Articles | Volume 21, issue 21
https://doi.org/10.5194/bg-21-4927-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-4927-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterizing the marine iodine cycle and its relationship to ocean deoxygenation in an Earth system model
Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI 48823, USA
Andy Ridgwell
Department of Earth and Planetary Sciences, University of California Riverside, Riverside, CA 92521, USA
Dalton S. Hardisty
Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI 48823, USA
Related authors
No articles found.
Aaron A. Naidoo-Bagwell, Fanny M. Monteiro, Katharine R. Hendry, Scott Burgan, Jamie D. Wilson, Ben A. Ward, Andy Ridgwell, and Daniel J. Conley
Geosci. Model Dev., 17, 1729–1748, https://doi.org/10.5194/gmd-17-1729-2024, https://doi.org/10.5194/gmd-17-1729-2024, 2024
Short summary
Short summary
As an extension to the EcoGEnIE 1.0 Earth system model that features a diverse plankton community, EcoGEnIE 1.1 includes siliceous plankton diatoms and also considers their impact on biogeochemical cycles. With updates to existing nutrient cycles and the introduction of the silicon cycle, we see improved model performance relative to observational data. Through a more functionally diverse plankton community, the new model enables more comprehensive future study of ocean ecology.
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Katherine A. Crichton, Andy Ridgwell, Daniel J. Lunt, Alex Farnsworth, and Paul N. Pearson
Clim. Past, 17, 2223–2254, https://doi.org/10.5194/cp-17-2223-2021, https://doi.org/10.5194/cp-17-2223-2021, 2021
Short summary
Short summary
The middle Miocene (15 Ma) was a period of global warmth up to 8 °C warmer than present. We investigate changes in ocean circulation and heat distribution since the middle Miocene and the cooling to the present using the cGENIE Earth system model. We create seven time slices at ~2.5 Myr intervals, constrained with paleo-proxy data, showing a progressive reduction in atmospheric CO2 and a strengthening of the Atlantic Meridional Overturning Circulation.
Yoshiki Kanzaki, Dominik Hülse, Sandra Kirtland Turner, and Andy Ridgwell
Geosci. Model Dev., 14, 5999–6023, https://doi.org/10.5194/gmd-14-5999-2021, https://doi.org/10.5194/gmd-14-5999-2021, 2021
Short summary
Short summary
Sedimentary carbonate plays a central role in regulating Earth’s carbon cycle and climate, and also serves as an archive of paleoenvironments, hosting various trace elements/isotopes. To help obtain
trueenvironmental changes from carbonate records over diagenetic distortion, IMP has been newly developed and has the capability to simulate the diagenesis of multiple carbonate particles and implement different styles of particle mixing by benthos using an adapted transition matrix method.
Jun Shao, Lowell D. Stott, Laurie Menviel, Andy Ridgwell, Malin Ödalen, and Mayhar Mohtadi
Clim. Past, 17, 1507–1521, https://doi.org/10.5194/cp-17-1507-2021, https://doi.org/10.5194/cp-17-1507-2021, 2021
Short summary
Short summary
Planktic and shallow benthic foraminiferal stable carbon isotope
(δ13C) data show a rapid decline during the last deglaciation. This widespread signal was linked to respired carbon released from the deep ocean and its transport through the upper-ocean circulation. Using numerical simulations in which a stronger flux of respired carbon upwells and outcrops in the Southern Ocean, we find that the depleted δ13C signal is transmitted to the rest of the upper ocean through air–sea gas exchange.
Markus Adloff, Andy Ridgwell, Fanny M. Monteiro, Ian J. Parkinson, Alexander J. Dickson, Philip A. E. Pogge von Strandmann, Matthew S. Fantle, and Sarah E. Greene
Geosci. Model Dev., 14, 4187–4223, https://doi.org/10.5194/gmd-14-4187-2021, https://doi.org/10.5194/gmd-14-4187-2021, 2021
Short summary
Short summary
We present the first representation of the trace metals Sr, Os, Li and Ca in a 3D Earth system model (cGENIE). The simulation of marine metal sources (weathering, hydrothermal input) and sinks (deposition) reproduces the observed concentrations and isotopic homogeneity of these metals in the modern ocean. With these new tracers, cGENIE can be used to test hypotheses linking these metal cycles and the cycling of other elements like O and C and simulate their dynamic response to external forcing.
Sebastiaan J. van de Velde, Dominik Hülse, Christopher T. Reinhard, and Andy Ridgwell
Geosci. Model Dev., 14, 2713–2745, https://doi.org/10.5194/gmd-14-2713-2021, https://doi.org/10.5194/gmd-14-2713-2021, 2021
Short summary
Short summary
Biogeochemical interactions between iron and sulfur are central to the long-term biogeochemical evolution of Earth’s oceans. Here, we introduce an iron–sulphur cycle in a model of Earth's oceans. Our analyses show that the results of the model are robust towards parameter choices and that simulated concentrations and reactions are comparable to those observed in ancient ocean analogues (anoxic lakes). Our model represents an important step forward in the study of iron–sulfur cycling.
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
Short summary
Temperature is a controller of metabolic processes and therefore also a controller of the ocean's biological carbon pump (BCP). We calibrate a temperature-dependent version of the BCP in the cGENIE Earth system model. Since the pre-industrial period, warming has intensified near-surface nutrient recycling, supporting production and largely offsetting stratification-induced surface nutrient limitation. But at the same time less carbon that sinks out of the surface then reaches the deep ocean.
Christopher T. Reinhard, Stephanie L. Olson, Sandra Kirtland Turner, Cecily Pälike, Yoshiki Kanzaki, and Andy Ridgwell
Geosci. Model Dev., 13, 5687–5706, https://doi.org/10.5194/gmd-13-5687-2020, https://doi.org/10.5194/gmd-13-5687-2020, 2020
Short summary
Short summary
We provide documentation and testing of new developments for the oceanic and atmospheric methane cycles in the cGENIE Earth system model. The model is designed to explore Earth's methane cycle across a wide range of timescales and scenarios, in particular assessing the mean climate state and climate perturbations in Earth's deep past. We further document the impact of atmospheric oxygen levels and ocean chemistry on fluxes of methane to the atmosphere from the ocean biosphere.
