Articles | Volume 20, issue 18
https://doi.org/10.5194/bg-20-3737-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3737-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Skirt chamber – an open dynamic method for the rapid and minimally intrusive measurement of greenhouse gas emissions from peatlands
Departamento de Biotecnología y Bioingeniería, Centro de
Investigación y de Estudios Avanzados del Instituto Politécnico
Nacional (Cinvestav), Mexico City, 07360, Mexico
Cape Horn International Center, Universidad de Magallanes, Puerto
Williams, 6350000, Chile
Brenda Riquelme
Cape Horn International Center, Universidad de Magallanes, Puerto
Williams, 6350000, Chile
Biodiversity of Antarctic and Subantarctic
Ecosystems (BASE), Millennium Institute, Santiago, 7800003, Chile
Andrés Gómez
Cape Horn International Center, Universidad de Magallanes, Puerto
Williams, 6350000, Chile
Roy Mackenzie
Cape Horn International Center, Universidad de Magallanes, Puerto
Williams, 6350000, Chile
Biodiversity of Antarctic and Subantarctic
Ecosystems (BASE), Millennium Institute, Santiago, 7800003, Chile
Francisco Javier Aguirre
Cape Horn International Center, Universidad de Magallanes, Puerto
Williams, 6350000, Chile
Jorge Hoyos-Santillan
Cape Horn International Center, Universidad de Magallanes, Puerto
Williams, 6350000, Chile
Environmental Biogeochemistry Laboratory, Centro de Investigación
Gaia Antártica (CIGA), Universidad de Magallanes, Punta Arenas, 6210427,
Chile
Center for Climate and Resilience Research (CR)2, Universidad de
Chile, Santiago, 7800003, Chile
Ricardo Rozzi
Cape Horn International Center, Universidad de Magallanes, Puerto
Williams, 6350000, Chile
Armando Sepulveda-Jauregui
CORRESPONDING AUTHOR
Cape Horn International Center, Universidad de Magallanes, Puerto
Williams, 6350000, Chile
Environmental Biogeochemistry Laboratory, Centro de Investigación
Gaia Antártica (CIGA), Universidad de Magallanes, Punta Arenas, 6210427,
Chile
Center for Climate and Resilience Research (CR)2, Universidad de
Chile, Santiago, 7800003, Chile
Related authors
Frederic Thalasso, Julio A. Salas-Rabaza, Brenda Riquelme del Río, Jorge F. Perez-Quezada, Cristian Gajardo, and Matías Troncoso-Villar
EGUsphere, https://doi.org/10.5194/egusphere-2025-1357, https://doi.org/10.5194/egusphere-2025-1357, 2025
Short summary
Short summary
Peatlands are complex and widespread ecosystems that store large amounts of carbon through photosynthesis. Carbon fixation depends on solar irradiance, and the relationship between them is called the photosynthesis-irradiance or “PI” curve. We developed a simple, portable chamber to measure PI curves in peatlands, taking into account complex plant assemblages and microhabitat variability. This tool may help scientists better understand carbon dynamics in these ecosystems.
Frederic Thalasso, Katey Walter Anthony, Olya Irzak, Ethan Chaleff, Laughlin Barker, Peter Anthony, Philip Hanke, and Rodrigo Gonzalez-Valencia
Hydrol. Earth Syst. Sci., 24, 6047–6058, https://doi.org/10.5194/hess-24-6047-2020, https://doi.org/10.5194/hess-24-6047-2020, 2020
Short summary
Short summary
Methane (CH4) seepage is the steady or episodic flow of gaseous hydrocarbons from subsurface reservoirs that has been identified as a significant source of atmospheric CH4. The monitoring of these emissions is important and despite several available methods, large macroseeps are still difficult to measure due to a lack of a lightweight and inexpensive method deployable in remote environments. Here, we report the development of a mobile chamber for measuring intense CH4 macroseepage in lakes.
