Articles | Volume 21, issue 22
https://doi.org/10.5194/bg-21-5117-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-5117-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drought conditions disrupt atmospheric carbon uptake in a Mediterranean saline lake
Ihab Alfadhel
Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
Instituto del Agua, Granada, Universidad de Granada, Granada, Spain
Ignacio Peralta-Maraver
CORRESPONDING AUTHOR
Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
Research Unit Modeling Nature (MNat), Universidad de Granada, Granada, Spain
Isabel Reche
Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
Instituto del Agua, Granada, Universidad de Granada, Granada, Spain
Research Unit Modeling Nature (MNat), Universidad de Granada, Granada, Spain
Enrique P. Sánchez-Cañete
Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA), Universidad de Granada, Granada, Spain
Departamento de Física Aplicada, Universidad de Granada, Granada, Spain
Sergio Aranda-Barranco
Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA), Universidad de Granada, Granada, Spain
Eva Rodríguez-Velasco
Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
Instituto del Agua, Granada, Universidad de Granada, Granada, Spain
Research Unit Modeling Nature (MNat), Universidad de Granada, Granada, Spain
Andrew S. Kowalski
Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA), Universidad de Granada, Granada, Spain
Departamento de Física Aplicada, Universidad de Granada, Granada, Spain
Penélope Serrano-Ortiz
CORRESPONDING AUTHOR
Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA), Universidad de Granada, Granada, Spain
Related authors
No articles found.
Andrew S. Kowalski
EGUsphere, https://doi.org/10.5194/egusphere-2025-2814, https://doi.org/10.5194/egusphere-2025-2814, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This manuscript demonstrates that a mass-based (inertial) framework is essential to the correct definition of diffusive transport, and therefore for defining Ficks first law. It invalidates the molar-based framework used by Roderick and Shakespeare (2025) to identify the contribution of the Soret effect (mass transport due to a temperature gradient) to open-water evaporation.
Andrew S. Kowalski, Ivan A. Janssens, and Óscar Pérez-Priego
EGUsphere, https://doi.org/10.5194/egusphere-2025-2695, https://doi.org/10.5194/egusphere-2025-2695, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Humidification of air reduces the abundances of dry-air gas components such as oxygen, explaining why tropical humidity can be "stifling". This is overlooked due to the common expression of gas concentrations as fractions of dry air. Such neglect of water vapour also masks the key role of its sources and sinks in activating transport mechanisms of other gases. Humidity should be quantified whenever reporting gas concentrations.
Juliette Bernard, Elodie Salmon, Marielle Saunois, Shushi Peng, Penélope Serrano-Ortiz, Antoine Berchet, Palingamoorthy Gnanamoorthy, Joachim Jansen, and Philippe Ciais
Geosci. Model Dev., 18, 863–883, https://doi.org/10.5194/gmd-18-863-2025, https://doi.org/10.5194/gmd-18-863-2025, 2025
Short summary
Short summary
Despite their importance, uncertainties remain in the evaluation of the drivers of temporal variability of methane emissions from wetlands on a global scale. Here, a simplified global model is developed, taking advantage of advances in remote-sensing data and in situ observations. The model reproduces the large spatial and temporal patterns of emissions, albeit with limitations in the tropics due to data scarcity. This model, while simple, can provide valuable insights into sensitivity analyses.
Andrew S. Kowalski
Biogeosciences, 22, 785–789, https://doi.org/10.5194/bg-22-785-2025, https://doi.org/10.5194/bg-22-785-2025, 2025
Short summary
Short summary
The laws of physics show that leaf oxygen is not photosynthetically enriched but extremely dilute due to the overwhelming effects of humidification. This challenges the prevailing diffusion-only paradigm regarding leaf gas exchanges because non-diffusive transport is required. Such transport also explains why fluxes of carbon dioxide and water vapour become decoupled at very high temperatures, as has been observed but not explained by plant physiologists.
Sergio Aranda-Barranco, Penélope Serrano-Ortiz, Andrew S. Kowalski, and Enrique P. Sánchez-Cañete
SOIL, 11, 213–232, https://doi.org/10.5194/soil-11-213-2025, https://doi.org/10.5194/soil-11-213-2025, 2025
Short summary
Short summary
This study investigated soil respiration and the main factors involved in a semi-arid environment (olive grove). For this purpose, 1 year's worth of automatic multi-chamber measurements was used, accompanied by ecosystem respiration data obtained using the eddy covariance technique. The soil respiration annual balance, Q10 parameter, rain pulses, and spatial and temporal variability of soil respiration are presented in this paper.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Liliana Scapucci, Ankit Shekhar, Sergio Aranda-Barranco, Anastasiia Bolshakova, Lukas Hörtnagl, Mana Gharun, and Nina Buchmann
Biogeosciences, 21, 3571–3592, https://doi.org/10.5194/bg-21-3571-2024, https://doi.org/10.5194/bg-21-3571-2024, 2024
Short summary
Short summary
Forests face increased exposure to “compound soil and atmospheric drought” (CSAD) events due to global warming. We examined the impacts and drivers of CO2 fluxes during CSAD events at multiple layers of a deciduous forest over 18 years. Results showed reduced net ecosystem productivity and forest-floor respiration during CSAD events, mainly driven by soil and atmospheric drought. This unpredictability in forest CO2 fluxes jeopardises reforestation projects aimed at mitigating CO2 emissions.
Lukas Strebel, Heye Bogena, Harry Vereecken, Mie Andreasen, Sergio Aranda-Barranco, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 28, 1001–1026, https://doi.org/10.5194/hess-28-1001-2024, https://doi.org/10.5194/hess-28-1001-2024, 2024
Short summary
Short summary
We present results from using soil water content measurements from 13 European forest sites in a state-of-the-art land surface model. We use data assimilation to perform a combination of observed and modeled soil water content and show the improvements in the representation of soil water content. However, we also look at the impact on evapotranspiration and see no corresponding improvements.
Elizabeth León-Palmero, Alba Contreras-Ruiz, Ana Sierra, Rafael Morales-Baquero, and Isabel Reche
Biogeosciences, 17, 3223–3245, https://doi.org/10.5194/bg-17-3223-2020, https://doi.org/10.5194/bg-17-3223-2020, 2020
Short summary
Short summary
CH4 emissions from reservoirs are responsible for the majority of the climatic forcing of these ecosystems. The origin of the recurrent CH4 supersaturation in oxic waters is still controversial. We found that the dissolved CH4 concentration varied by up to 4 orders of magnitude in the water column of 12 reservoirs and was consistently supersaturated. Our findings suggest that photosynthetic picoeukaryotes can play a significant role in determining CH4 concentration in oxic waters.
Gema L. Batanero, Andy J. Green, Juan A. Amat, Marion Vittecoq, Curtis A. Suttle, and Isabel Reche
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-60, https://doi.org/10.5194/bg-2020-60, 2020
Manuscript not accepted for further review
Short summary
Short summary
Coastal wetlands provide ecosystem services such as a reduction in nitrogen inputs into coastal waters and storage organic carbon. The rise of sea level will salinize many coastal wetlands. Here, we analyzed the abundance of prokaryotes and the heterotrophic production of bacteria and archaea in wetlands from the Mediterranean coast. We observed a switch from bacterial-dominated production to archaeal-dominated production with increases of anthropogenic nitrogen inputs and salinity.
Andrew S. Kowalski
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-195, https://doi.org/10.5194/hess-2018-195, 2018
Preprint withdrawn
Short summary
Short summary
This technical note derives the additional specific energy of evaporation, beyond the latent heat of vaporization, as the work done against ambient pressure when water expands from the liquid to the gas phase. The derivation yields a simple function of the virtual temperature, and corrects for a systematic 3–4 % underestimation of the energy required to evaporate water into the Earth's atmosphere.
Ana López-Ballesteros, Cecilio Oyonarte, Andrew S. Kowalski, Penélope Serrano-Ortiz, Enrique P. Sánchez-Cañete, M. Rosario Moya, and Francisco Domingo
Biogeosciences, 15, 263–278, https://doi.org/10.5194/bg-15-263-2018, https://doi.org/10.5194/bg-15-263-2018, 2018
Andrew S. Kowalski
Atmos. Chem. Phys., 17, 8177–8187, https://doi.org/10.5194/acp-17-8177-2017, https://doi.org/10.5194/acp-17-8177-2017, 2017
Short summary
Short summary
An analysis based on physical conservation law demonstrates that surface–atmosphere exchanges include a non-diffusive component. This implies the need to revise flux gradient relationships including eddy diffusivities in micrometeorology and stomatal conductances in plant physiology.