Malin Ödalen, Jonas Nycander, Andy Ridgwell, Kevin I. C. Oliver, Carlye D. Peterson, and Johan Nilsson
Biogeosciences, 17, 2219–2244, https://doi.org/10.5194/bg-17-2219-2020, https://doi.org/10.5194/bg-17-2219-2020, 2020
Short summary
Short summary
In glacial periods, ocean uptake of carbon is likely a key player for achieving low atmospheric CO2. In climate models, ocean biological uptake of carbon (C) and phosphorus (P) are often assumed to occur in fixed proportions.
In this study, we allow the ratio of C : P to vary and simulate, to first approximation, the complex biological changes that occur in the ocean over long timescales. We show here that, for glacial–interglacial cycles, this complexity contributes to low atmospheric CO2.
Yoshiki Kanzaki, Bernard P. Boudreau, Sandra Kirtland Turner, and Andy Ridgwell
Geosci. Model Dev., 12, 4469–4496, https://doi.org/10.5194/gmd-12-4469-2019, https://doi.org/10.5194/gmd-12-4469-2019, 2019
Short summary
Short summary
This paper provides eLABS, an extension of the lattice-automaton bioturbation simulator LABS. In our new model, the benthic animal behavior interacts and changes dynamically with oxygen and organic matter concentrations and the water flows caused by benthic animals themselves, in a 2-D marine-sediment grid. The model can address the mechanisms behind empirical observations of bioturbation based on the interactions between physical, chemical and biological aspects of marine sediment.
Jamie D. Wilson, Stephen Barker, Neil R. Edwards, Philip B. Holden, and Andy Ridgwell
Biogeosciences, 16, 2923–2936, https://doi.org/10.5194/bg-16-2923-2019, https://doi.org/10.5194/bg-16-2923-2019, 2019
Short summary
Short summary
The remains of plankton rain down from the surface ocean to the deep ocean, acting to store CO2 in the deep ocean. We used a model of biology and ocean circulation to explore the importance of this process in different regions of the ocean. The amount of CO2 stored in the deep ocean is most sensitive to changes in the Southern Ocean. As plankton in the Southern Ocean are likely those most impacted by future climate change, the amount of CO2 they store in the deep ocean could also be affected.
Krista M. S. Kemppinen, Philip B. Holden, Neil R. Edwards, Andy Ridgwell, and Andrew D. Friend
Clim. Past, 15, 1039–1062, https://doi.org/10.5194/cp-15-1039-2019, https://doi.org/10.5194/cp-15-1039-2019, 2019
Short summary
Short summary
We simulate the Last Glacial Maximum atmospheric CO2 decrease with a large ensemble of parameter sets to investigate the range of possible physical and biogeochemical Earth system changes accompanying the CO2 decrease. Amongst the dominant ensemble changes is an increase in terrestrial carbon, which we attribute to a slower soil respiration rate, and the preservation of carbon by the LGM ice sheets. Further investigation into the role of terrestrial carbon is warranted.
Maria Grigoratou, Fanny M. Monteiro, Daniela N. Schmidt, Jamie D. Wilson, Ben A. Ward, and Andy Ridgwell
Biogeosciences, 16, 1469–1492, https://doi.org/10.5194/bg-16-1469-2019, https://doi.org/10.5194/bg-16-1469-2019, 2019
Short summary
Short summary
The paper presents a novel study based on the traits of shell size, calcification and feeding behaviour of two planktonic foraminifera life stages using modelling simulations. With the model, we tested the cost and benefit of calcification and explored how the interactions of planktonic foraminifera among other plankton groups influence their biomass under different environmental conditions. Our results provide new insights into environmental controls in planktonic foraminifera ecology.
Ben A. Ward, Jamie D. Wilson, Ros M. Death, Fanny M. Monteiro, Andrew Yool, and Andy Ridgwell
Geosci. Model Dev., 11, 4241–4267, https://doi.org/10.5194/gmd-11-4241-2018, https://doi.org/10.5194/gmd-11-4241-2018, 2018
Short summary
Short summary
A novel configuration of an Earth system model includes a diverse plankton community. The model – EcoGEnIE – is sufficiently complex to reproduce a realistic, size-structured plankton community, while at the same time retaining the efficiency to run to a global steady state (~ 10k years). The increased capabilities of EcoGEnIE will allow future exploration of ecological communities on much longer timescales than have so far been examined in global ocean models and particularly for past climate.
Tom Dunkley Jones, Hayley R. Manners, Murray Hoggett, Sandra Kirtland Turner, Thomas Westerhold, Melanie J. Leng, Richard D. Pancost, Andy Ridgwell, Laia Alegret, Rob Duller, and Stephen T. Grimes
Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, https://doi.org/10.5194/cp-14-1035-2018, 2018
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is a transient global warming event associated with a doubling of atmospheric carbon dioxide concentrations. Here we document a major increase in sediment accumulation rates on a subtropical continental margin during the PETM, likely due to marked changes in hydro-climates and sediment transport. These high sedimentation rates persist through the event and may play a key role in the removal of carbon from the atmosphere by the burial of organic carbon.
Dominik Hülse, Sandra Arndt, Stuart Daines, Pierre Regnier, and Andy Ridgwell
Geosci. Model Dev., 11, 2649–2689, https://doi.org/10.5194/gmd-11-2649-2018, https://doi.org/10.5194/gmd-11-2649-2018, 2018
Short summary
Short summary
We present a 1-D analytical diagenetic model resolving organic matter (OM) cycling and the associated biogeochemical dynamics in marine sediments designed to be coupled to Earth system models (ESMs). The reaction network accounts for the most important reactions associated with OM dynamics. The coupling is described and the OM degradation rate constant is tuned. Various observations, such as pore water profiles, sediment water interface fluxes and OM content, are reproduced with good accuracy.
Malin Ödalen, Jonas Nycander, Kevin I. C. Oliver, Laurent Brodeau, and Andy Ridgwell
Biogeosciences, 15, 1367–1393, https://doi.org/10.5194/bg-15-1367-2018, https://doi.org/10.5194/bg-15-1367-2018, 2018
Short summary
Short summary
We conclude that different initial states for an ocean model result in different capacities for ocean carbon storage due to differences in the ocean circulation state and the origin of the carbon in the initial ocean carbon reservoir. This could explain why it is difficult to achieve comparable responses of the ocean carbon system in model inter-comparison studies in which the initial states vary between models. We show that this effect of the initial state is quantifiable.