Frederic Thalasso, Julio A. Salas-Rabaza, Brenda Riquelme del Río, Jorge F. Perez-Quezada, Cristian Gajardo, and Matías Troncoso-Villar
EGUsphere, https://doi.org/10.5194/egusphere-2025-1357, https://doi.org/10.5194/egusphere-2025-1357, 2025
Short summary
Short summary
Peatlands are complex and widespread ecosystems that store large amounts of carbon through photosynthesis. Carbon fixation depends on solar irradiance, and the relationship between them is called the photosynthesis-irradiance or “PI” curve. We developed a simple, portable chamber to measure PI curves in peatlands, taking into account complex plant assemblages and microhabitat variability. This tool may help scientists better understand carbon dynamics in these ecosystems.
Frederic Thalasso, Katey Walter Anthony, Olya Irzak, Ethan Chaleff, Laughlin Barker, Peter Anthony, Philip Hanke, and Rodrigo Gonzalez-Valencia
Hydrol. Earth Syst. Sci., 24, 6047–6058, https://doi.org/10.5194/hess-24-6047-2020, https://doi.org/10.5194/hess-24-6047-2020, 2020
Short summary
Short summary
Methane (CH4) seepage is the steady or episodic flow of gaseous hydrocarbons from subsurface reservoirs that has been identified as a significant source of atmospheric CH4. The monitoring of these emissions is important and despite several available methods, large macroseeps are still difficult to measure due to a lack of a lightweight and inexpensive method deployable in remote environments. Here, we report the development of a mobile chamber for measuring intense CH4 macroseepage in lakes.
Cited articles
Abdalla, M., Hastings, A., Truu, J., Espenberg, M., Mander, Ü., and
Smith, P.: Emissions of methane from northern peatlands: a review of
management impacts and implications for future management options, Ecol.
Evol., 6, 7080–7102, https://doi.org/10.1002/ECE3.2469, 2016.
IPCC: AR6 Climate Change 2021: The Physical Science Basis – IPCC:
https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/, last
access: 7 October 2022.
Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance: A Practical Guide
to Measurement and Data Analysis, Springer Atmospheric Sciences, 1, 438 pp.,
https://doi.org/10.1007/978-94-007-2351-1, 2012.
Atkin, O. K., Evans, J. R., Ball, M. C., Lambers, H., and Pons, T. L.: Leaf
Respiration of Snow Gum in the Light and Dark. Interactions between
Temperature and Irradiance, Plant Physiol., 122, 915–924,
https://doi.org/10.1104/PP.122.3.915, 2000.
Baird, A. J., Belyea, L. R., and Morris, P. J.: Upscaling of
Peatland-Atmosphere Fluxes of Methane: Small-Scale Heterogeneity in Process
Rates and the Pitfalls of “Bucket-and-Slab” Models, Carbon Cycling in
Northern Peatlands, American Geophysical Union, 37–53, https://doi.org/10.1029/2008GM000826, 2013.
Barbour, M. M., Mcdowell, N. G., Tcherkez, G., Bickford, C. P., and Hanson,
D. T.: A new measurement technique reveals rapid post-illumination changes
in the carbon isotope composition of leaf-respired CO2, Plant Cell Environ.,
30, 469–482, https://doi.org/10.1111/J.1365-3040.2007.01634.X, 2007.
Barret, M., Gandois, L., Thalasso, F., Martinez-Cruz, K.,
Sepulveda-Jauregui, A., Lavergne, C., Teisserenc, R., Aguilar-Muñoz, P.,
Gerardo-Nieto, O., Etchebehere, C., Dellagnezze, B., Bovio-Winkler, P.,
Fochesatto, G., Tananaev, N., Svenning, M. M., Seppey, C., Tveit, A., Chamy,
R., Astorga-España, M. S., Mansilla, A. O., van de Putte, A., Sweetlove,
M., and Murray, A. E.: A combined microbial and biogeochemical dataset from
high-latitude ecosystems with respect to methane cycle, Sci. Data, 9,
674, https://doi.org/10.1038/s41597-022-01759-8, 2022.
Bracho, R. and Jose, J. J. S.: Energy Fluxes in a Morichal (Swamp Palm
Community) at the Orinoco Llanos, Venezuela – Microclimate, Water-Vapor and
CO2 Exchange, Photosynthetica, 24, 468–494, 1990.