E. P. Sánchez-Cañete, A. S. Kowalski, P. Serrano-Ortiz, O. Pérez-Priego, and F. Domingo
Biogeosciences, 10, 6591–6600, https://doi.org/10.5194/bg-10-6591-2013, https://doi.org/10.5194/bg-10-6591-2013, 2013
M. Roland, P. Serrano-Ortiz, A. S. Kowalski, Y. Goddéris, E. P. Sánchez-Cañete, P. Ciais, F. Domingo, S. Cuezva, S. Sanchez-Moral, B. Longdoz, D. Yakir, R. Van Grieken, J. Schott, C. Cardell, and I. A. Janssens
Biogeosciences, 10, 5009–5017, https://doi.org/10.5194/bg-10-5009-2013, https://doi.org/10.5194/bg-10-5009-2013, 2013
Related subject area
Biogeochemistry: Greenhouse Gases
Observations of methane net sinks in the upland Arctic tundra
Intercomparison of biogenic CO2 flux models in four urban parks in the city of Zurich
CO2 flux characteristics of the open savanna and its response to environmental factors in the dry–hot valley of Jinsha River, China
Rising Arctic seas and thawing permafrost: uncovering the carbon cycle impact in a thermokarst lagoon system in the outer Mackenzie Delta, Canada
Modelling decadal trends and the impact of extreme events on carbon fluxes in a temperate deciduous forest using a terrestrial biosphere model
Surface CO2 gradients challenge conventional CO2 emission quantification in lentic water bodies under calm conditions
Spatiotemporal variability of CO2, N2O and CH4 fluxes from a semi-deciduous tropical forest soil in the Congo Basin
Organic soil carbon balance in drained and undrained hemiboreal forests
Eddy-covariance fluxes of CO2, CH4 and N2O in a drained peatland forest after clear-cutting
Eddy covariance evaluation of ecosystem fluxes at a temperate saltmarsh in Victoria, Australia, shows large CO2 uptake
Interferences caused by the biogeochemical methane cycle in peats during the assessment of abandoned oil wells
Carbon sequestration in different urban vegetation types in Southern Finland
Groundwater-CO2 Emissions Relationship in Dutch Peatlands Derived by Machine Learning Using Airborne and Ground-Based Eddy Covariance Data
Proglacial methane emissions driven by meltwater and groundwater flushing in a high-Arctic glacial catchment
Technical Note: Pondi – a low-cost logger for long-term monitoring of methane, carbon dioxide, and nitrous oxide in aquatic and terrestrial systems
Seasonal and interannual variability in CO2 fluxes in southern Africa seen by GOSAT
Environmental drivers constraining the seasonal variability of satellite-observed methane at Northern high latitudes
Water chemistry and greenhouse gas concentrations in waterbodies of a thawing permafrost peatland complex in northern Norway
Air temperature and precipitation constraining the modelled wetland methane emissions in a boreal region in northern Europe
Ensemble estimates of global wetland methane emissions over 2000–2020
Seasonal carbon fluxes from vegetation and soil in a Mediterranean non-tidal salt marsh
Explainable machine learning for modeling of net ecosystem exchange in boreal forests
Dynamics of CO2 and CH4 fluxes in Red Sea mangrove soils
Inferring methane emissions from African livestock by fusing drone, tower, and satellite data
Nitrous oxide (N2O) in Macquarie Harbour, Tasmania
Technical note: A low-cost, automatic soil–plant–atmosphere enclosure system to investigate CO2 and evapotranspiration flux dynamics
Reviews and syntheses: Contribution of sulfate to methane oxidation in upland soils: a mini-review
Tidal influence on carbon dioxide and methane fluxes from tree stems and soils in mangrove forests
Physicochemical perturbation increases nitrous oxide production from denitrification in soils and sediments
Uncertainties in carbon emissions from land use and land cover change in Indonesia
Carbon degradation and mobilisation potentials of thawing permafrost peatlands in northern Norway inferred from laboratory incubations
Saturating response of photosynthesis to increasing leaf area index allows selective harvest of trees without affecting forest productivity
Seasonal dynamics and regional distribution patterns of CO2 and CH4 in the north-eastern Baltic Sea
Interannual and seasonal variability of the air–sea CO2 exchange at Utö in the coastal region of the Baltic Sea
CO2 emissions of drained coastal peatlands in the Netherlands and potential emission reduction by water infiltration systems
Influence of wind strength and direction on diffusive methane fluxes and atmospheric methane concentrations above the North Sea
Using eddy covariance observations to determine the carbon sequestration characteristics of subalpine forests in the Qinghai–Tibet Plateau
Isotopomer labeling and oxygen dependence of hybrid nitrous oxide production
The emission of CO from tropical rainforest soils
Modelling CO2 and N2O emissions from soils in silvopastoral systems of the West African Sahelian band
A case study on topsoil removal and rewetting for paludiculture: effect on biogeochemistry and greenhouse gas emissions from Typha latifolia, Typha angustifolia, and Azolla filiculoides
Methane, carbon dioxide and nitrous oxide emissions from two clear-water and two turbid-water urban ponds in Brussels (Belgium)
Assessing improvements in global ocean pCO2 machine learning reconstructions with Southern Ocean autonomous sampling
Timescale dependence of airborne fraction and underlying climate–carbon-cycle feedbacks for weak perturbations in CMIP5 models
Technical note: Preventing CO2 overestimation from mercuric or copper(II) chloride preservation of dissolved greenhouse gases in freshwater samples
Exploring temporal and spatial variation of nitrous oxide flux using several years of peatland forest automatic chamber data
Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany
Regional assessment and uncertainty analysis of carbon and nitrogen balances at cropland scale using the ecosystem model LandscapeDNDC
Resolving heterogeneous fluxes from tundra halves the growing season carbon budget
Lawns and meadows in urban green space – a comparison from perspectives of greenhouse gases, drought resilience and plant functional types
Antonio Donateo, Daniela Famulari, Donato Giovannelli, Arturo Mariani, Mauro Mazzola, Stefano Decesari, and Gianluca Pappaccogli
Biogeosciences, 22, 2889–2908, https://doi.org/10.5194/bg-22-2889-2025, https://doi.org/10.5194/bg-22-2889-2025, 2025
Short summary
Short summary
This study focuses on measurements of CO2 and CH4 turbulent fluxes in tundra ecosystems in the Svalbard islands over a 2-year period. Our results reveal dynamic interactions between climatic conditions and ecosystem activities such as photosynthesis and microbial activity. In summer, photosynthesis and microbial activity increase, leading to net carbon uptake and methane consumption. Wind influences soil drying and CH4 emissions. Thermal anomalies can reduce annual carbon uptake.
Stavros Stagakis, Dominik Brunner, Junwei Li, Leif Backman, Anni Karvonen, Lionel Constantin, Leena Järvi, Minttu Havu, Jia Chen, Sophie Emberger, and Liisa Kulmala
Biogeosciences, 22, 2133–2161, https://doi.org/10.5194/bg-22-2133-2025, https://doi.org/10.5194/bg-22-2133-2025, 2025
Short summary
Short summary
The balance between CO2 uptake and emissions from urban green areas is still not well understood. This study evaluated for the first time the urban park CO2 exchange simulations with four different types of biosphere model by comparing them with observations. Even though some advantages and disadvantages of the different model types were identified, there was no strong evidence that more complex models performed better than simple ones.
Chaolei Yang, Yufeng Tian, Jingqi Cui, Guangxiong He, Jingyuan Li, Canfeng Li, Haichuang Duan, Zong Wei, Liu Yan, Xin Xia, Yong Huang, Aihua Jiang, and Yuwen Feng
Biogeosciences, 22, 2097–2114, https://doi.org/10.5194/bg-22-2097-2025, https://doi.org/10.5194/bg-22-2097-2025, 2025
Short summary
Short summary
Due to the influence of extreme-drought events in southwest China, the carbon sequestration capacity of the open savanna in the dry–hot valley of the Jinsha River has been significantly diminished, with soil water content being the key environmental factor governing CO2 flux. Under the climate scenario where the frequency and severity of extreme droughts are expected to continue increasing, the CO2 emissions from the open savanna are also anticipated to rise persistently.
