haywood, A. M., Jonas, J. A., Jost, A., Kamae, Y., Lohmann,
G., Lunt, D. J., Nisancioglu, K. H., Abe-Ouchi, A., Ramstein, G.,
Riesselman, C. R., Robinson, M. M., Rosenbloom, N. A., Salzmann, U.,
Stepanek, C., Strother, S. L., Ueda, H., Yan, Q., and Zhang, Z.: Sea surface
temperature of the mid-Piacenzian ocean: a data-model comparison, Sci. Rep.,
3, 2013, https://doi.org/10.1038/srep02013, 2013.
Dowsett, H. J., Dolan, A. M., Rowley, D., Moucha, R., Forte, A. M.,
Mitrovica, J. X., Pound, M., Salzmann, U., Robinson, M., Chandler, M. A.,
Foley, K., and Haywood, A. M.: The PRISM4 (mid-Piacenzian)
paleoenvironmental reconstruction, Clim. Past, 12, 1519–1538,
https://doi.org/10.5194/cp-12-1519-2016, 2016.
Emeis, K.-C., van Beusekom, J., Callies, U., Ebinghaus, R., Kannen, A.,
Kraus, G., Kröncke, I., Lenhart, H., Lorkowski, I., Matthias, V.,
Möllmann, C., Pätsch, J., Scharfe, M., Thomas, H., Weisse, R., and
Zorita, E.: The North Sea – A shelf sea in the Anthropocene, J. Mar.
Syst., 141, 18–33, https://doi.org/10.1016/j.jmarsys.2014.03.012, 2015.
Gaemers, P. A. M.: Enkele paleo-ecologische opmerkingen over de Pliocene
afzettingen in de tunnelput nabij Kallo, België, provincie Oost
Vlaanderen, deel 2, Mededelingen van de Werkgroep voor Tertiaire en
Kwartaire Geologie, 12, 43–49, 1975.
Ghosh, P., Adkins, J., Affek, H. P., Balta, B., Guo, W., Schauble, E. A.,
Schrag, D. P., and Eiler, J. M.: 13C–18O bonds in carbonate minerals: A new
kind of paleothermometer, Geochim. Cosmochim. Ac., 70, 1439–1456,
https://doi.org/10.1016/j.gca.2005.11.014, 2006.
Gibbard, P. L. and Lewin, J.: Filling the North Sea Basin: Cenozoic sediment
sources and river styles (André Dumont medallist lecture 2014), Geol.
Belgica, 19, 201–217, https://doi.org/10.20341/gb.2015.017, 2016.
Griesshaber, E., Schmahl, W. W., Ubhi, H. S., Huber, J., Nindiyasari, F.,
Maier, B., and Ziegler, A.: Homoepitaxial meso- and microscale crystal
co-orientation and organic matrix network structure in Mytilus edulis nacre
and calcite, Acta Biomater., 9, 9492–9502,
https://doi.org/10.1016/j.actbio.2013.07.020, 2013.
Grossman, E. L. and Ku, T.-L.: Oxygen and carbon isotope fractionation in
biogenic aragonite: temperature effects, Chem. Geol., 59, 59–74,
https://doi.org/10.1016/0168-9622(86)90057-6, 1986.
Harwood, A. J. P., Dennis, P. F., Marca, A. D., Pilling, G. M., and Millner,
R. S.: The oxygen isotope composition of water masses within the North Sea,
Estuar. Coast. Shelf Sci., 78, 353–359,
https://doi.org/10.1016/j.ecss.2007.12.010, 2008.
Haywood, A. M. and Valdes, P. J.: Modelling Pliocene warmth: contribution of
atmosphere, oceans and cryosphere, Earth Planet. Sc. Lett., 218, 363–377,
https://doi.org/10.1016/S0012-821X(03)00685-X, 2004.
Haywood, A. M., Tindall, J. C., Dowsett, H. J., Dolan, A. M., Foley, K. M.,
Hunter, S. J., Hill, D. J., Chan, W.-L., Abe-Ouchi, A., Stepanek, C.,
Lohmann, G., Chandan, D., Peltier, W. R., Tan, N., Contoux, C., Ramstein,
G., Li, X., Zhang, Z., Guo, C., Nisancioglu, K. H., Zhang, Q., Li, Q.,
Kamae, Y., Chandler, M. A., Sohl, L. E., Otto-Bliesner, B. L., Feng, R.,
Brady, E. C., von der Heydt, A. S., Baatsen, M. L. J., and Lunt, D. J.: The
Pliocene Model Intercomparison Project Phase 2: large-scale climate features
and climate sensitivity, Clim. Past, 16, 2095–2123,
https://doi.org/10.5194/cp-16-2095-2020, 2020.
