Articles | Volume 21, issue 5
https://doi.org/10.5194/bg-21-1061-2024
https://doi.org/10.5194/bg-21-1061-2024
Research article
 | 
04 Mar 2024
Research article |  | 04 Mar 2024

A chemical kinetics theory for interpreting the non-monotonic temperature dependence of enzymatic reactions

Jinyun Tang and William J. Riley

Related authors

Technical Note: A modified formulation of dynamic energy budget theory for faster computation of biological growth
Jinyun Tang and William J. Riley
EGUsphere, https://doi.org/10.5194/egusphere-2024-2282,https://doi.org/10.5194/egusphere-2024-2282, 2024
Short summary
Deriving a Transformation Rate Map of Dissolved Organic Carbon over the Contiguous U.S.
Lingbo Li, Hong-Yi Li, Guta Abeshu, Jinyun Tang, L. Ruby Leung, Chang Liao, Zeli Tan, Hanqin Tian, Peter Thornton, and Xiaojuan Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-43,https://doi.org/10.5194/essd-2024-43, 2024
Preprint under review for ESSD
Short summary
KGML-ag: a modeling framework of knowledge-guided machine learning to simulate agroecosystems: a case study of estimating N2O emission using data from mesocosm experiments
Licheng Liu, Shaoming Xu, Jinyun Tang, Kaiyu Guan, Timothy J. Griffis, Matthew D. Erickson, Alexander L. Frie, Xiaowei Jia, Taegon Kim, Lee T. Miller, Bin Peng, Shaowei Wu, Yufeng Yang, Wang Zhou, Vipin Kumar, and Zhenong Jin
Geosci. Model Dev., 15, 2839–2858, https://doi.org/10.5194/gmd-15-2839-2022,https://doi.org/10.5194/gmd-15-2839-2022, 2022
Short summary
Supporting hierarchical soil biogeochemical modeling: version 2 of the Biogeochemical Transport and Reaction model (BeTR-v2)
Jinyun Tang, William J. Riley, and Qing Zhu
Geosci. Model Dev., 15, 1619–1632, https://doi.org/10.5194/gmd-15-1619-2022,https://doi.org/10.5194/gmd-15-1619-2022, 2022
Short summary
Evaluation of the WRF lake module (v1.0) and its improvements at a deep reservoir
Fushan Wang, Guangheng Ni, William J. Riley, Jinyun Tang, Dejun Zhu, and Ting Sun
Geosci. Model Dev., 12, 2119–2138, https://doi.org/10.5194/gmd-12-2119-2019,https://doi.org/10.5194/gmd-12-2119-2019, 2019
Short summary

Related subject area

Biogeochemistry: Modelling, Terrestrial
A 2001–2022 global gross primary productivity dataset using an ensemble model based on the random forest method
Xin Chen, Tiexi Chen, Xiaodong Li, Yuanfang Chai, Shengjie Zhou, Renjie Guo, and Jie Dai
Biogeosciences, 21, 4285–4300, https://doi.org/10.5194/bg-21-4285-2024,https://doi.org/10.5194/bg-21-4285-2024, 2024
Short summary
Future projections of Siberian wildfire and aerosol emissions
Reza Kusuma Nurrohman, Tomomichi Kato, Hideki Ninomiya, Lea Végh, Nicolas Delbart, Tatsuya Miyauchi, Hisashi Sato, Tomohiro Shiraishi, and Ryuichi Hirata
Biogeosciences, 21, 4195–4227, https://doi.org/10.5194/bg-21-4195-2024,https://doi.org/10.5194/bg-21-4195-2024, 2024
Short summary
Mechanisms of soil organic carbon and nitrogen stabilization in mineral-associated organic matter – insights from modeling in phase space
Stefano Manzoni and M. Francesca Cotrufo
Biogeosciences, 21, 4077–4098, https://doi.org/10.5194/bg-21-4077-2024,https://doi.org/10.5194/bg-21-4077-2024, 2024
Short summary
Optimizing the terrestrial ecosystem gross primary productivity using carbonyl sulfide (COS) within a two-leaf modeling framework
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024,https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024,https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary

Cited articles

Aksnes, D. L. and Egge, J. K.: A Theoretical-Model for Nutrient-Uptake in Phytoplankton, Mar. Ecol. Prog. Ser., 70, 65–72, https://doi.org/10.3354/meps070065, 1991. 
Alexandrov, V. Y.: Cytophysiological and Cytoecological Investigations of Heat Resistance of Plant Cells toward the Action of High and Low Temperature, Q. Rev. Biol., 39, 35–77, https://doi.org/10.1086/404089, 1964. 
Alster, C. J., Baas, P., Wallenstein, M. D., Johnson, N. G., and von Fischer, J. C.: Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular Rate Theory, Front. Microbiol., 7, 1821, https://doi.org/10.3389/fmicb.2016.01821, 2016. 
Alster, C. J., von Fischer, J. C., Allison, S. D., and Treseder, K. K.: Embracing a new paradigm for temperature sensitivity of soil microbes, Glob. Change Biol., 26, 3221–3229, https://doi.org/10.1111/gcb.15053, 2020. 
Alvarez, G., Shahzad, T., Andanson, L., Bahn, M., Wallenstein, M. D., and Fontaine, S.: Catalytic power of enzymes decreases with temperature: New insights for understanding soil C cycling and microbial ecology under warming, Glob. Change Biol., 24, 4238–4250, https://doi.org/10.1111/gcb.14281, 2018. 
Download
Short summary
A chemical kinetics theory is proposed to explain the non-monotonic relationship between temperature and biochemical rates. It incorporates the observed thermally reversible enzyme denaturation that is ensured by the ceaseless thermal motion of molecules and ions in an enzyme solution and three well-established theories: (1) law of mass action, (2) diffusion-limited chemical reaction theory, and (3) transition state theory.
Altmetrics
Final-revised paper
Preprint