Maren Jenrich, Juliane Wolter, Susanne Liebner, Christian Knoblauch, Guido Grosse, Fiona Giebeler, Dustin Whalen, and Jens Strauss
Biogeosciences, 22, 2069–2086, https://doi.org/10.5194/bg-22-2069-2025, https://doi.org/10.5194/bg-22-2069-2025, 2025
Short summary
Short summary
Climate warming in the Arctic is causing the erosion of permafrost coasts and the transformation of permafrost lakes into lagoons. To understand how this affects greenhouse gas (GHG) emissions, we studied carbon dioxide (CO₂) and methane (CH₄) production in lagoons with varying sea connections. Younger lagoons produce more CH₄, while CO₂ increases under more marine conditions. Flooding of permafrost lowlands due to rising sea levels may lead to higher GHG emissions from Arctic coasts in future.
Tea Thum, Tuuli Miinalainen, Outi Seppälä, Holly Croft, Cheryl Rogers, Ralf Staebler, Silvia Caldararu, and Sönke Zaehle
Biogeosciences, 22, 1781–1807, https://doi.org/10.5194/bg-22-1781-2025, https://doi.org/10.5194/bg-22-1781-2025, 2025
Short summary
Short summary
Climate change has the potential to influence the carbon sequestration potential of terrestrial ecosystems, and here the nitrogen cycle is also important. We used the terrestrial biosphere model QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system) in a mixed deciduous forest in Canada. We investigated the usefulness of using the leaf area index and leaf chlorophyll content to improve the parameterization of the model. This work paves the way for using spaceborne observations in model parameterizations, also including information on the nitrogen cycle.
Patrick Aurich, Uwe Spank, and Matthias Koschorreck
Biogeosciences, 22, 1697–1709, https://doi.org/10.5194/bg-22-1697-2025, https://doi.org/10.5194/bg-22-1697-2025, 2025
Short summary
Short summary
Lakes can be sources and sinks of the greenhouse gas carbon dioxide. The gas exchange between the atmosphere and the water can be measured by taking gas samples from them. However, the depth of water samples is not well defined, which may cause errors. We hypothesized that gradients of CO2 concentrations develop under the surface when wind speeds are very low. Our measurements show that such a gradient can occur on calm nights, potentially shifting lakes from a CO2 sink to a source.
Roxanne Daelman, Marijn Bauters, Matti Barthel, Emmanuel Bulonza, Lodewijk Lefevre, José Mbifo, Johan Six, Klaus Butterbach-Bahl, Benjamin Wolf, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 22, 1529–1542, https://doi.org/10.5194/bg-22-1529-2025, https://doi.org/10.5194/bg-22-1529-2025, 2025
Short summary
Short summary
The increase in atmospheric concentrations of several greenhouse gases (GHGs) since 1750 is attributed to human activity. However, natural ecosystems, such as tropical forests, also contribute to GHG budgets. The Congo Basin hosts the second largest tropical forest and is understudied. In this study, measurements of soil GHG exchange were carried out during 16 months in a tropical forest in the Congo Basin. Overall, the soil acted as a major source of CO2 and N2O and a minor sink of CH4.
Aldis Butlers, Raija Laiho, Andis Lazdiņš, Thomas Schindler, Kaido Soosaar, Jyrki Jauhiainen, Arta Bārdule, Muhammad Kamil-Sardar, Ieva Līcīte, Valters Samariks, Andreas Haberl, Hanna Vahter, Dovilė Čiuldienė, Jani Anttila, and Kęstutis Armolaitis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1032, https://doi.org/10.5194/egusphere-2025-1032, 2025
Short summary
Short summary
A two-year study in Estonia, Latvia, and Lithuania evaluated the carbon balance of drained and undrained nutrient-rich forest organic soils, ranging from highly mineralized soils close to the threshold of organic soil definition to deep peat. The soils varied in pH, macronutrient levels, and C:N ratio, which contributed to the observed behavior of the soils demonstrating carbon sink and source dynamics under both drained and undrained conditions.
Olli-Pekka Tikkasalo, Olli Peltola, Pavel Alekseychik, Juha Heikkinen, Samuli Launiainen, Aleksi Lehtonen, Qian Li, Eduardo Martínez-García, Mikko Peltoniemi, Petri Salovaara, Ville Tuominen, and Raisa Mäkipää
Biogeosciences, 22, 1277–1300, https://doi.org/10.5194/bg-22-1277-2025, https://doi.org/10.5194/bg-22-1277-2025, 2025
Short summary
Short summary
The emissions of greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) were measured from a clear-cut peatland forest site. The measurements covered the whole year of 2022, which was the second growing season after the clear-cut. The site was a strong GHG source, and the highest emissions came from CO2, followed by N2O and CH4. A statistical model that included information on different surfaces at the site was developed to unravel surface-type-specific GHG fluxes.
Ruth Reef, Edoardo Daly, Tivanka Anandappa, Eboni-Jane Vienna-Hallam, Harriet Robertson, Matthew Peck, and Adrien Guyot
Biogeosciences, 22, 1149–1162, https://doi.org/10.5194/bg-22-1149-2025, https://doi.org/10.5194/bg-22-1149-2025, 2025
Short summary
Short summary
Studies show that saltmarshes excel at capturing carbon from the atmosphere. In this study, we measured CO2 flux in an Australian temperate saltmarsh on French Island. The temperate saltmarsh exhibited strong seasonality. During the warmer growing season, the saltmarsh absorbed 10.5 g CO2 m−2 on average daily from the atmosphere. Even in winter, when plants were dormant, it continued to be a CO2 sink, albeit a smaller one. Cool temperatures and high cloud cover inhibit carbon sequestration.
Sebastian F. A. Jordan, Stefan Schloemer, Martin Krüger, Tanja Heffner, Marcus A. Horn, and Martin Blumenberg
Biogeosciences, 22, 809–830, https://doi.org/10.5194/bg-22-809-2025, https://doi.org/10.5194/bg-22-809-2025, 2025
Short summary
Short summary
Using a multilayer approach, we studied the methane flux, soil gas composition, and isotopic signatures of soil methane and carbon dioxide at eight cut and buried abandoned oil wells in a peat-rich area of northern Germany. The detected methane emissions were of biogenic, peat origin and were not associated with the abandoned wells. Additional microbial analysis and methane oxidation rate measurements demonstrated a high methane emission mitigation potential in the studied peat soils.
Laura Thölix, Leif Backman, Minttu Havu, Esko Karvinen, Jesse Soininen, Justine Trémeau, Olli Nevalainen, Joyson Ahongshangbam, Leena Järvi, and Liisa Kulmala
Biogeosciences, 22, 725–749, https://doi.org/10.5194/bg-22-725-2025, https://doi.org/10.5194/bg-22-725-2025, 2025
Short summary
Short summary
Cities aim for carbon neutrality and seek to understand urban vegetation's role as a carbon sink. Direct measurements are challenging, so models are used to estimate the urban carbon cycle. We evaluated model performance at estimating carbon sequestration in lawns, park trees, and urban forests in Helsinki, Finland. Models captured seasonal and annual variations well. Trees had higher sequestration rates than lawns, and irrigation often enhanced carbon sinks.
Laura M. van der Poel, Laurent V. Bataille, Bart Kruijt, Wietse Franssen, Wilma Jans, Jan Biermann, Anne Rietman, Alex J. V. Buzacott, Ype van der Velde, Ruben Boelens, and Ronald W. A. Hutjes
EGUsphere, https://doi.org/10.5194/egusphere-2025-431, https://doi.org/10.5194/egusphere-2025-431, 2025
Short summary
Short summary
We combine two types of carbon dioxide (CO2) data from Dutch peatlands in a machine learning model: from fixed measurement towers and from a light research aircraft. We find that emissions increase with deeper water table depths (WTD) by 4.6 tonnes CO2 per hectare per year, per 10 cm deeper WTD on average. The effect is stronger in winter than in summer and varies between locations. This variability should be taken into account when developing mitigation measures.
Gabrielle E. Kleber, Leonard Magerl, Alexandra V. Turchyn, Stefan Schloemer, Mark Trimmer, Yizhu Zhu, and Andrew Hodson
Biogeosciences, 22, 659–674, https://doi.org/10.5194/bg-22-659-2025, https://doi.org/10.5194/bg-22-659-2025, 2025
Short summary
Short summary
Our research on Svalbard shows that glacier melt rivers can transport large amounts of methane, a potent greenhouse gas. By studying a glacier over one summer, we found that its river was highly concentrated in methane, suggesting that rivers could provide a significant source of methane emissions as the Arctic warms and glaciers melt. This is the first time such emissions have been measured on Svalbard, indicating a wider environmental concern as such processes are occurring across the Arctic.