Natalie S. Lord, Michel Crucifix, Dan J. Lunt, Mike C. Thorne, Nabila Bounceur, Harry Dowsett, Charlotte L. O'Brien, and Andy Ridgwell
Clim. Past, 13, 1539–1571, https://doi.org/10.5194/cp-13-1539-2017, https://doi.org/10.5194/cp-13-1539-2017, 2017
Short summary
Short summary
We present projections of long-term changes in climate, produced using a statistical emulator based on climate data from a state-of-the-art climate model. We use the emulator to model changes in temperature and precipitation over the late Pliocene (3.3–2.8 million years before present) and the next 200 thousand years. The impact of the Earth's orbit and the atmospheric carbon dioxide concentration on climate is assessed, and the data for the late Pliocene are compared to proxy temperature data.
Taraka Davies-Barnard, Andy Ridgwell, Joy Singarayer, and Paul Valdes
Clim. Past, 13, 1381–1401, https://doi.org/10.5194/cp-13-1381-2017, https://doi.org/10.5194/cp-13-1381-2017, 2017
Short summary
Short summary
We present the first model analysis using a fully coupled dynamic atmosphere–ocean–vegetation GCM over the last 120 kyr that quantifies the net effect of vegetation on climate. This analysis shows that over the whole period the biogeophysical effect (albedo, evapotranspiration) is dominant, and that the biogeochemical impacts may have a lower possible range than typically estimated. This emphasises the temporal reliance of the balance between biogeophysical and biogeochemical effects.
J. D. Wilson, A. Ridgwell, and S. Barker
Biogeosciences, 12, 5547–5562, https://doi.org/10.5194/bg-12-5547-2015, https://doi.org/10.5194/bg-12-5547-2015, 2015
Short summary
Short summary
We explore whether ocean model transport rates, in the form of a transport matrix, can be used to estimate remineralisation rates from dissolved nutrient concentrations and infer vertical fluxes of particulate organic carbon. Estimated remineralisation rates are significantly sensitive to uncertainty in the observations and the modelled circulation. The remineralisation of dissolved organic matter is an additional source of uncertainty when inferring vertical fluxes from remineralisation rates.
N. S. Jones, A. Ridgwell, and E. J. Hendy
Biogeosciences, 12, 1339–1356, https://doi.org/10.5194/bg-12-1339-2015, https://doi.org/10.5194/bg-12-1339-2015, 2015
Short summary
Short summary
Production of calcium carbonate by coral reefs is important in the global carbon cycle. Using a global framework we evaluate four models of reef calcification against observed values. The temperature-only model showed significant skill in reproducing coral calcification rates. The absence of any predictive power for whole reef systems highlights the importance of coral cover and the need for an ecosystem modelling approach accounting for population dynamics in terms of mortality and recruitment.
R. Death, J. L. Wadham, F. Monteiro, A. M. Le Brocq, M. Tranter, A. Ridgwell, S. Dutkiewicz, and R. Raiswell
Biogeosciences, 11, 2635–2643, https://doi.org/10.5194/bg-11-2635-2014, https://doi.org/10.5194/bg-11-2635-2014, 2014
G. Colbourn, A. Ridgwell, and T. M. Lenton
Geosci. Model Dev., 6, 1543–1573, https://doi.org/10.5194/gmd-6-1543-2013, https://doi.org/10.5194/gmd-6-1543-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
P. B. Holden, N. R. Edwards, S. A. Müller, K. I. C. Oliver, R. M. Death, and A. Ridgwell
Biogeosciences, 10, 1815–1833, https://doi.org/10.5194/bg-10-1815-2013, https://doi.org/10.5194/bg-10-1815-2013, 2013
Related subject area
Earth System Science/Response to Global Change: Models, Geological History
Variable C∕P composition of organic production and its effect on ocean carbon storage in glacial-like model simulations
Improving global paleogeography since the late Paleozoic using paleobiology
A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin
A framework for benchmarking land models
Evolution of ancient Lake Ohrid: a tectonic perspective
Malin Ödalen, Jonas Nycander, Andy Ridgwell, Kevin I. C. Oliver, Carlye D. Peterson, and Johan Nilsson
Biogeosciences, 17, 2219–2244, https://doi.org/10.5194/bg-17-2219-2020, https://doi.org/10.5194/bg-17-2219-2020, 2020
Short summary
Short summary
In glacial periods, ocean uptake of carbon is likely a key player for achieving low atmospheric CO2. In climate models, ocean biological uptake of carbon (C) and phosphorus (P) are often assumed to occur in fixed proportions.
In this study, we allow the ratio of C : P to vary and simulate, to first approximation, the complex biological changes that occur in the ocean over long timescales. We show here that, for glacial–interglacial cycles, this complexity contributes to low atmospheric CO2.
Wenchao Cao, Sabin Zahirovic, Nicolas Flament, Simon Williams, Jan Golonka, and R. Dietmar Müller
Biogeosciences, 14, 5425–5439, https://doi.org/10.5194/bg-14-5425-2017, https://doi.org/10.5194/bg-14-5425-2017, 2017
Short summary
Short summary
We present a workflow to link paleogeographic maps to alternative plate tectonic models, alleviating the problem that published global paleogeographic maps are generally presented as static maps and tied to a particular plate model. We further develop an approach to improve paleogeography using paleobiology. The resulting paleogeographies are consistent with proxies of eustatic sea level change since ~400 Myr ago. We make the digital global paleogeographic maps available as an open resource.
D. Archer
Biogeosciences, 12, 2953–2974, https://doi.org/10.5194/bg-12-2953-2015, https://doi.org/10.5194/bg-12-2953-2015, 2015
Short summary
Short summary
Methane hydrate may be stable at the base of the permafrost zone in sediments of the Siberian continental margin, but the sediments' depth below the sea floor precludes a fast response time (order 1-10 years) that would be required for the released methane to have a significant impact on the near-term evolution of Earth's climate. However, the Arctic could amplify anthropogenic climate change by releasing carbon on timescales of centuries or millennia.