He, B., Olack, G. A., and Colman, A. S.: Pressure baseline correction and
high-precision CO2 clumped-isotope (Δ47) measurements in bellows
and micro-volume modes: PBL-corrected high-precision CO2 clumped-isotope
(Δ47) measurements, Rapid Commun. Mass Sp., 26, 2837–2853,
https://doi.org/10.1002/rcm.6436, 2012.
Hendry, J. P., Ditchfield, P. W., and Marshall, J. D.: Two-Stage Neomorphism
of Jurassic Aragonitic Bivalves: Implications for Early Diagenesis, J. Sediment. Res., 65, 214–224,
https://doi.org/10.1306/D4268077-2B26-11D7-8648000102C1865D, 1995.
Hu, B., Radke, J., Schlüter, H.-J., Torsten Heine, F., Zhou, L., and
Bernasconi, S. M.: A modified procedure for gas-source isotope ratio mass
spectrometry: The long-integration dual-inlet (LIDI) methodology and
implications for clumped isotope measurements, Rapid Commun. Mass Sp.,
28, 1413–1425, https://doi.org/10.1002/rcm.6909, 2014.
Huyghe, D., Daëron, M., de Rafelis, M., Blamart, D., Sébilo, M.,
Paulet, Y.-M., and Lartaud, F.: Clumped isotopes in modern marine bivalves,
Geochim. Cosmochim. Ac., 316, 41–58,
https://doi.org/10.1016/j.gca.2021.09.019, 2022.
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical
Science Basis, Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte,
V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N.,
Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 3–32, https://doi.org/10.1017/9781009157896.001, 2021.
Johnson, A. L. A., Hickson, J. A., Bird, A., Schöne, B. R., Balson, P.
S., Heaton, T. H. E., and Williams, M.: Comparative sclerochronology of
modern and mid-Pliocene (c. 3.5 Ma) Aequipecten opercularis (Mollusca,
Bivalvia): an insight into past and future climate change in the north-east
Atlantic region, Palaeogeogr. Palaeocl., 284,
164–179, https://doi.org/10.1016/j.palaeo.2009.09.022, 2009.
Johnson, A. L. A., Valentine, A. M., Schöne, B. R., Leng, M. J., and
Goolaerts, S.: Sclerochronological evidence of pronounced seasonality from
the late Pliocene of the southern North Sea basin and its implications,
Clim. Past, 18, 1203–1229, https://doi.org/10.5194/cp-18-1203-2022, 2022.
Jones, D. S., Quitmyer, I. R., and Andrus, C. F. T.: Oxygen isotopic
evidence for greater seasonality in Holocene shells of Donax variabilis from
Florida, Palaeogeogr. Palaeocl., 228, 96–108,
https://doi.org/10.1016/j.palaeo.2005.03.046, 2005.
Judd, E. J., Wilkinson, B. H., and Ivany, L. C.: The life and time of clams:
Derivation of intra-annual growth rates from high-resolution oxygen isotope
profiles, Palaeogeogr. Palaeocl., 490, 70–83,
https://doi.org/10.1016/j.palaeo.2017.09.034, 2018.
Kaskes, P., Déhais, T., de Graaff, S. J., Goderis, S., and Claeys, P.:
Micro–X-ray fluorescence (μXRF) analysis of proximal impactites:
High-resolution element mapping, digital image analysis, and
quantifications, in: Large Meteorite Impacts and Planetary Evolution VI,
edited by: Reimold, W. U. and Koeberl, C., Geological Society of America Special Paper 550,
171–206, https://doi.org/10.1130/2021.2550(07), 2021.
Kobayashi, I. and Akai, J.: Twinned aragonite crystals found in the
bivalvian crossed lamellar shell structure, J. Geol. Soc. Jpn., 100,
177–180, https://doi.org/10.5575/geosoc.100.177, 1994.
Kocken, I. J., Müller, I. A., and Ziegler, M.: Optimizing the Use of
Carbonate Standards to Minimize Uncertainties in Clumped Isotope Data,
Geochem. Geophy. Geosy., 20, 5565–5577,
https://doi.org/10.1029/2019GC008545, 2019.
Kooij, J., Engelhard, G. H., and Righton, D. A.: Climate change and squid
range expansion in the North Sea, J. Biogeogr., 43, 2285–2298,
https://doi.org/10.1111/jbi.12847, 2016.
Kvale, E. P.: The origin of neap–spring tidal cycles, Mar. Geol., 235,
5–18, https://doi.org/10.1016/j.margeo.2006.10.001, 2006.