Martino E. Malerba, Blake Edwards, Lukas Schuster, Omosalewa Odebiri, Josh Glen, Rachel Kelly, Paul Phan, Alistair Grinham, and Peter I. Macreadie
EGUsphere, https://doi.org/10.31219/osf.io/54rd2, https://doi.org/10.31219/osf.io/54rd2, 2025
Short summary
Short summary
The Pondi is a cost-effective, lightweight logger designed for long-term monitoring of carbon dioxide, methane, and nitrous oxide emissions in both terrestrial and aquatic ecosystems. It addresses key challenges in greenhouse gas monitoring by providing an automated, low-cost, solar-powered solution with cloud connectivity and real-time analytics. Its robust design enables deployment in diverse environmental conditions, supporting large-scale, high-resolution emission assessments.
Eva-Marie Metz, Sanam Noreen Vardag, Sourish Basu, Martin Jung, and André Butz
Biogeosciences, 22, 555–584, https://doi.org/10.5194/bg-22-555-2025, https://doi.org/10.5194/bg-22-555-2025, 2025
Short summary
Short summary
We estimate CO2 fluxes in semiarid southern Africa from 2009 to 2018 based on satellite CO2 measurements and atmospheric inverse modeling. By selecting process-based vegetation models, which agree with the satellite CO2 fluxes, we find that soil respiration mainly drives the seasonality, whereas photosynthesis substantially influences the interannual variability. Our study emphasizes the need for better representation of the response of semiarid ecosystems to soil rewetting in vegetation models.
Ella Kivimäki, Tuula Aalto, Michael Buchwitz, Kari Luojus, Jouni Pulliainen, Kimmo Rautiainen, Oliver Schneising, Anu-Maija Sundström, Johanna Tamminen, Aki Tsuruta, and Hannakaisa Lindqvist
EGUsphere, https://doi.org/10.5194/egusphere-2025-249, https://doi.org/10.5194/egusphere-2025-249, 2025
Short summary
Short summary
We investigate how environmental variables influencing natural methane fluxes explain the large-scale seasonal variability of satellite-observed methane at Northern high latitudes. Our findings show that soil moisture, snow cover, and soil temperature have the strongest influence, with snowmelt playing a surprisingly significant role, likely through soil isolation and wetting. This study highlights the value of multi-satellite observations for understanding large-scale wetland emissions.
Jacqueline Kay Knutson, François Clayer, Peter Dörsch, Sebastian Westermann, and Heleen A. de Wit
EGUsphere, https://doi.org/10.5194/egusphere-2025-184, https://doi.org/10.5194/egusphere-2025-184, 2025
Short summary
Short summary
Thawing permafrost at Iškoras in northern Norway is transforming peat plateaus into thermokarst ponds and wetlands. These small ponds show striking oversaturation of dissolved greenhouse gases like carbon dioxide (CO2) and methane (CH4), partly due to organic matter processing. Streams nearby emit CO2 driven by turbulence. As permafrost disappears, carbon dynamics will change, potentially increasing emissions of CH4. This study highlights the need to integrate these changes into climate models.
Tuula Aalto, Aki Tsuruta, Jarmo Mäkelä, Jurek Müller, Maria Tenkanen, Eleanor Burke, Sarah Chadburn, Yao Gao, Vilma Mannisenaho, Thomas Kleinen, Hanna Lee, Antti Leppänen, Tiina Markkanen, Stefano Materia, Paul A. Miller, Daniele Peano, Olli Peltola, Benjamin Poulter, Maarit Raivonen, Marielle Saunois, David Wårlind, and Sönke Zaehle
Biogeosciences, 22, 323–340, https://doi.org/10.5194/bg-22-323-2025, https://doi.org/10.5194/bg-22-323-2025, 2025
Short summary
Short summary
Wetland methane responses to temperature and precipitation were studied in a boreal wetland-rich region in northern Europe using ecosystem models, atmospheric inversions, and upscaled flux observations. The ecosystem models differed in their responses to temperature and precipitation and in their seasonality. However, multi-model means, inversions, and upscaled fluxes had similar seasonality, and they suggested co-limitation by temperature and precipitation.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Lorena Carrasco-Barea, Dolors Verdaguer, Maria Gispert, Xavier D. Quintana, Hélène Bourhis, and Laura Llorens
Biogeosciences, 22, 289–304, https://doi.org/10.5194/bg-22-289-2025, https://doi.org/10.5194/bg-22-289-2025, 2025
Short summary
Short summary
Carbon dioxide fluxes have been measured seasonally in four plant species in a Mediterranean non-tidal salt marsh, highlighting the high carbon removal potential that these species have. Carbon dioxide and methane emissions from soil showed high variability among the habitats studied, and they were generally higher than those observed in tidal salt marshes. Our results are important for making more accurate predictions regarding carbon emissions from these ecosystems.
Ekaterina Ezhova, Topi Laanti, Anna Lintunen, Pasi Kolari, Tuomo Nieminen, Ivan Mammarella, Keijo Heljanko, and Markku Kulmala
Biogeosciences, 22, 257–288, https://doi.org/10.5194/bg-22-257-2025, https://doi.org/10.5194/bg-22-257-2025, 2025
Short summary
Short summary
Machine learning (ML) models are gaining popularity in biogeosciences. They are applied as gap-filling methods and used to upscale carbon fluxes to larger areas. Here we use explainable artificial intelligence (XAI) methods to elucidate the performance of machine learning models for carbon dioxide fluxes in boreal forests. We show that statistically equal models treat input variables differently. XAI methods can help scientists make informed decisions when applying ML models in their research.
Jessica Breavington, Alexandra Steckbauer, Chuancheng Fu, Mongi Ennasri, and Carlos M. Duarte
Biogeosciences, 22, 117–134, https://doi.org/10.5194/bg-22-117-2025, https://doi.org/10.5194/bg-22-117-2025, 2025
Short summary
Short summary
Mangrove carbon storage in the Red Sea is lower than average due to challenging growth conditions. We collected mangrove soil cores over multiple seasons to measure greenhouse gas (GHG) flux of carbon dioxide and methane. GHG emissions are a small offset to mangrove carbon storage overall but punctuated by periods of high emission. This variation is linked to environmental and soil properties, which were also measured. The findings aid understanding of GHG dynamics in arid mangrove ecosystems.
Alouette van Hove, Kristoffer Aalstad, Vibeke Lind, Claudia Arndt, Vincent Odongo, Rodolfo Ceriani, Francesco Fava, John Hulth, and Norbert Pirk
EGUsphere, https://doi.org/10.5194/egusphere-2024-3994, https://doi.org/10.5194/egusphere-2024-3994, 2025
Short summary
Short summary
Research on methane emissions from African livestock is limited. We used a probabilistic method fusing drone and flux tower observations with an atmospheric model to estimate emissions from various herds. This approach proved robust under non-stationary wind conditions and effective in estimating emissions as low as 100 g h-1. We also detected herd locations using spectral anomalies in satellite data. Our approach can be used to estimate diverse sources, thereby improving emission inventories.
Johnathan Daniel Maxey, Neil D. Hartstein, Hermann W. Bange, and Moritz Müller
Biogeosciences, 21, 5613–5637, https://doi.org/10.5194/bg-21-5613-2024, https://doi.org/10.5194/bg-21-5613-2024, 2024
Short summary
Short summary
The distribution of N2O in fjord-like estuaries is poorly described in the Southern Hemisphere. Our study describes N2O distribution and its drivers in one such system in Macquarie Harbour, Tasmania. Water samples were collected seasonally in 2022 and 2023. Results show the system removes atmospheric N2O when river flow is high, whereas the system emits N2O when the river flow is low. N2O generated in basins is intercepted by the surface water and exported to the ocean during high river flow.
Wael Al Hamwi, Maren Dubbert, Jörg Schaller, Matthias Lück, Marten Schmidt, and Mathias Hoffmann
Biogeosciences, 21, 5639–5651, https://doi.org/10.5194/bg-21-5639-2024, https://doi.org/10.5194/bg-21-5639-2024, 2024
Short summary
Short summary
We present a fully automatic, low-cost soil–plant enclosure system to monitor CO2 and evapotranspiration fluxes within greenhouse experiments. It operates in two modes: independent, using low-cost sensors, and dependent, where multiple chambers connect to a single gas analyzer via a low-cost multiplexer. This system provides precise, accurate measurements and high temporal resolution, enabling comprehensive monitoring of plant–soil responses to various treatments and conditions.