Y. Q. Luo, J. T. Randerson, G. Abramowitz, C. Bacour, E. Blyth, N. Carvalhais, P. Ciais, D. Dalmonech, J. B. Fisher, R. Fisher, P. Friedlingstein, K. Hibbard, F. Hoffman, D. Huntzinger, C. D. Jones, C. Koven, D. Lawrence, D. J. Li, M. Mahecha, S. L. Niu, R. Norby, S. L. Piao, X. Qi, P. Peylin, I. C. Prentice, W. Riley, M. Reichstein, C. Schwalm, Y. P. Wang, J. Y. Xia, S. Zaehle, and X. H. Zhou
Biogeosciences, 9, 3857–3874, https://doi.org/10.5194/bg-9-3857-2012, https://doi.org/10.5194/bg-9-3857-2012, 2012
N. Hoffmann, K. Reicherter, T. Fernández-Steeger, and C. Grützner
Biogeosciences, 7, 3377–3386, https://doi.org/10.5194/bg-7-3377-2010, https://doi.org/10.5194/bg-7-3377-2010, 2010
Cited articles
Amachi, S., Kawaguchi, N., Muramatsu, Y., Tsuchiya, S., Watanabe, Y., Shinoyama, H., and Fujii, T.: Dissimilatory iodate reduction by marine Pseudomonas sp. strain SCT, Appl. Environ. Microb., 73, 5725–5730, https://doi.org/10.1128/AEM.00241-07, 2007.
Boscolo-Galazzo, F., Crichton, K. A., Ridgwell, A., Mawbey, E. M., Wade, B. S., and Pearson, P. N.: Temperature controls carbon cycling and biological evolution in the ocean twilight zone, Science, 371, 1148–1152, https://doi.org/10.1126/science.abb6643, 2021.
Bowman, C. N., Lindskog, A., Kozik, N. P., Richbourg, C. G., Owens, J. D., and Young, S. A.: Integrated sedimentary, biotic, and paleoredox dynamics from multiple localities in southern Laurentia during the late Silurian (Ludfordian) extinction event, Palaeogeogr. Palaeocl., 553, 109799, https://doi.org/10.1016/j.palaeo.2020.109799, 2020.
Broecker, W. S. and Peng, T. H.: Tracers in the Sea, New York, Lamont-Doherty Geological Observatory, p. 27, https://doi.org/10.1016/0016-7037(83)90075-3, 1983.
Campos, M. L. A. M., Farrenkopf, A. M., Jickells, T. D., and Luther, G. W.: A comparison of dissolved iodine cycling at the Bermuda Atlantic Time-series station and Hawaii Ocean Time-series station, Deep-Sea Res. Pt. II, 43, 455–466, https://doi.org/10.1016/0967-0645(95)00100-x, 1996.
Chance, R., Weston, K., Baker, A. R., Hughes, C., Malin, G., Carpenter, L., Meredith, M. P., Clarke, A., Jickells, T. D., Mann, P., and Rossetti, H.: Seasonal and interannual variation of dissolved iodine speciation at a coastal Antarctic site, Mar. Chem., 118, 171–181, https://doi.org/10.1016/j.marchem.2009.11.009, 2010.
Chance, R., Baker, A. R., Carpenter, L., and Jickells, T. D.: The distribution of iodide at the sea surface, Environ. Sci. Process. Impacts, 16, 1841–1859, https://doi.org/10.1039/c4em00139g, 2014.
Chance, R., Tinel, L., Sherwen, T., Baker, A., Bell, T., Brindle, J., Campos, M., Croot, P., Ducklow, H., He, P., Hoogakker, B., Hopkins, F., Hughes, C., Jickells, T., Loades, D., Reyes Macaya, D., Mahajan, A., Malin, G., Phillips, D., Sinha, A., Sarkar, A., Roberts, I., Roy, R., Song, X., Winklebauer, H., Wuttig, K., Yang, M., Zhou, P., and Carpenter, L.: Global sea-surface iodide observations, 1967–2018, Sci. Data 6, 286, https://doi.org/10.5285/7e77d6b9-83fb-41e0-e053-6c86abc069d0, 2019.
Chapman, P.: Changes in iodine speciation in the Benguela current upwelling system, Deep-Sea Res. Pt. I, 30, 1247–1259, https://doi.org/10.1016/0198-0149(83)90083-3, 1983.
Councell, T. B., Landa, E. R., and Lovley, D. R.: Microbial reduction of iodate, Water. Air. Soil Pollut., 100, 99–106, 1997.
Crichton, K. A., Wilson, J. D., Ridgwell, A., and Pearson, P. N.: Calibration of temperature-dependent ocean microbial processes in the cGENIE.muffin (v0.9.13) Earth system model, Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, 2021.
Cutter, G. A., Moffett, J. G., Nielsdóttir, M. C., and Sanial, V.: Multiple oxidation state trace elements in suboxic waters off Peru: In situ redox processes and advective/diffusive horizontal transport, Mar. Chem., 201, 77–89, https://doi.org/10.1016/j.marchem.2018.01.003, 2018.
Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N. P., Ulloa, O., Canfield, D. E., and Delong, E. F.: Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off Northern Chile, MBio, 5, 1–14, https://doi.org/10.1128/mBio.01966-14, 2014.
Ding, Y., Sun, W., Liu, S., Xie, J., Tang, D., Zhou, X., Zhou, L., Li, Z., Song, J., Li, Z., Xu, H., Tang, P., Liu, K., Li, W., and Chen, D.: Low oxygen levels with high redox heterogeneity in the late Ediacaran shallow ocean: Constraints from I/(Ca + Mg) and Ce/Ce* of the Dengying Formation, South China, Geobiology, 20, 790–809, https://doi.org/10.1111/gbi.12520, 2022.
Edwards, A. and Truesdale, V. W.: Regeneration of inorganic iodine species in loch etive, a natural leaky incubator, Estuar. Coast. Shelf Sci., 45, 357–366, https://doi.org/10.1006/ecss.1996.0185, 1997.