Lafuente, B., Downs, R. T., Yang, H., and Stone, N.: The power of databases:
The RRUFF project, in: Highlights in Mineralogical Crystallography, edited
by: Armbruster, T. and Danisi, R. M., De Gruyter, Berlin, München, Boston, De Gruyter, 2016, 1–30,
https://doi.org/10.1515/9783110417104-003, 2015.
Lee, L., Atkinson, D., Hirst, A. G., and Cornell, S. J.: A new framework for
growth curve fitting based on the von Bertalanffy Growth Function, Sci.
Rep., 10, 7953, https://doi.org/10.1038/s41598-020-64839-y, 2020.
Louwye, S. and De Schepper, S.: The Miocene–Pliocene hiatus in the southern
North Sea Basin (northern Belgium) revealed by dinoflagellate cysts, Geol.
Mag., 147, 760–776, https://doi.org/10.1017/S0016756810000191, 2010.
Louwye, S., Head, M. J., and De Schepper, S.: Dinoflagellate cyst
stratigraphy and palaeoecology of the Pliocene in northern Belgium, southern
North Sea Basin, Geol. Mag., 141, 353–378,
https://doi.org/10.1017/S0016756804009136, 2004.
Lutz, R. A. and Rhoads, D. C.: Growth patterns within the molluscan shell.
An overview, in: Skeletal Growth of Aquatic Organisms., Plenum Press, New
York, 203–254, ISBN: 0-306-40259-9. 1980.
Mackenzie, B. R. and Schiedek, D.: Daily ocean monitoring since the 1860s
shows record warming of northern European seas, Glob. Change Biol., 13,
1335–1347, https://doi.org/10.1111/j.1365-2486.2007.01360.x, 2007.
Marcano, M. C., Frank, T. D., Mukasa, S. B., Lohmann, K. C., and Taviani,
M.: Diagenetic incorporation of Sr into aragonitic bivalve shells:
Implications for chronostratigraphic and palaeoenvironmental
interpretations, Depos. Record, 1, 38–52, https://doi.org/10.1002/dep2.3,
2015.
Marquet, R. T. C.: Ecology and evolution of Pliocene bivalves from the
Antwerp Basin, Bulletin de l'Institut royal des Sciences naturelles de
Belgique, Sciences de la terre, 74, 205–212, 2004.
Marquet, R. T. C.: The Neogene Bivalvia (Heterodonta and Anomalodesmata) and
Scaphopoda from Kallo and Doel (Oost-Vlaanderen, Belgium), Palaeontos, 6,
1–142, 2005.
McConnaughey, T. A. and Gillikin, D. P.: Carbon isotopes in mollusk shell
carbonates, Geo-Mar. Lett., 28, 287–299,
https://doi.org/10.1007/s00367-008-0116-4, 2008.
Meckler, A. N., Ziegler, M., Millán, M. I., Breitenbach, S. F. M., and
Bernasconi, S. M.: Long-term performance of the Kiel carbonate device with a
new correction scheme for clumped isotope measurements: Performance and
correction of Kiel clumped isotope measurements, Rapid Commun. Mass
Sp., 28, 1705–1715, https://doi.org/10.1002/rcm.6949, 2014.
Meinicke, N., Ho, S. L., Hannisdal, B., Nürnberg, D., Tripati, A.,
Schiebel, R., and Meckler, A. N.: A robust calibration of the clumped
isotopes to temperature relationship for foraminifers, Geochim. Cosmochim.
Ac., 270, 160–183, https://doi.org/10.1016/j.gca.2019.11.022, 2020.
Meinicke, N., Reimi, M. A., Ravelo, A. C., and Meckler, A. N.: Coupled Mg Ca
and Clumped Isotope Measurements Indicate Lack of Substantial Mixed Layer
Cooling in the Western Pacific Warm Pool During the Last ∼ 5 Million
Years, Paleoceanogr. Paleocl., 36, e2020PA004115,
https://doi.org/10.1029/2020PA004115, 2021.
Milano, S., Schöne, B. R., and Witbaard, R.: Changes of shell
microstructural characteristics of Cerastoderma edule (Bivalvia) – A novel
proxy for water temperature, Palaeogeogr. Palaeocl., 465, 395–406, https://doi.org/10.1016/j.palaeo.2015.09.051,
2017.
Monastersky, R.: Global carbon dioxide levels near worrisome milestone,
Nature, 497, 13–14, https://doi.org/10.1038/497013a, 2013.
Moon, L. R., Judd, E. J., Thomas, J., and Ivany, L. C.: Out of the oven and
into the fire: Unexpected preservation of the seasonal δ18O cycle
following heating experiments on shell carbonate, Palaeogeogr.