Capooci, M. and Vargas, R.: Trace gas fluxes from tidal salt marsh soils:
implications for carbon-sulfur biogeochemistry, Biogeosciences, 19,
4655–4670, https://doi.org/10.5194/bg-19-4655-2022, 2022.
Christiansen, J. R., Korhonen, J. F. J., Juszczak, R., Giebels, M., and
Pihlatie, M.: Assessing the effects of chamber placement, manual sampling
and headspace mixing on CH4 fluxes in a laboratory experiment, Plant
Soil, 343, 171–185, https://doi.org/10.1007/S11104-010-0701-Y,
2011.
Cobb, A. R., Hoyt, A. M., Gandois, L., Eri, J., Dommain, R., Salim, K. A.,
Kai, F. M., Su'ut, N. S. H., and Harvey, C. F.: How temporal patterns in
rainfall determine the geomorphology and carbon fluxes of tropical
peatlands, P. Natl. Acad. Sci. USA, 114,
E5187–E5196, https://doi.org/10.1073/pnas.1701090114, 2017.
Ding, W., Cai, Z., and Tsuruta, H.: Diel variation in methane emissions from
the stands of Carex lasiocarpa and Deyeuxia angustifolia in a cool temperate
freshwater marsh, Atmos. Environ., 38, 181–188,
https://doi.org/10.1016/J.ATMOSENV.2003.09.066, 2004.
Edwards, N. T. and Sollins, P.: Continuous Measurement of Carbon Dioxide
Evolution From Partitioned Forest Floor Components, Ecology, 54, 406–412,
https://doi.org/10.2307/1934349, 1973.
Fritz, C., Pancotto, V. A., Elzenga, J. T. M., Visser, E. J. W., Grootjans,
A. P., Pol, A., Iturraspe, R., Roelofs, J. G. M., and Smolders, A. J. P.:
Zero methane emission bogs: extreme rhizosphere oxygenation by cushion
plants in Patagonia, New Phytol., 190, 398–408,
https://doi.org/10.1111/J.1469-8137.2010.03604.X, 2011.
Frolking, S., Talbot, J., Jones, M. C., Treat, C. C., Kauffman, J. B.,
Tuittila, E. S., and Roulet, N.: Peatlands in the Earth's 21st century
climate system, Environ. Rev., 19, 371–396,
https://doi.org/10.1139/A11-014, 2011.
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva,
D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. v., Smith, P.,
Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T.,
Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., Herrero, M.,
Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S. M., Minnemeyer, S.,
Polasky, S., Potapov, P., Putz, F. E., Sanderman, J., Silvius, M.,
Wollenberg, E., and Fargione, J.: Natural climate solutions, P.
Natl. Acad. Sci. USA, 114, 11645–11650,
https://doi.org/10.1073/pnas.1710465114, 2017.
Günther, A. B., Huth, V., Jurasinski, G., and Glatzel, S.:
Scale-Dependent Temporal Variation in Determining the Methane Balance of a
Temperate Fen, Greenh. Gas Meas. Manag., 4, 41–48,
https://doi.org/10.1080/20430779.2013.850395, 2014
Günther, A., Barthelmes, A., Huth, V., Joosten, H., Jurasinski, G.,
Koebsch, F., and Couwenberg, J.: Prompt rewetting of drained peatlands
reduces climate warming despite methane emissions, Nat. Commun.,
11, 1–5, https://doi.org/10.1038/s41467-020-15499-z, 2020.
Heusser, C. J.: Late Quaternary Vegetation and Climate of Southern Tierra
del Fuego. Late Quaternary vegetation and climate of southern Tierra del
Fuego, Quaternary Res., 31, 396–406,
https://doi.org/10.1016/0033-5894(89)90047-1, 1989.
Hoyos-Santillan, J., Lomax, B. H., Large, D., Turner, B. L., Lopez, O. R.,
Boom, A., Sepulveda-Jauregui, A., and Sjögersten, S.: Evaluation of
vegetation communities, water table, and peat composition as drivers of
greenhouse gas emissions in lowland tropical peatlands, Sci. Total
Environ., 688, 1193–1204,
https://doi.org/10.1016/J.SCITOTENV.2019.06.366, 2019.