Edwards, C. T., Fike, D. A., Saltzman, M. R., Lu, W., and Lu, Z.: Evidence for local and global redox conditions at an Early Ordovician (Tremadocian) mass extinction, Earth Planet. Sc. Lett., 481, 125–135, https://doi.org/10.1016/j.epsl.2017.10.002, 2018.
Edwards, N. R. and Marsh, R.: Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model, Clim. Dynam., 24, 415–433, https://doi.org/10.1007/s00382-004-0508-8, 2005.
Elderfield, H. and Truesdale, V. W.: On the biophilic nature of iodine in seawater, Earth Planet. Sc. Lett., 50, 105–114, https://doi.org/10.1016/0012-821X(80)90122-3, 1980.
Fang, H., Tang, D., Shi, X., Zhou, L., Zhou, X., Wu, M., Song, H., and Riding, R.: Early Mesoproterozoic Ca-carbonate precipitates record fluctuations in shallow marine oxygenation, Precambrian Res., 373, 106630, https://doi.org/10.1016/j.precamres.2022.106630, 2022.
Farrenkopf, A. M. and Luther, G. W.: Iodine chemistry reflects productivity and denitrification in the Arabian Sea: Evidence for flux of dissolved species from sediments of western India into the OMZ, Deep-Sea Res. Pt. II, 49, 2303–2318, https://doi.org/10.1016/S0967-0645(02)00038-3, 2002.
Farrenkopf, A. M., Dollhopf, M. E., Chadhain, S. N., Luther, G. W., and Nealson, K. H.: Reduction of iodate in seawater during Arabian Sea shipboard incubations and in laboratory cultures of the marine bacterium Shewanella putrefaciens strain MR-4, Mar. Chem., 57, 347–354, https://doi.org/10.1016/S0304-4203(97)00039-X, 1997.
Fennel, K., Follows, M., and Falkowski, P. G.: The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic ocean, Am. J. Sci., 305, 526–545, 2005.
Garcia, H. E., Weathers, K., Paver, C. R., Smolyar, I., Boyer, T. P., Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D., and Reagan, J. R.: Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation, edited by: Mishonov, A., NOAA Atlas NESDIS 83, World Ocean Atlas 2018, 38 pp., 2018.
Hardisty, D. S., Lu, Z., Planavsky, N. J., Bekker, A., Philippot, P., Zhou, X., and Lyons, T. W.: An iodine record of Paleoproterozoic surface ocean oxygenation, Geology, 42, 619–622, https://doi.org/10.1130/G35439.1, 2014.
Hardisty, D. S., Lu, Z., Bekker, A., Diamond, C. W., Gill, B. C., Jiang, G., Kah, L. C., Knoll, A. H., Loyd, S. J., Osburn, M. R., Planavsky, N. J., Wang, C., Zhou, X., and Lyons, T. W.: Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate, Earth Planet. Sc. Lett., 463, 159–170, https://doi.org/10.1016/j.epsl.2017.01.032, 2017.
Hardisty, D. S., Horner, T. J., Wankel, S. D., Blusztajn, J., and Nielsen, S. G.: Experimental observations of marine iodide oxidation using a novel sparge-interface MC-ICP-MS technique, Chem. Geol., 532, 119360, https://doi.org/10.1016/j.chemgeo.2019.119360, 2020.
Hardisty, D. S., Horner, T. J., Evans, N., Moriyasu, R., Babbin, A. R., Wankel, S. D., Moffett, J. W., and Nielsen, S. G.: Limited iodate reduction in shipboard seawater incubations from the Eastern Tropical North Pacific oxygen deficient zone, Earth Planet. Sc. Lett., 554, 116676, https://doi.org/10.1016/j.epsl.2020.116676, 2021.
Hashim, M. S., Burke, J. E., Hardisty, D. S., and Kaczmarek, S. E.: Iodine incorporation into dolomite: Experimental constraints and implications for the iodine redox proxy and Proterozoic Ocean, Geochim. Cosmochim. Ac., 338, 365–381, https://doi.org/10.1016/j.gca.2022.10.027, 2022.
He, P., Hou, X., and Aldahan, A.: Iodine isotopes species fingerprinting environmental conditions in surface water along the northeastern Atlantic Ocean, Sci. Rep.-UK, 3, 1–9, https://doi.org/10.1038/srep02685, 2013.
Hepach, H., Hughes, C., Hogg, K., Collings, S., and Chance, R.: Senescence as the main driver of iodide release from a diverse range of marine phytoplankton, Biogeosciences, 17, 2453–2471, https://doi.org/10.5194/bg-17-2453-2020, 2020.
Holden, P. B., Edwards, N. R., Fraedrich, K., Kirk, E., Lunkeit, F., and Zhu, X.: PLASIM–GENIE v1.0: a new intermediate complexity AOGCM, Geosci. Model Dev., 9, 3347–3361, https://doi.org/10.5194/gmd-9-3347-2016, 2016.
Hughes, C., Barton, E., Hepach, H., Chance, R., Wadley, M. R., Pickering, M. D., Hogg, K., Pommerening-r, A., Stevens, D. P., and Jickells, T. D.: Oxidation of iodide to iodate by cultures of marine ammonia-oxidising bacteria, Mar. Chem., 234, 1–7, https://doi.org/10.1016/j.marchem.2021.104000, 2021.
Hülse, D., Arndt, S., and Ridgwell, A.: Mitigation of Extreme Ocean Anoxic Event Conditions by Organic Matter Sulfurization, Paleoceanogr. Paleocl., 34, 476–489, https://doi.org/10.1029/2018PA003470, 2019.
Jiang, Z., Cui, M., Qian, L., Jiang, Y., Shi, L., Dong, Y., Li, J., and Wang, Y.: Abiotic and Biotic Reduction of Iodate Driven by Shewanella oneidensis MR-1, Environ. Sci. Technol., 57, 19817–19826, https://doi.org/10.1021/acs.est.3c06490, 2023.
Jia-zhong, Z. and Whitfield, M.: KINETICS OF INORGANIC REDOX REACTIONS IN SEAWATER I. The reduction of iodate by bisulphide Micro-organisms play a dominant role in the diagenesis of organic-rich sediments, The oxidative breakdown of the organic matter, with the accompanying reductio, Science, 19, 121–137, 1986.