Palaeocl., 562, 110115,
https://doi.org/10.1016/j.palaeo.2020.110115, 2021.
Müller, I. A., Fernandez, A., Radke, J., van Dijk, J., Bowen, D.,
Schwieters, J., and Bernasconi, S. M.: Carbonate clumped isotope analyses
with the long-integration dual-inlet (LIDI) workflow: scratching at the
lower sample weight boundaries, Rapid Commun. Mass Sp., 31,
1057–1066, https://doi.org/10.1002/rcm.7878, 2017.
Nyst, P. H. and Westendorp, G. D.: Nouvelles recherches sur les coquilles
fossiles de la province d'Anvers, Bulletins de l'Académie royale des
Sciences et Belles-Lettres de Bruxelles, 6, 393–414, 1839.
Pagani, M., Liu, Z., LaRiviere, J., and Ravelo, A. C.: High Earth-system
climate sensitivity determined from Pliocene carbon dioxide concentrations,
Nat. Geosci., 3, 27–30, https://doi.org/10.1038/NGEO724, 2010.
Pannella, G. and MacClintock, C.: Biological and environmental rhythms
reflected in molluscan shell growth, Memoir,
42, 64–80, https://doi.org/10.1017/S0022336000061655, 1968.
Popov, S. V.: Composite prismatic structure in bivalve shell, Acta
Palaeontol. Pol., 31, 3–26, 1986.
Popov, S. V.: Formation of Bivalve Shells and Their Microstructure,
Paleontol. J., 48, 1519–1531,
https://doi.org/10.1134/S003103011414010X, 2014.
Preibisch, S., Saalfeld, S., and Tomancak, P.: Globally optimal stitching of
tiled 3D microscopic image acquisitions, Bioinformatics, 25, 1463–1465,
https://doi.org/10.1093/bioinformatics/btp184, 2009.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical
Computing, Vienna, Austria, https://www.R-project.org/ (last access: 20 June 2023),
2021.
Ritter, A.-C., Mavromatis, V., Dietzel, M., Kwiecien, O., Wiethoff, F.,
Griesshaber, E., Casella, L. A., Schmahl, W. W., Koelen, J., Neuser, R. D.,
Leis, A., Buhl, D., Niedermayr, A., Breitenbach, S. F. M., Bernasconi, S.
M., and Immenhauser, A.: Exploring the impact of diagenesis on (isotope)
geochemical and microstructural alteration features in biogenic aragonite,
Sedimentology, 64, 1354–1380, https://doi.org/10.1111/sed.12356, 2017.
Schauble, E. A., Ghosh, P., and Eiler, J. M.: Preferential formation of
13C–18O bonds in carbonate minerals, estimated using first-principles
lattice dynamics, Geochim. Cosmochim. Ac., 70, 2510–2529,
https://doi.org/10.1016/j.gca.2006.02.011, 2006.
Schoeppler, V., Lemanis, R., Reich, E., Pusztai, T., Gránásy, L.,
and Zlotnikov, I.: Crystal growth kinetics as an architectural constraint on
the evolution of molluscan shells, P. Natl. Acad. Sci. USA, 116, 20388–20397,
https://doi.org/10.1073/pnas.1907229116, 2019.
Schöne, B. R., Goodwin, D. H., Flessa, K. W., Dettman, D. L., and
Roopnarine, P. D.: Sclerochronology and Growth of the Bivalve Mollusks
Chione (Chionista) fluctifraga and C(Chionista) cortezi, Veliger, 45,
45–54, 2002.
Schöne, B. R., Freyre Castro, A. D., Fiebig, J., Houk, S. D., Oschmann,
W., and Kröncke, I.: Sea surface water temperatures over the period
1884–1983 reconstructed from oxygen isotope ratios of a bivalve mollusk
shell (Arctica islandica, southern North Sea), Palaeogeogr.
Palaeocl., 212, 215–232,
https://doi.org/10.1016/j.palaeo.2004.05.024, 2004.
Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di
Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Satoh,
M., Vincente-Serrano, S. M., Wehner, M., and Zhou, B.: Weather and Climate
Extreme Events in a Changing Climate, in: Climate Change 2021: The Physical
Science Basis, Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte,
V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N.,
Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1513–1766, https://doi.org/10.1017/9781009157896.013, 2021.
Spiess, A.-N. and Neumeyer, N.: An evaluation of R2 as an inadequate measure
for nonlinear models in pharmacological and biochemical research: a Monte
Carlo approach, BMC Pharmacol., 10, 6,
https://doi.org/10.1186/1471-2210-10-6, 2010.