Ilyasov, D. V., Meshcheryakova, A. V., Glagolev, M. V., Kupriianova, I. V.,
Kaverin, A. A., Sabrekov, A. F., Kulyabin, M. F., and Lapshina, E. D.:
Field-Layer Vegetation and Water Table Level as a Proxy of CO2 Exchange in
the West Siberian Boreal Bog, Land, 12, 566,
https://doi.org/10.3390/LAND12030566, 2023.
Järveoja, J., Nilsson, M. B., Gažovič, M., Crill, P. M., and
Peichl, M.: Partitioning of the net CO2 exchange using an automated chamber
system reveals plant phenology as key control of production and respiration
fluxes in a boreal peatland, Glob. Change Biol., 24, 3436–3451,
https://doi.org/10.1111/GCB.14292, 2018.
Järveoja, J., Nilsson, M. B., Crill, P. M., and Peichl, M.: Bimodal diel
pattern in peatland ecosystem respiration rebuts uniform temperature
response, Nat. Commun., 11, 1–9,
https://doi.org/10.1038/s41467-020-18027-1, 2020.
Juszczak, R.: Biases in Methane Chamber Measurements in Peatlands,
Int. Agrophys., 27, 159–168,
https://doi.org/10.2478/V10247-012-0081-Z, 2013.
Kutzbach, L., Schneider, J., Sachs, T., Giebels, M., Nykänen, H.,
Shurpali, N. J., Martikainen, P. J., Alm, J., and Wilmking, M.: CO2 flux
determination by closed-chamber methods can be seriously biased by
inappropriate application of linear regression, Biogeosciences, 4,
1005–1025, https://doi.org/10.5194/bg-4-1005-2007, 2007.
Lai, D. Y. F., Roulet, N. T., Humphreys, E. R., Moore, T. R., and Dalva, M.:
The effect of atmospheric turbulence and chamber deployment period on
autochamber CO2 and CH4 flux measurements in an ombrotrophic peatland,
Biogeosciences, 9, 3305–3322, https://doi.org/10.5194/bg-9-3305-2012, 2012.
Lawson, I. T., Kelly, T. J., Aplin, P., Boom, A., Dargie, G., Draper, F. C.
H., Hassan, P. N. Z. B. P., Hoyos-Santillan, J., Kaduk, J., Large, D.,
Murphy, W., Page, S. E., Roucoux, K. H., Sjögersten, S., Tansey, K.,
Waldram, M., Wedeux, B. M. M., and Wheeler, J.: Improving estimates of
tropical peatland area, carbon storage, and greenhouse gas fluxes, Wetlands
Ecol. Manag., 23, 327–346,
https://doi.org/10.1007/S11273-014-9402-2, 2014.
Lehmann, J. R. K., Münchberger, W., Knoth, C., Blodau, C., Nieberding,
F., Prinz, T., Pancotto, V. A., and Kleinebecker, T.: High-Resolution
Classification of South Patagonian Peat Bog Microforms Reveals Potential
Gaps in Up-Scaled CH4 Fluxes by use of Unmanned Aerial System (UAS) and CIR
Imagery, Remote Sens., 8, 173,
https://doi.org/10.3390/RS8030173, 2016.
Leifeld, J. and Menichetti, L.: The underappreciated potential of peatlands
in global climate change mitigation strategies, Nat. Commun.,
9, 1–7, https://doi.org/10.1038/s41467-018-03406-6, 2018.
Levenspiel, O.: Chemical Reaction Engineering, 3rd Edn., edited by: Anderson, W.,
Hepburn, K., and Santor, K., Times Roman by Bi-Comp Inc, John Wiley & Sons, 4140–4143, ISBN: 0-471-25424-X, 1999.
Limpert, K. E., Carnell, P. E., Trevathan-Tackett, S. M., and Macreadie, P.
I.: Reducing Emissions From Degraded Floodplain Wetlands, Front.
Environ. Sci., 8, 8,
https://doi.org/10.3389/fenvs.2020.00008, 2020.
Livingston, G. and Hutchinson, J.: Enclosure-Based Measurement of Trace Gas
Exchange: Applications and Sources of Error, in: Biogenic trace gases:
measuring emissions from soil and water, edited by: Matson, P. and Harris, R., R.C.,
Oxford, UK, Blackwell Science Ltd., 14–51, ISBN: 0-632-03641-9, 1995.