Keery, J. S., Holden, P. B., and Edwards, N. R.: Sensitivity of the Eocene climate to CO2 and orbital variability, Clim. Past, 14, 215–238, https://doi.org/10.5194/cp-14-215-2018, 2018.
Kerisit, S. N., Smith, F. N., Saslow, S. A., Hoover, M. E., Lawter, A. R., and Qafoku, N. P.: Incorporation Modes of Iodate in Calcite, Environ. Sci. Technol., 52, 5902–5910, https://doi.org/10.1021/acs.est.8b00339, 2018.
Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H., and James J McCarthy: Temperature effects on export production in the open ocean, Global Biogeochem. Cy., 14, 1231–1246, 2000.
Liu, A., Tang, D., Shi, X., Zhou, X., Zhou, L., Shang, M., Li, Y., and Fang, H.: Mesoproterozoic oxygenated deep seawater recorded by early diagenetic carbonate concretions from the Member IV of the Xiamaling Formation, North China, Precambrian Res., 341, 105667, https://doi.org/10.1016/j.precamres.2020.105667, 2020.
Lu, W., Ridgwell, A., Thomas, E., Hardisty, D. S., Luo, G., Algeo, T. J., Saltzman, M. R., Gill, B. C., Shen, Y., Ling, H. F., Edwards, C. T., Whalen, M. T., Zhou, X., Gutchess, K. M., Jin, L., Rickaby, R. E. M., Jenkyns, H. C., Lyons, T. W., Lenton, T. M., Kump, L. R., and Lu, Z.: Late inception of a resiliently oxygenated upper ocean, Science, 361, 174–177, https://doi.org/10.1126/science.aar5372, 2018.
Lu, W., Rickaby, R. E. M., Hoogakker, B. A. A., Rathburn, A. E., Burkett, A. M., Dickson, A. J., Martínez-Méndez, G., Hillenbrand, C. D., Zhou, X., Thomas, E., and Lu, Z.: I Ca in epifaunal benthic foraminifera: A semi-quantitative proxy for bottom water oxygen in a multi-proxy compilation for glacial ocean deoxygenation, Earth Planet. Sc. Lett., 533, 116055, https://doi.org/10.1016/j.epsl.2019.116055, 2020a.
Lu, W., Dickson, A. J., Thomas, E., Rickaby, R. E. M., Chapman, P., and Lu, Z.: Refining the planktic foraminiferal I Ca proxy: Results from the Southeast Atlantic Ocean, Geochim. Cosmochim. Ac., 287, 318–327, https://doi.org/10.1016/j.gca.2019.10.025, 2020b.
Lu, Z., Jenkyns, H. C., and Rickaby, R. E. M.: Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events, Geology, 38, 1107–1110, https://doi.org/10.1130/G31145.1, 2010.
Lu, Z., Hoogakker, B. A. A., Hillenbrand, C.-D., Zhou, X., Thomas, E., Gutchess, K. M., Lu, W., Jones, L., and Rickaby, R. E. M.: Oxygen depletion recorded in upper waters of the glacial Southern Ocean, Nat. Commun., 7, 1–8, https://doi.org/10.1038/ncomms11146, 2016.
Luther, G. W.: Review on the physical chemistry of iodine transformations in the oceans, Front. Mar. Sci., 10, 1–16, https://doi.org/10.3389/fmars.2023.1085618, 2023.
Luther, G. W. and Campbell, T.: Iodine speciation in the water column of the Black Sea, Deep-Sea Res. Pt. I, 38, S875–S882, https://doi.org/10.1016/s0198-0149(10)80014-7, 1991.
Luther, G. W., Wu, J., and Cullen, J. B.: Redox Chemistry of Iodine in Seawater, Adv. Chem., 244, 135–155, 1995.
Luther, W.: Iodine Chemistry in the Water the Chesapeake Bay: Evidence Iodine Forms Column of for Organic, Esruarine, Coast. Shelf Sci., 32, 267–279, 1991.
Marsh, R., Müller, S. A., Yool, A., and Edwards, N. R.: Incorporation of the C-GOLDSTEIN efficient climate model into the GENIE framework: ”eb_go_gs” configurations of GENIE, Geosci. Model Dev., 4, 957–992, https://doi.org/10.5194/gmd-4-957-2011, 2011.
Martin, T. S., Primeau, F., and Casciotti, K. L.: Modeling oceanic nitrate and nitrite concentrations and isotopes using a 3-D inverse N cycle model, Biogeosciences, 16, 347–367, https://doi.org/10.5194/bg-16-347-2019, 2019.
Matsumoto, K.: Radiocarbon-based circulation age of the world oceans, J. Geophys. Res.-Oceans, 112, 1–7, https://doi.org/10.1029/2007JC004095, 2007.
Monteiro, F. M., Pancost, R. D., Ridgwell, A., and Donnadieu, Y.: Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic event (OAE2): Model-data comparison, Paleoceanography, 27, 1–17, https://doi.org/10.1029/2012PA002351, 2012.
Moriyasu, R., Evans, N., Bolster, K. M., Hardisty, D. S., and Moffett, J. W.: The Distribution and Redox Speciation of Iodine in the Eastern Tropical North Pacific Ocean, Global Biogeochem. Cy., 34, 1–23, https://doi.org/10.1029/2019GB006302, 2020.
Moriyasu, R., Bolster, K. M., Hardisty, D. S., Kadko, D. C., Stephens, M. P., and Moffett, J. W.: Meridional survey of the Central Pacific reveals iodide accumulation in equatorial surface waters and benthic sources in the abyssal plain, Global Biogeochem. Cy., 37, 1–15, https://doi.org/10.1029/2021GB007300, 2023.
Panchuk, K., Ridgwell, A., and Kump, L. R.: Sedimentary response to Paleocene-Eocene thermal maximum carbon release: A model-data comparison, Geology, 36, 315–318, https://doi.org/10.1130/G24474A.1, 2008.
Podder, J., Lin, J., Sun, W., Botis, S. M., Tse, J., Chen, N., Hu, Y., Li, D., Seaman, J., and Pan, Y.: Iodate in calcite and vaterite: Insights from synchrotron X-ray absorption spectroscopy and first-principles calculations, Geochim. Cosmochim. Ac., 198, 218–228, https://doi.org/10.1016/j.gca.2016.11.032, 2017.