Rui Su, Kexin Li, Nannan Wang, Fenghui Yuan, Ying Zhao, Yunjiang Zuo, Ying Sun, Liyuan He, Xiaofeng Xu, and Lihua Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3347, https://doi.org/10.5194/egusphere-2024-3347, 2024
Short summary
Short summary
This research examines the effect of sulfate on methane oxidation in soil, finding that sulfate may facilitate methane oxidation. Considering methane's role as a greenhouse gas and rising sulfate deposition, the study aims to predict changes in methane oxidation due to acid deposition. Future experiments will explore microbial mechanisms, as sulfate reduces methane emissions while enhancing its consumption, providing insights for mitigation strategies.
Zhao-Jun Yong, Wei-Jen Lin, Chiao-Wen Lin, and Hsing-Juh Lin
Biogeosciences, 21, 5247–5260, https://doi.org/10.5194/bg-21-5247-2024, https://doi.org/10.5194/bg-21-5247-2024, 2024
Short summary
Short summary
We measured CO2 and CH4 fluxes from mangrove stems and soils of Avicennia marina and Kandelia obovata during tidal cycles. Both stem types served as CO2 and CH4 sources, emitting less CH4 than soils, with no difference in CO2 flux. While A. marina stems showed increased CO2 fluxes from low to high tides, they acted as a CH4 sink before flooding and as a source after ebbing. However, K. obovata stems showed no flux pattern. This study highlights the need to consider tidal influence and species.
Nathaniel B. Weston, Cynthia Troy, Patrick J. Kearns, Jennifer L. Bowen, William Porubsky, Christelle Hyacinthe, Christof Meile, Philippe Van Cappellen, and Samantha B. Joye
Biogeosciences, 21, 4837–4851, https://doi.org/10.5194/bg-21-4837-2024, https://doi.org/10.5194/bg-21-4837-2024, 2024
Short summary
Short summary
Nitrous oxide (N2O) is a potent greenhouse and ozone-depleting gas produced largely from microbial nitrogen cycling processes, and human activities have resulted in increases in atmospheric N2O. We investigate the role of physical and chemical disturbances to soils and sediments in N2O production. We demonstrate that physicochemical perturbation increases N2O production, microbial community adapts over time, and initial perturbation appears to confer resilience to subsequent disturbance.
Ida Bagus Mandhara Brasika, Pierre Friedlingstein, Stephen Sitch, Michael O'Sullivan, Maria Carolina Duran-Rojas, Thais Michele Rosan, Kees Klein Goldewijk, Julia Pongratz, Clemens Schwingshackl, Louise P. Chini, and George C. Hurtt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3165, https://doi.org/10.5194/egusphere-2024-3165, 2024
Short summary
Short summary
Indonesia is 3 world's highest carbon emitter from land use change. However, there are uncertainties of the carbon emission of Indonesia that can be reduced with satellite-based datasets. But later, we found that the uncertainties are also caused by the difference of carbon pool in various models. Our best estimation of carbon emissions from land use change in Indonesia is 0.12 ± 0.02 PgC/yr with steady trend. This double when include peat fire and peat drainage emissions.
Sigrid Trier Kjær, Sebastian Westermann, Nora Nedkvitne, and Peter Dörsch
Biogeosciences, 21, 4723–4737, https://doi.org/10.5194/bg-21-4723-2024, https://doi.org/10.5194/bg-21-4723-2024, 2024
Short summary
Short summary
Permafrost peatlands are thawing due to climate change, releasing large quantities of carbon that degrades upon thawing and is released as CO2, CH4 or dissolved organic carbon (DOC). We incubated thawed Norwegian permafrost peat plateaus and thermokarst pond sediment found next to permafrost for up to 350 d to measure carbon loss. CO2 production was initially the highest, whereas CH4 production increased over time. The largest carbon loss was measured at the top of the peat plateau core as DOC.
Olivier Bouriaud, Ernst-Detlef Schulze, Konstantin Gregor, Issam Bourkhris, Peter Högberg, Roland Irslinger, Phillip Papastefanou, Julia Pongratz, Anja Rammig, Riccardo Valentini, and Christian Körner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3092, https://doi.org/10.5194/egusphere-2024-3092, 2024
Short summary
Short summary
The impact of harvesting on forests' carbon sink capacities is debated. One view is that their sink strength is resilient to harvesting, the other that it disrupts these capacities. Our work shows that leaf area index (LAI) has been overlooked in this discussion. We found that temperate forests' carbon uptake is largely insensitive to variations in LAI beyond about 4 m² m-², but that forests operate at higher levels.
Silvie Lainela, Erik Jacobs, Stella-Theresa Luik, Gregor Rehder, and Urmas Lips
Biogeosciences, 21, 4495–4519, https://doi.org/10.5194/bg-21-4495-2024, https://doi.org/10.5194/bg-21-4495-2024, 2024
Short summary
Short summary
We evaluate the variability of carbon dioxide and methane in the surface layer of the north-eastern basins of the Baltic Sea in 2018. We show that the shallower coastal areas have considerably higher spatial variability and seasonal amplitude of surface layer pCO2 and cCH4 than measured in the offshore areas of the Baltic Sea. Despite this high variability, caused mostly by coastal physical processes, the average annual air–sea CO2 fluxes differed only marginally between the sub-basins.
Martti Honkanen, Mika Aurela, Juha Hatakka, Lumi Haraguchi, Sami Kielosto, Timo Mäkelä, Jukka Seppälä, Simo-Matti Siiriä, Ken Stenbäck, Juha-Pekka Tuovinen, Pasi Ylöstalo, and Lauri Laakso
Biogeosciences, 21, 4341–4359, https://doi.org/10.5194/bg-21-4341-2024, https://doi.org/10.5194/bg-21-4341-2024, 2024
Short summary
Short summary
The exchange of CO2 between the sea and the atmosphere was studied in the Archipelago Sea, Baltic Sea, in 2017–2021, using an eddy covariance technique. The sea acted as a net source of CO2 with an average yearly emission of 27.1 gC m-2 yr-1, indicating that the marine ecosystem respired carbon that originated elsewhere. The yearly CO2 emission varied between 18.2–39.2 gC m-2 yr-1, mostly due to the yearly variation of ecosystem carbon uptake.
Ralf C. H. Aben, Daniël van de Craats, Jim Boonman, Stijn H. Peeters, Bart Vriend, Coline C. F. Boonman, Ype van der Velde, Gilles Erkens, and Merit van den Berg
Biogeosciences, 21, 4099–4118, https://doi.org/10.5194/bg-21-4099-2024, https://doi.org/10.5194/bg-21-4099-2024, 2024
Short summary
Short summary
Drained peatlands cause high CO2 emissions. We assessed the effectiveness of subsurface water infiltration systems (WISs) in reducing CO2 emissions related to increases in water table depth (WTD) on 12 sites for up to 4 years. Results show WISs markedly reduced emissions by 2.1 t CO2-C ha-1 yr-1. The relationship between the amount of carbon above the WTD and CO2 emission was stronger than the relationship between WTD and emission. Long-term monitoring is crucial for accurate emission estimates.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Niu Zhu, Jinniu Wang, Dongliang Luo, Xufeng Wang, Cheng Shen, and Ning Wu
Biogeosciences, 21, 3509–3522, https://doi.org/10.5194/bg-21-3509-2024, https://doi.org/10.5194/bg-21-3509-2024, 2024
Short summary
Short summary
Our study delves into the vital role of subalpine forests in the Qinghai–Tibet Plateau as carbon sinks in the context of climate change. Utilizing advanced eddy covariance systems, we uncover their significant carbon sequestration potential, observing distinct seasonal patterns influenced by temperature, humidity, and radiation. Notably, these forests exhibit robust carbon absorption, with potential implications for global carbon balance.
Colette L. Kelly, Nicole M. Travis, Pascale Anabelle Baya, Claudia Frey, Xin Sun, Bess B. Ward, and Karen L. Casciotti
Biogeosciences, 21, 3215–3238, https://doi.org/10.5194/bg-21-3215-2024, https://doi.org/10.5194/bg-21-3215-2024, 2024
Short summary
Short summary
Nitrous oxide, a potent greenhouse gas, accumulates in regions of the ocean that are low in dissolved oxygen. We used a novel combination of chemical tracers to determine how nitrous oxide is produced in one of these regions, the eastern tropical North Pacific Ocean. Our experiments showed that the two most important sources of nitrous oxide under low-oxygen conditions are denitrification, an anaerobic process, and a novel “hybrid” process performed by ammonia-oxidizing archaea.