Masarovičova, E.: Relationships between the CO2 compensation
concentration, the slope of CO2 curves of net photosynthetic rate and the
energy of irradiance, Biol. Plantarum, 21, 434–439,
https://doi.org/10.1007/BF02889485, 2008.
Münchberger, W., Knorr, K. H., Blodau, C., Pancotto, V. A., and
Kleinebecker, T.: Zero to moderate methane emissions in a densely rooted,
pristine Patagonian bog – Biogeochemical controls as revealed from isotopic
evidence, Biogeosciences, 16, 541–559,
https://doi.org/10.5194/bg-16-541-2019, 2019.
Page, S., Mishra, S., Agus, F., Anshari, G., Dargie, G., Evers, S.,
Jauhiainen, J., Jaya, A., Jovani-Sancho, A. J., Laurén, A.,
Sjögersten, S., Suspense, I. A., Wijedasa, L. S., and Evans, C. D.:
Anthropogenic impacts on lowland tropical peatland biogeochemistry, Nat.
Rev. Earth Environ., 3, 426–443,
https://doi.org/10.1038/s43017-022-00289-6, 2022.
Pancotto, V., Holl, D., Escobar, J., Castagnani, M. F., and Kutzbach, L.:
Cushion bog plant community responses to passive warming in southern
Patagonia, Biogeosciences, 18, 4817–4839,
https://doi.org/10.5194/bg-18-4817-2021, 2021.
Pavelka, M., Acosta, M., Kiese, R., Altimir, N., Brümmer, C., Crill, P.,
Darenova, E., Fu., Gielen, B., Graf, A., Klemedtsson, L., Lohila, A.,
Longdoz, B., Lindroth, A., Nilsson, M., Maranón Jiménez, S.,
Merbold, L., Montagnani, L., Peichl, M., Pumpanen, J., Serrano Ortiz, P.,
Silvennoinen, H., Skiba, U., Vestin, P., Weslien, P., Janous, D., and
Kutsch, W.: Standardisation of chamber technique for CO2, N2O and CH4 fluxes
measurements from terrestrial ecosystems, Int. Agrophys., 32,
569–587, https://doi.org/10.1515/intag-2017-0045, 2018.
Pirk, N., Mastepanov, M., Parmentier, F.-J. W., Lund, M., Crill, P., and Christensen, T. R.: Calculations of automatic chamber flux measurements of methane and carbon dioxide using short time series of concentrations, Biogeosciences, 13, 903–912, https://doi.org/10.5194/bg-13-903-2016, 2016.
Ribeiro, K., Pacheco, F. S., Ferreira, J. W., de Sousa-Neto, E. R., Hastie,
A., Krieger Filho, G. C., Alvalá, P. C., Forti, M. C., and Ometto, J.
P.: Tropical peatlands and their contribution to the global carbon cycle and
climate change, Glob. Change Biol., 27, 489–505,
https://doi.org/10.1111/GCB.15408, 2021.
Rankin, T. E., Roulet, N. T., and Moore, T. R.: Controls on autotrophic and
heterotrophic respiration in an ombrotrophic bog, Biogeosciences, 19,
3285–3303, https://doi.org/10.5194/bg-19-3285-2022, 2022.
Rozzi, R., Armesto, J. J., Gutiérrez, J., Massardo, F., Likens, G.,
Anderson, C. B., Poole, A., Moses, K., Hargrove, G., Mansilla, A., Kennedy,
J.H., Willson, M., Jax, K., Jones, C., Callicott, J. B., and Kalin, M. T.:
Integrating ecology and environmental ethics: Earth stewardship in the
southern end of the Americas, BioScience, 62, 226–236
https://doi.org/10.1525/bio.2012.62.3.4, 2012.
Rozzi, R., Massardo, F., Anderson, C. B., Kurt Heidinger, J. A., and
Silander, J.: Ten Principles for biocultural conservation at the southern
tip of the Americas: The approach of the Omora Ethnobotanical Park, Ecol. Soc., 11, 43, https://www.jstor.org/stable/26267796 (last access: 27 November 2022), 2006.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M.,
Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez,
J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., and
Cardona, A.: Fiji: an open-source platform for biological-image analysis,
Nat. Method., 9, 676–682, https://doi.org/10.1038/nmeth.2019,
2012.