Pohl, A., Lu, Z., Lu, W., Stockey, R. G., Elrick, M., Li, M., Desrochers, A., Shen, Y., He, R., Finnegan, S., and Ridgwell, A.: Vertical decoupling in Late Ordovician anoxia due to reorganization of ocean circulation, Nat. Geosci., 14, 868–873, https://doi.org/10.1038/s41561-021-00843-9, 2021.
Pohl, A., Ridgwell, A., Stockey, R. G., Thomazo, C., Keane, A., Vennin, E., and Scotese, C. R.: Continental configuration controls ocean oxygenation during the Phanerozoic, Nature, 608, 523–527, https://doi.org/10.1038/s41586-022-05018-z, 2022.
Rapp, I., Schlosser, C., Menzel Barraqueta, J.-L., Wenzel, B., Lüdke, J., Scholten, J., Gasser, B., Reichert, P., Gledhill, M., Dengler, M., and Achterberg, E. P.: Controls on redox-sensitive trace metals in the Mauritanian oxygen minimum zone, Biogeosciences, 16, 4157–4182, https://doi.org/10.5194/bg-16-4157-2019, 2019.
Rapp, I., Schlosser, C., Browning, T. J., Wolf, F., Le Moigne, F. A. C., Gledhill, M., and Achterberg, E. P.: El Niño-Driven Oxygenation Impacts Peruvian Shelf Iron Supply to the South Pacific Ocean, Geophys. Res. Lett., 47, 1–10, https://doi.org/10.1029/2019GL086631, 2020.
Reinhard, C. T. and Planavsky, N. J.: The History of Ocean Oxygenation, Annu. Rev. Mar. Sci., 14, 331–353, https://doi.org/10.1146/annurev-marine-031721-104005, 2022.
Reinhard, C. T., Planavsky, N. J., Olson, S. L., Lyons, T. W., and Erwin, D. H.: Earth's oxygen cycle and the evolution of animal life, P. Natl. Acad. Sci. USA, 113, 8933–8938, https://doi.org/10.1073/pnas.1521544113, 2016.
Reinhard, C. T., Olson, S. L., Kirtland Turner, S., Pälike, C., Kanzaki, Y., and Ridgwell, A.: Oceanic and atmospheric methane cycling in the cGENIE Earth system model – release v0.9.14, Geosci. Model Dev., 13, 5687–5706, https://doi.org/10.5194/gmd-13-5687-2020, 2020.
Remmelzwaal, S. R. C., Dixon, S., Parkinson, I. J., Schmidt, D. N., Monteiro, F. M., Sexton, P., Fehr, M. A., Peacock, C., Donnadieu, Y., and James, R. H.: Investigating Ocean Deoxygenation During the PETM Through the Cr Isotopic Signature of Foraminifera, Paleoceanogr. Paleocl., 34, 917–929, https://doi.org/10.1029/2018PA003372, 2019.
Reyes-Umana, V., Henning, Z., Lee, K., Barnum, T. P., and Coates, J. D.: Genetic and phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential niches across the world's oceans, ISME J., 16, 38–49, https://doi.org/10.1038/s41396-021-01034-5, 2021.
Ridgwell, A., Hargreaves, J. C., Edwards, N. R., Annan, J. D., Lenton, T. M., Marsh, R., Yool, A., and Watson, A.: Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling, Biogeosciences, 4, 87–104, https://doi.org/10.5194/bg-4-87-2007, 2007.
Ridgwell, A., Reinhard, C., van de Velde, S., Adloff, M., Monteiro, F., Xinyi Liu, C., Vervoort, P., Kanzaki, Y., Ward, B., Hülse, D., Wilson, J., InkyANB, Kirtland Turner, S., and Li, M.: derpycode/cgenie.muffin: v0.9.54 (v0.9.54), Zenodo [code], https://doi.org/10.5281/zenodo.13376310, 2024a.
Ridgwell, A., Hülse, D., Peterson, C., Ward, B., Ted, evansmn, and Jones, R.: derpycode/muffindoc: v0.24-574-NSF (v0.24-574-NSF), Zenodo [code], https://doi.org/10.5281/zenodo.13377225, 2024b.
Rue, E. L., Smith, G. J., Cutter, G. A., and Bruland, K. W.: The response of trace element redox couples to suboxic conditions in the water column, Deep-Sea Res. Pt. I, 44, 113–134, https://doi.org/10.1016/S0967-0637(96)00088-X, 1997.
Schnur, A. A., Sutherland, K. M., Hansel, C. M., and Hardisty, D. S.: Rates and pathways of iodine speciation transformations at the Bermuda Atlantic Time Series, Front. Mar. Sci., 10, 1–14, https://doi.org/10.3389/fmars.2023.1272870, 2024.
Scholz, F., Hardisty, D. S., and Dale, A. W.: Early Diagenetic Controls on Sedimentary Iodine Release and Iodine-To-Organic Carbon Ratios in the Paleo-Record, Global Biogeochem. Cy., 38, e2023GB007919, https://doi.org/10.1029/2023GB007919, 2024.
Shang, M., Tang, D., Shi, X., Zhou, L., Zhou, X., Song, H., and Jiang, G.: A pulse of oxygen increase in the early Mesoproterozoic ocean at ca. 1.57–1.56 Ga, Earth Planet. Sc. Lett., 527, 115797, https://doi.org/10.1016/j.epsl.2019.115797, 2019.
Ştreangã, I.-M., Repeta, D. J., Blusztajn, J. S., and Horner, T. J.: Speciation and cycling of iodine in the subtropical North Paci fi c Ocean, Front. Mar. Sci., 10, 1272968, https://doi.org/10.3389/fmars.2023.1272968, 2024.
Tang, D., Fang, H., Shi, X., Liang, L., Zhou, L., Xie, B., Huang, K., Zhou, X., Wu, M., and Riding, R.: Mesoproterozoic Molar Tooth Structure Related to Increased Marine Oxygenation, J. Geophys. Res.-Biogeo., 128, 1–18, https://doi.org/10.1029/2022jg007077, 2023.