Hella van Asperen, Thorsten Warneke, Alessandro Carioca de Araújo, Bruce Forsberg, Sávio José Filgueiras Ferreira, Thomas Röckmann, Carina van der Veen, Sipko Bulthuis, Leonardo Ramos de Oliveira, Thiago de Lima Xavier, Jailson da Mata, Marta de Oliveira Sá, Paulo Ricardo Teixeira, Julie Andrews de França e Silva, Susan Trumbore, and Justus Notholt
Biogeosciences, 21, 3183–3199, https://doi.org/10.5194/bg-21-3183-2024, https://doi.org/10.5194/bg-21-3183-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is regarded as an important indirect greenhouse gas. Soils can emit and take up CO, but, until now, uncertainty remains as to which process dominates in tropical rainforests. We present the first soil CO flux measurements from a tropical rainforest. Based on our observations, we report that tropical rainforest soils are a net source of CO. In addition, we show that valley streams and inundated areas are likely additional hot spots of CO in the ecosystem.
Yélognissè Agbohessou, Claire Delon, Manuela Grippa, Eric Mougin, Daouda Ngom, Espoir Koudjo Gaglo, Ousmane Ndiaye, Paulo Salgado, and Olivier Roupsard
Biogeosciences, 21, 2811–2837, https://doi.org/10.5194/bg-21-2811-2024, https://doi.org/10.5194/bg-21-2811-2024, 2024
Short summary
Short summary
Emissions of greenhouse gases in the Sahel are not well represented because they are considered weak compared to the rest of the world. However, natural areas in the Sahel emit carbon dioxide and nitrous oxides, which need to be assessed because of extended surfaces. We propose an assessment of such emissions in Sahelian silvopastoral systems and of how they are influenced by environmental characteristics. These results are essential to inform climate change strategies in the region.
Merit van den Berg, Thomas M. Gremmen, Renske J. E. Vroom, Jacobus van Huissteden, Jim Boonman, Corine J. A. van Huissteden, Ype van der Velde, Alfons J. P. Smolders, and Bas P. van de Riet
Biogeosciences, 21, 2669–2690, https://doi.org/10.5194/bg-21-2669-2024, https://doi.org/10.5194/bg-21-2669-2024, 2024
Short summary
Short summary
Drained peatlands emit 3 % of the global greenhouse gas emissions. Paludiculture is a way to reduce CO2 emissions while at the same time generating an income for landowners. The side effect is the potentially high methane emissions. We found very high methane emissions for broadleaf cattail compared with narrowleaf cattail and water fern. The rewetting was, however, effective to stop CO2 emissions for all species. The highest potential to reduce greenhouse gas emissions had narrowleaf cattail.
Thomas Bauduin, Nathalie Gypens, and Alberto V. Borges
EGUsphere, https://doi.org/10.5194/egusphere-2024-1315, https://doi.org/10.5194/egusphere-2024-1315, 2024
Short summary
Short summary
Greenhouse gases (GHG) emissions from ponds can vary depending on the state of ponds (clear-water with macrophytes or turbid-water with phytoplankton). We studied CO2, CH4, and N2O emissions in clear and turbid urban ponds (June 2021 to December 2023) in Brussels. We observed seasonal differences in methanogenesis pathways, in CH4 emissions between clear and turbid ponds, and annual differences in total emissions of GHG, likely from intense El Niño event in 2023.
Thea H. Heimdal, Galen A. McKinley, Adrienne J. Sutton, Amanda R. Fay, and Lucas Gloege
Biogeosciences, 21, 2159–2176, https://doi.org/10.5194/bg-21-2159-2024, https://doi.org/10.5194/bg-21-2159-2024, 2024
Short summary
Short summary
Measurements of ocean carbon are limited in time and space. Machine learning algorithms are therefore used to reconstruct ocean carbon where observations do not exist. Improving these reconstructions is important in order to accurately estimate how much carbon the ocean absorbs from the atmosphere. In this study, we find that a small addition of observations from the Southern Ocean, obtained by autonomous sampling platforms, could significantly improve the reconstructions.
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Biogeosciences, 21, 1923–1960, https://doi.org/10.5194/bg-21-1923-2024, https://doi.org/10.5194/bg-21-1923-2024, 2024
Short summary
Short summary
We study the timescale dependence of airborne fraction and underlying feedbacks by a theory of the climate–carbon system. Using simulations we show the predictive power of this theory and find that (1) this fraction generally decreases for increasing timescales and (2) at all timescales the total feedback is negative and the model spread in a single feedback causes the spread in the airborne fraction. Our study indicates that those are properties of the system, independently of the scenario.
François Clayer, Jan Erik Thrane, Kuria Ndungu, Andrew King, Peter Dörsch, and Thomas Rohrlack
Biogeosciences, 21, 1903–1921, https://doi.org/10.5194/bg-21-1903-2024, https://doi.org/10.5194/bg-21-1903-2024, 2024
Short summary
Short summary
Determination of dissolved greenhouse gas (GHG) in freshwater allows us to estimate GHG fluxes. Mercuric chloride (HgCl2) is used to preserve water samples prior to GHG analysis despite its environmental and health impacts and interferences with water chemistry in freshwater. Here, we tested the effects of HgCl2, two substitutes and storage time on GHG in water from two boreal lakes. Preservation with HgCl2 caused overestimation of CO2 concentration with consequences for GHG flux estimation.
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024, https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Short summary
Current and future nitrous oxide (N2O) emissions are difficult to estimate due to their high variability in space and time. Several years of N2O fluxes from drained boreal peatland forest indicate high importance of summer precipitation, winter temperature, and snow conditions in controlling annual N2O emissions. The results indicate increasing year-to-year variation in N2O emissions in changing climate with more extreme seasonal weather conditions.
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024, https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary
Short summary
We measured the emission of carbon dioxide (CO2) and methane (CH4) from different sites at the river Elbe in Germany over 3 days to find out what is more important for quantification: small-scale spatial variability or diurnal temporal variability. We found that CO2 emissions were very different between day and night, while CH4 emissions were more different between sites. Dried out river sediments contributed to CO2 emissions, while the side areas of the river were important CH4 sources.
Odysseas Sifounakis, Edwin Haas, Klaus Butterbach-Bahl, and Maria P. Papadopoulou
Biogeosciences, 21, 1563–1581, https://doi.org/10.5194/bg-21-1563-2024, https://doi.org/10.5194/bg-21-1563-2024, 2024
Short summary
Short summary
We performed a full assessment of the carbon and nitrogen cycles of a cropland ecosystem. An uncertainty analysis and quantification of all carbon and nitrogen fluxes were deployed. The inventory simulations include greenhouse gas emissions of N2O, NH3 volatilization and NO3 leaching from arable land cultivation in Greece. The inventory also reports changes in soil organic carbon and nitrogen stocks in arable soils.
Sarah M. Ludwig, Luke Schiferl, Jacqueline Hung, Susan M. Natali, and Roisin Commane
Biogeosciences, 21, 1301–1321, https://doi.org/10.5194/bg-21-1301-2024, https://doi.org/10.5194/bg-21-1301-2024, 2024
Short summary
Short summary
Landscapes are often assumed to be homogeneous when using eddy covariance fluxes, which can lead to biases when calculating carbon budgets. In this study we report eddy covariance carbon fluxes from heterogeneous tundra. We used the footprints of each flux observation to unmix the fluxes coming from components of the landscape. We identified and quantified hot spots of carbon emissions in the landscape. Accurately scaling with landscape heterogeneity yielded half as much regional carbon uptake.
Justine Trémeau, Beñat Olascoaga, Leif Backman, Esko Karvinen, Henriikka Vekuri, and Liisa Kulmala
Biogeosciences, 21, 949–972, https://doi.org/10.5194/bg-21-949-2024, https://doi.org/10.5194/bg-21-949-2024, 2024
Short summary
Short summary
We studied urban lawns and meadows in the Helsinki metropolitan area, Finland. We found that meadows are more resistant to drought events but that they do not increase carbon sequestration compared with lawns. Moreover, the transformation from lawns to meadows did not demonstrate any negative climate effects in terms of greenhouse gas emissions. Even though social and economic aspects also steer urban development, these results can guide planning to consider carbon-smart options.
Cited articles
Aho, K., Derryberry, D., and Peterson, T.: Model selection for ecologists: the worldviews of AIC and BIC, Ecology, 95, 631–636, https://doi.org/10.1890/13-1452.1, 2014.
Alfadhel, I., Peralta-Maraver, I., Reche, I., Sánchez-Cañete, E. P., Aranda-Barranco, S., Rodríguez-Velasco, E., Kowalski, A. S., and Serrano-Ortiz, P.: Data from: Drought disrupts atmospheric carbon uptake in a Mediterranean saline lake, Dryad [data set], https://doi.org/10.5061/dryad.r4xgxd2nn, 2024.