Tran, D., Nadau, A., Durrieu, G., Ciret, P., Parisot, J.-P., and Massabuau,
J.-C.: Field chronobiology of a molluscan bivalve: how the moon and sun
cycles interact to drive oyster activity rhythms, Chronobiol. Int., 28,
307–317, https://doi.org/10.3109/07420528.2011.565897, 2011.
Ullmann, C. V., Wiechert, U., and Korte, C.: Oxygen isotope fluctuations in
a modern North Sea oyster (Crassostrea gigas) compared with annual
variations in seawater temperature: Implications for palaeoclimate studies,
Chem. Geol., 277, 160–166, https://doi.org/10.1016/j.chemgeo.2010.07.019,
2010.
Urban, H. J.: Modeling growth of different developmental stages in bivalves,
Mar. Ecol. Prog. Ser., 238, 109–114, https://doi.org/10.3354/meps238109,
2002.
Valentine, A., Johnson, A. L. A., Leng, M. J., Sloane, H. J., and Balson, P.
S.: Isotopic evidence of cool winter conditions in the mid-Piacenzian
(Pliocene) of the southern North Sea Basin, Palaeogeogr.
Palaeocl., 309, 9–16,
https://doi.org/10.1016/j.palaeo.2011.05.015, 2011.
de la Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R. P., and Foster, G.
L.: Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2
glaciation, Sci. Rep., 10, 11002,
https://doi.org/10.1038/s41598-020-67154-8, 2020.
Vellekoop, J., Kaskes, P., Sinnesael, M., Huygh, J., Déhais, T., Jagt,
J. W. M., Speijer, R. P., and Claeys, P.: A new age model and
chemostratigraphic framework for the Maastrichtian type area (southeastern
Netherlands, northeastern Belgium), Newsl. Stratigr., 55, 479–501,
https://doi.org/10.1127/nos/2022/0703, 2022.
Vervoenen, M., Van Nieulande, F., Fraussen, K., Wesselingh, F. P., and
Pouwer, R.: Pliocene to Quaternary sinistral Neptunea species (Mollusca,
Gastropoda, Buccinidae) from the NE Atlantic, Cainozoic Research, 14,
17–34, 2014.
Vignols, R. M., Valentine, A. M., Finlayson, A. G., Harper, E. M.,
Schöne, B. R., Leng, M. J., Sloane, H. J., and Johnson, A. L. A.: Marine
climate and hydrography of the Coralline Crag (early Pliocene, UK): isotopic
evidence from 16 benthic invertebrate taxa, Chem. Geol., 526, 62–83,
https://doi.org/10.1016/j.chemgeo.2018.05.034, 2019.
Warner, J. P., DeLong, K. L., Chicoine, D., Thirumalai, K., and Andrus, C.
F. T.: Investigating the influence of temperature and seawater δ18O
on Donax obesulus (Reeve, 1854) shell δ18O, Chem. Geol., 588,
120638, https://doi.org/10.1016/j.chemgeo.2021.120638, 2022.
Weiner, S. and Dove, P. M.: An Overview of Biomineralization Processes and
the Problem of the Vital Effect, Rev. Mineral. Geochem., 54,
1–29, 2003.
Wesselingh, F. P., Busschers, F. S., and Goolaerts, S.: Observations on the
Pliocene sediments exposed at Antwerp International Airport (northern
Belgium) constrain the stratigraphic position of the Broechem fauna, Geol.
Belgica, 23, 315–321, https://doi.org/10.20341/gb.2020.026, 2020.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C.,
Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D.,
Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D.,
Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H.,
Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An
astronomically dated record of Earth's climate and its predictability over
the last 66 Million Years, Science, 369, 1383–1387,
https://doi.org/10.1126/science.aba6853, 2020.
Wichern, N. M. A.: NMAWichern/Benedeni_benedeni: Benedeni_benedeni_supplementary_code (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.8014460, 2023.
Wichern, N. M. A., de Winter, N. J., Johnson, A., Goolaerts, S., Wesselingh, F. P., Hamers, M. F., Kaskes, P., Claeys, P., and Ziegler, M.: Multiproxy dataset measured on the shells of extinct bivalve Angulus benedeni benedeni (Pliocene Lillo Formation, North Sea basin of Belgium) used to assess its suitability as a climate archive, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.951419, 2022.
Zhang, J. Z. and Petersen, S. V.: Clumped and oxygen isotope
sclerochronology methods tested in the bivalve Lucina pensylvanica, Chem.
Geol., 620, 121346, https://doi.org/10.1016/j.chemgeo.2023.121346, 2023.
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments...
Altmetrics
Final-revised paper
Preprint