Thamdrup, B., Dalsgaard, T., and Revsbech, N. P.: Widespread functional anoxia in the oxygen minimum zone of the Eastern South Pacific, Deep-Sea Res. Pt. I, 65, 36–45, https://doi.org/10.1016/j.dsr.2012.03.001, 2012.
Truesdale, V. W., Bale, A. J., and Woodward, E. M. S.: The meridional distribution of dissolved iodine in near-surface waters of the Atlantic Ocean, Prog. Oceanogr., 45, 387–400, https://doi.org/10.1016/S0079-6611(00)00009-4, 2000.
Truesdale, V. W., Watts, S. F., and Rendell, A. R.: On the possibility of iodide oxidation in the near-surface of the Black Sea and its implications to iodine in the general ocean, Deep-Sea Res. Pt. I, 48, 2397–2412, 2001.
Truesdale, V. W., Nausch, G., and Waite, T. J.: The effects of the 2001 Barotropic intrusion of bottom-water upon the vertical distribution of inorganic iodine in the Gotland Deep, Cont. Shelf Res., 55, 155–167, https://doi.org/10.1016/j.csr.2013.01.005, 2013.
Tsunogai, S.: Iodine in the deep water of the ocean, Deep-Sea Res., 18, 913–919, 1971.
Uahengo, C. I., Shi, X., Jiang, G., and Vatuva, A.: Transient shallow-ocean oxidation associated with the late Ediacaran Nama skeletal fauna: Evidence from iodine contents of the Lower Nama Group, southern Namibia, Precambrian Res., 343, 105732, https://doi.org/10.1016/j.precamres.2020.105732, 2020.
Wadley, M. R., Stevens, D. P., Jickells, T. D., Hughes, C., Chance, R., Hepach, H., Tinel, L., and Carpenter, L. J.: A Global Model for Iodine Speciation in the Upper Ocean, Global Biogeochem. Cy., 34, e2019GB006467, https://doi.org/10.1029/2019GB006467, 2020.
Watterson, I. G.: Non-dimensional measures of climate model performance, Int. J. Climatol., 16, 379–391, https://doi.org/10.1002/(SICI)1097-0088(199604)16:4<379::AID-JOC18>3.0.CO;2-U, 1996.
Wei, B., Tang, D., Shi, X., Lechte, M., Zhou, L., Zhou, X., and Song, H.: A Pulsed Oxygenation in Terminal Paleoproterozoic Ocean: Evidence From the Transition Between the Chuanlinggou and Tuanshanzi Formations, North China, Geochem. Geophy. Geosy., 22, 1–23, https://doi.org/10.1029/2020GC009612, 2021.
Wong, G. T. F. and Brewer, P. G.: The marine chemistry of iodine in anoxic basins, Geochim. Cosmochim. Ac., 41, 151–159, https://doi.org/10.1016/0016-7037(77)90195-8, 1977.
Wong, G. T. F., Takayanagi, K., and Todd, J. F.: Dissolved iodine in waters overlying and in the Orca Basin, Gulf of Mexico, Mar. Chem., 17, 177–183, https://doi.org/10.1016/0304-4203(85)90072-6, 1985.
Wong, G. T. F., Piumsomboon, A. U., Dunstan, W. M., Wong, G. T. F., Piumsomboon, A. U., and Dunstan, W. M.: The transformation of iodate to iodide in marine phytoplankton cultures, Mar. Geol. Prog. Ser., 237, 27–39, 2002.
Yamazaki, C., Kashiwa, S., Horiuchi, A., and Kasahara, Y.: A novel dimethylsulfoxide reductase family of molybdenum enzyme, Idr, is involved in iodate respiration by Pseudomonas sp. SCT, Environ. Microbiol., 22, 2196–2212, https://doi.org/10.1111/1462-2920.14988, 2020.
Yu, Y., Chen, Y., Li, D., and Su, J.: A transient oxygen increase in the Mesoproterozoic ocean at ∼1.44 Ga: Geochemical evidence from the Tieling Formation, North China Platform, Precambrian Res., 369, 106527, https://doi.org/10.1016/j.precamres.2021.106527, 2022.
Zhang, S., Xu, C., Creeley, D., Ho, Y. F., Li, H. P., Grandbois, R., Schwehr, K. A., Kaplan, D. I., Yeager, C. M., Wellman, D., and Santschi, P. H.: Response to comment on “iodine-129 and iodine-127 speciation in groundwater at hanford site, U.S.: Iodate incorporation into calcite”, Environ. Sci. Technol., 47, 13205–13206, https://doi.org/10.1021/es4046132, 2013.
Zhou, X., Thomas, E., Rickaby, R. E. M., Winguth, A. M. E., and Lu, Z.: I Ca evidence for upper ocean deoxygenation during the PETM, Paleoceanography, 29, 964–975, https://doi.org/10.1002/2014PA002702, 2014.
Zhou, X., Jenkyns, H. C., Owens, J. D., Junium, C. K., Zheng, X. Y., Sageman, B. B., Hardisty, D. S., Lyons, T. W., Ridgwell, A., and Lu, Z.: Upper ocean oxygenation dynamics from I Ca ratios during the Cenomanian-Turonian OAE 2, Paleoceanography, 30, 510–526, https://doi.org/10.1002/2014PA002741, 2015.
Žic, V., Cariæ, M., and Cigleneèki, I.: The impact of natural water column mixing on iodine and nutrient speciation in a eutrophic anchialine pond (Rogoznica Lake, Croatia), Estuar. Coast. Shelf Sci., 133, 260–272, https://doi.org/10.1016/j.ecss.2013.09.008, 2013.
Short summary
The carbonate paleoredox proxy, I / Ca, has shown its potential to quantify the redox change in the past ocean, which is of broad importance for understanding climate change and evolution. Here, we tuned and optimized the marine iodine cycling embedded in an Earth system model, “cGENIE”, against modern ocean observations and then tested its ability to estimate I / Ca in the Cretaceous ocean. Our study implies cGENIE’s potential to quantify redox change in the past using the I / Ca proxy.
The carbonate paleoredox proxy, I / Ca, has shown its potential to quantify the redox change in...
Altmetrics
Final-revised paper
Preprint