Anderson, L. G., Falck, E., Jones, E. P., Jutterström, S., and Swift, J. H.: Enhanced uptake of atmospheric CO2 during freezing of seawater: A field study in Storfjorden, Svalbard, J. Geophys. Res.-Oceans, 109, C06004, https://doi.org/10.1029/2003JC002120, 2024.
Anderson, N. J. and Stedmon, C. A.: The effect of evapoconcentration on dissolved organic carbon concentration and quality in lakes of SW Greenland, Freshwater Biol., 52, 280–289, https://doi.org/10.1111/j.1365-2427.2006.01688.x, 2007.
Aubinet, M., Vesala, T., and Papale, D.: Eddy covariance: A practical guide to measurement and data analysis, London, UK, Springer, 2012.
Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future, Glob. Change Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003.
Batanero, G. L., León-Palmero, E., Li, L., Green, A. J., Rendón-Martos, M., Suttle, C. A., and Reche, I.: Flamingos and drought as drivers of nutrients and microbial dynamics in a saline lake, Sci. Rep., 7, 12173, https://doi.org/10.1038/s41598-017-12462-9, 2017.
Batanero, G. L., Green, A. J., Amat, J. A., Vittecoq, M., Suttle, C. A., and Reche, I.: Patterns of microbial abundance and heterotrophic activity along nitrogen and salinity gradients in coastal wetlands, Aquat. Sci., 84, 22, https://doi.org/10.1007/s00027-022-00855-6, 2022.
Cardona, T., Shao, S., and Nixon, P. J: Enhancing photosynthesis in plants: the light reactions, Essays Biochem., 62, 85–94, https://doi.org/10.1042/EBC20170015, 2018.
Chen, W., Wolf, B., Zheng, X., Yao, Z., Butterbach-bahl, K., Brueggemann, N., Liu, C., Han, S., and Han, X.: Annual methane uptake by temperate semiarid steppes as regulated by stocking rates, aboveground plant biomass and topsoil air permeability, Glob. Change Biol., 17, 2803–2816, https://doi.org/10.1111/j.1365-2486.2011.02444.x , 2011.
Comín, F. A., Julia, R., Comin, M. P., and Plana, F.: Hydrogeochemistry of Lake Gallocanta (Aragón, NE Spain), in: Saline Lakes: Proceedings of the Fourth International Symposium on Athalassic (inland) Saline Lakes, held at Banyoles, Spain, May 1988, Springer, Netherlands, 51–66, 1990.
Deng, Y., Liu, Y., Dumont, M., and Conrad, R.: Salinity affects the composition of the aerobic methanotroph community in alkaline lake sediments from the Tibetan Plateau, Microb. Ecol., 73, 101–110, https://doi.org/10.1007/s00248-016-0879-5, 2017.
Duarte, C. M., Prairie, Y. T., Montes, C., Cole, J. J., Striegl, R., Melack, J., and Downing, J. A.: CO2 emissions from saline lakes: A global estimate of a surprisingly large flux, J. Geophys. Res.-Biogeo., 113, G04041, https://doi.org/10.1029/2007JG000637, 2008.
Eugster, H. P. and Hardie, L. A.: Saline lakes, in: Lakes: chemistry, geology, physics, New York, NY, Springer, New York, 237–293, 1978.
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burbaf, G., Ceulemansg, R., Clementh, R., Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N-O., Katul, G., Keronen, P., Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, J., Moors, E., Munger, J. W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling strategies for long term energy flux data sets, Agr. Forest Meteorol., 107, 71–77, https://doi.org/10.1016/S0168-1923(00)00235-5, 2001.
Feller, U.: Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts, J. Plant Physiol., 203, 84–94, https://doi.org/10.1016/j.jplph.2016.04.002, 2016.
Garcia, C. M. and Niell, F. X.: Burrowing beetles of the genus Bledius (Staphylinidae) as agents of bioturbation in the emergent areas and shores of an athalassic inland lake (Fuente de Piedra, southern of Spain), Hydrobiologia, 215, 163–173, https://doi.org/10.1007/BF00014719, 1991.
García, C. M. and Niell, F. X.: Seasonal change in a saline temporary lake (Fuente de Piedra, southern Spain), Hydrobiologia, 267, 211–223, https://doi.org/10.1007/BF00018803, 1993.
García, C. M., García-Ruiz, R., Rendón, M., Niell, F. X., and Lucena, J.: Hydrological cycle and interannual variability of the aquatic community in a temporary saline lake (Fuente de Piedra, Southern Spain), Hydrobiologia, 345, 131–141, https://doi.org/10.1023/A:1002983723725, 1997.
Golub, M., Koupaei-Abyazani, N., Vesala, T., Mammarella, I., Ojala, A., Bohrer, G., Weyhenmeyer, G. A., Blanken, P. D., Eugster, W., Koebsch, F., Chen, J., Czajkowski, K., Deshmukh, C., Guérin, F., Heiskanen, J., Humphreys, E., Jonsson, A., Karlsson, J., Kling, g., Lee, X., Liu, H., Lohila, A., Lundin, E., Morin, T., Podgrajsek, E., Provenzale, M., Rutgersson, A., Sachs, T., Sahlée, E., Serça, D., Shao, C., Spence, C., Strachan, I. B., Xiao, W., and Desai, A. R.: Diel, seasonal, and inter-annual variation in carbon dioxide effluxes from lakes and reservoirs, Environ. Res. Lett., 18, 034046, https://doi.org/10.1088/1748-9326/acb834, 2023.
Hammer, U. T: Saline lake ecosystems of the world, Springer Science and Business Media, 1986.
Hassani, A., Azapagic, A., D'Odorico, P., Keshmiri, A., and Shokri, N.: Desiccation crisis of saline lakes: A new decision-support framework for building resilience to climate change, Sci. Total Environ., 703, 134718, https://doi.org/10.1016/j.scitotenv.2019.134718, 2020.
Heiri, O., Lotter, A. F., and Lemcke, G.: Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results, J. Paleolimnol., 25, 101–110, https://doi.org/10.1023/A:1008119611481, 2001.
Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardón, M., Hopfensperger, K. N., Lamers, L. P. M., and Gell, P.: A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands, Ecosphere, 6, 1–43, https://doi.org/10.1890/ES14-00534.1, 2015.
Ho, A., Mo, Y., Lee, H. J., Sauheitl, L., Jia, Z., and Horn, M. A.: Effect of salt stress on aerobic methane oxidation and associated methanotrophs; a microcosm study of a natural community from a non-saline environment, Soil Biol. Biochem., 125, 210–214, https://doi.org/10.1016/j.soilbio.2018.07.013, 2018.
Khmelenina, V. N., Shchukin, V. N., Reshetnikov, A. S., Mustakhimov, I. I., Suzina, N. E., Eshinimaev, B. T., and Trotsenko, Y. A.: Structural and functional features of methanotrophs from hypersaline and alkaline lakes, Microbiology, 79, 472–482, https://doi.org/10.1134/S0026261710040090, 2010.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple parameterisation for flux footprint predictions, Bound.-Lay. Meteorol., 112, 503–523, https://doi.org/10.1023/B:BOUN.0000030653.71031.96, 2004.
Li, X. Y., Shi, F. Z., Ma, Y. J., Zhao, S. J., and Wei, J. Q.: Significant winter CO2 uptake by saline lakes on the Qinghai-Tibet Plateau, Glob. Change Biol., 28, 2041–2052, https://doi.org/10.1111/gcb.16054, 2022.
Li, Y., Zhang, C., Wang, N., Han, Q., Zhang, X., Liu, Y., Xu, L., and Ye, W.: Substantial inorganic carbon sink in closed drainage basins globally, Nat. Geosci., 10, 501–506, https://doi.org/10.1038/ngeo2972, 2017.
Liao, Y., Xiao, Q., Li, Y., Yang, C., Li, J., and Duan, H.: Salinity is an important factor in carbon emissions from an inland lake in arid region, Sci. Total Environ., 906, 167721, https://doi.org/10.1016/j.scitotenv.2023.167721, 2024.
Martínez-García, A., Peralta-Maraver, I., Rodríguez-Velasco, E., Batanero, G. L., García-Alguacil, M., Picazo, F., Calvo, J., Morales-Baquero, R., Rueda, F. J., and Reche, R.: Particulate organic carbon sedimentation triggers lagged methane emissions in a eutrophic reservoir, Limnol. Oceanogr. Lett., 9, 247–257, https://doi.org/10.1002/lol2.10379, 2024.