Shaver, G. R., Street, L. E., Rastetter, E. B., Van Wijk, M. T., and
Williams, M.: Functional convergence in regulation of net CO2 flux in
heterogeneous tundra landscapes in Alaska and Sweden, J. Ecol.,
95, 802–817, https://doi.org/10.1111/J.1365-2745.2007.01259.X, 2007.
Swails, E., Hergoualc'h, K., Verchot, L., Novita, N., and Lawrence, D.:
Spatio-Temporal Variability of Peat CH4 and N2O Fluxes and Their
Contribution to Peat GHG Budgets in Indonesian Forests and Oil Palm
Plantations, Front. Environ. Sci., 9, 617828,
https://doi.org/10.3389/fenvs.2021.617828, 2021.
UNEP (United Nations Environment Programme): Resolution 4/16. Conservation
and Sustainable Management of Peatlands – Resolution Adopted by the United
Nations Environment Assembly on 15 March 2019,
https://wedocs.unep.org/20.500.11822/30675 (last access: 7 December 2022), 2019.
Virkkala, A. M., Natali, S. M., Rogers, B. M., Watts, J. D., Savage, K.,
Connon, S. J., Mauritz, M., Schuur, E. A. G., Peter, D., Minions, C.,
Nojeim, J., Commane, R., Emmerton, C. A., Goeckede, M., Helbig, M., Holl,
D., Iwata, H., Kobayashi, H., Kolari, P., López-Blanco, E., Marushchak,
M. E., Mastepanov, M., Merbold, L., Parmentier, F. J. W., Peichl, M., Sachs,
T., Sonnentag, O., Ueyama, M., Voigt, C., Aurela, M., Boike, J., Celis, G.,
Chae, N., Christensen, T. R., Bret-Harte, M. S., Dengel, S., Dolman, H.,
Edgar, C. W., Elberling, B., Euskirchen, E., Grelle, A., Hatakka, J.,
Humphreys, E., Järveoja, J., Kotani, A., Kutzbach, L., Laurila, T.,
Lohila, A., Mammarella, I., Matsuura, Y., Meyer, G., Nilsson, M. B.,
Oberbauer, S. F., Park, S. J., Petrov, R., Prokushkin, A. S., Schulze, C.,
St. Louis, V. L., Tuittila, E. S., Tuovinen, J. P., Quinton, W., Varlagin,
A., Zona, D., and Zyryanov, V. I.: The ABCflux database: Arctic-boreal
CO2 flux observations and ancillary information aggregated to monthly time
steps across terrestrial ecosystems, Earth Syst. Sci. Data, 14, 179–208,
https://doi.org/10.5194/ESSD-14-179-2022, 2022.
Werner, R. A., Buchmann, N., Siegwolf, R. T. W., Kornexl, B. E., and
Gessler, A.: Metabolic fluxes, carbon isotope fractionation and respiration
– lessons to be learned from plant biochemistry, New Phytol., 191,
10–15, https://doi.org/10.1111/J.1469-8137.2011.03741.X, 2011.
Wright, E. L., Black, C. R., Turner, B. L., and Sjögersten, S.:
Environmental controls of temporal and spatial variability in CO2 and CH4
fluxes in a neotropical peatland, Glob. Change Biol., 19, 3775–3789,
https://doi.org/10.1111/GCB.12330, 2013.
Yu, Z., Beilman, D. W., Frolking, S., MacDonald, G. M., Roulet, N. T.,
Camill, P., and Charman, D. J.: Peatlands and Their Role in the Global
Carbon Cycle, Eos, 92, 97–98, https://doi.org/10.1029/2011EO120001, 2011.
Short summary
A robust skirt-chamber design to capture and quantify greenhouse gas emissions from peatlands is presented. Compared to standard methods, this design improves the spatial resolution of field studies in remote locations while minimizing intrusion.
A robust skirt-chamber design to capture and quantify greenhouse gas emissions from peatlands is...
Altmetrics
Final-revised paper
Preprint