Mayen, J., Polsenaere, P., Lamaud, É., Arnaud, M., Kostyrka, P., Bonnefond, J.-M., Geairon, P., Gernigon, J., Chassagne, R., Lacoue-Labarthe, T., Regaudie de Gioux, A., and Souchu, P.: Atmospheric CO2 exchanges measured by eddy covariance over a temperate salt marsh and influence of environmental controlling factors, Biogeosciences, 21, 993–1016, https://doi.org/10.5194/bg-21-993-2024, 2024.
Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.: Estimating the volume and age of water stored in global lakes using a geo-statistical approach, Nat. Commun., 7, 13603, https://doi.org/10.1038/ncomms13603, 2016.
Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T: Averaging, Detrending, and Filtering of Eddy Covariance Time Series, in: Handbook of Micrometeorology, 7–31, https://doi.org/10.1007/1-4020-2265-4_2, 2004.
Moncrieff, J. B., Massheder, J. M., de Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., and Verhoef, A.: A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide, J. Hydrol., 188–189, 589–611, https://doi.org/10.1016/S0022-1694(96)03194-0, 1997.
Murguia-Flores, F., Ganesan, A. L., Arndt, S., and Hornibrook, E. R.: Global uptake of atmospheric methane by soil from 1900 to 2100, Global Biogeochem. Cy., 35, e2020GB006774, https://doi.org/10.1029/2020GB006774, 2021.
Osudar, R., Klings, K. W., Wagner, D., and Bussmann, I.: Effect of salinity on microbial methane oxidation in freshwater and marine environments, Aquat. Microb. Ecol., 80, 181–192, https://doi.org/10.3354/ame01845, 2017.
Pastorello, G., Trotta, C., Canfora, E., et al.: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data, Sci. Data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3, 2020.
Perez-Quezada, J. F., Urrutia, P., Olivares-Rojas, J., Meijide, A., Sánchez-Cañete, E. P., and Gaxiola, A.: Long term effects of fire on the soil greenhouse gas balance of an old-growth temperate rainforest, Sci. Total Environ., 755, 142442, https://doi.org/10.1016/j.scitotenv.2020.142442, 2021.
Perkins-Kirkpatrick, S. E. and Lewis, S. C.: Increasing trends in regional heatwaves, Nat. Commun., 11, 3357, https://doi.org/10.1038/s41467-020-16970-7, 2020.
Rafalska, A., Walkiewicz, A., Osborne, B., Klumpp, K., and Bieganowski, A.: Variation in methane uptake by grassland soils in the context of climate change–A review of effects and mechanisms, Sci. Total Environ., 871, 162127, https://doi.org/10.1016/j.scitotenv.2023.162127, 2023.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Strieg, R., Mayorga, E, Humborg, C., Kortelainen, P., Durr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon dioxide emissions from inland waters, Nature, 503, 355–359, https://doi.org/10.1038/nature12760, 2013.
Rodríguez- Rodríguez, M., Benavente, J., and Moral, F.: High density ground-water flow, major-ion chemistry and field experiments in a closed basin: Fuente de Piedra Playa Lake (Spain), American J. Environ. Sciences, 1, 164–171, 2006.
Rysgaard, S., Glud, R. N., Lennert, K., Cooper, M., Halden, N., Leakey, R. J. G., Hawthorne, F. C., and Barber, D.: Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters, The Cryosphere, 6, 901–908, https://doi.org/10.5194/tc-6-901-2012, 2012.
Rysgaard, S., Søgaard, D. H., Cooper, M., Pućko, M., Lennert, K., Papakyriakou, T. N., Wang, F., Geilfus, N. X., Glud, R. N., Ehn, J., McGinnis, D. F., Attard, K., Sievers, J., Deming, J. W., and Barber, D.: Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics, The Cryosphere, 7, 707–718, https://doi.org/10.5194/tc-7-707-2013, 2013.
Saccò, M., White, N. E., Harrod, C., Salazar, G., Aguilar, P., Cubillos, C. F., Meredith, K., Baxter, B. K., Oren, A., Anufriieva, E., Shadrin, N., Marambio- Alfaro, Y., Bravo-Naranjo, V., and Allentoft, M. E.: Salt to conserve: A review on the ecology and preservation of hypersaline ecosystems, Biol. Rev., 96, 2828–2850, https://doi.org/10.1111/brv.12780, 2021.
Sabbatini, S., Mammarella, I., Arriga, N., Fratini, G., Graf, A., Hörtnagl, L., Ibrom, A., Longdoz, B., Mauder, M., Merbold, L., Metzger, S., Montagnani, L., Pitacco, A., Rebmann, C., Sedlák, P., Šigut, L., Vitale, D., and Papale, D.: Eddy covariance raw data processing for CO2 and energy fluxes calculation at ICOS ecosystem stations, Int. Agrophys., 32, 495–515, https://doi.org/10.1515/intag-2017-0043, 2018.
Sharkey, T. D.: Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene, Plant Cell Environ., 28, 269–277, https://doi.org/10.1111/j.1365-3040.2005.01324.x, 2005.
Smith, T. P., Thomas, T. J., García-Carreras, B., Sal, S., Yvon-Durocher, G., Bell, T., and Pawar, S.: Community-level respiration of prokaryotic microbes may rise with global warming, Nat. commUN., 10, 5124, https://doi.org/10.1038/s41467-019-13109-1, 2019.
Song, K. S., Zang, S. Y., Zhao, Y., Li, L., Du, J., Zhang, N. N., Wang, X. D., Shao, T. T., Guan, Y., and Liu, L.: Spatiotemporal characterization of dissolved carbon for inland waters in semi-humid/semi-arid region, China, Hydrol. Earth Syst. Sci., 17, 4269–4281, https://doi.org/10.5194/hess-17-4269-2013, 2013.
Soued, C., Bogard, M. J., Finlay, K., Bortolotti, L. E., Leavitt, P. R, Badiou, P., Knox, S.H., Jensen, S., Mueller, P., Lee, S. C., Ng, D., Wissel, B., Chan, C. N., Page, B., and Kowal, P.: Salinity causes widespread restriction of methane emissions from small inland waters, Nat. CommUN., 15, 717, https://doi.org/10.1038/s41467-024-44715-3, 2024.
Stoy, P. C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain, M. A., Arneth, A., Aurela, M., Bernhofer, C., Cescatti, A., Dellwik, E., Duce, P., Gianelle, D., van Gorsel, E., Kiely, G., Knohl, A., Margolis, H., Mccaughey, H., Merbold, L., Montagnani, L., Papale, D., Reichstein, M., Saunders, M., Serrano-Ortiz, P., Sottocornola, M., Spano, D., Vaccari, F., and Varlagin, A.: A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity, Agr. ForEST Meteorol., 171–172, 137–152, https://doi.org/10.1016/j.agrformet.2012.11.004, 2013.
Trenberth, K. E.: Changes in precipitation with climate change, Clim. Res., 47, 123–138, https://doi.org/10.3354/cr00953, 2011.
Tweed, S., Grace, M., Leblanc, M., Cartwright, I., and Smithyman, D.: The individual response of saline lakes to a severe drought, Sci. Total Environ., 409, 3919–3933, https://doi.org/10.1016/j.scitotenv.2011.06.023, 2011.
Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for tower and aircraft data, J. Atmos. Ocean. Tech., 14, 512–526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2, 1997.
Wang, J., Song, C., Reager, J. T., Yao, F., Famiglietti, J. S., Sheng, Y., MacDonald, G. M., Brun, F., Schmied, H. M., Marston, A. R., and Wada, Y.: Recent global decline in endorheic basin water storages, Nat. Geosci., 11, 926–932, https://doi.org/10.1038/s41561-018-0265-7, 2018.
Wen, Z., Song, K., Shang, Y., Fang, C., Li, L., Lv, L., Lv, X., and Chen, L.: Carbon dioxide emissions from lakes and reservoirs of China: a regional estimate based on the calculated pCO2, Atmos. Environ., 170, 71–81, https://doi.org/10.1016/j.atmosenv.2017.09.032, 2017.
Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic anemometer tilt correction algorithms, Bound.-Lay. Meteorol., 99, 127–150, https://doi.org/10.1023/A:1018966204465, 2001.
Williams, W. D.: Conservation of salt lakes, Hydrobiologia, 267, 291–306, https://doi.org/10.1007/BF00018809, 1993.
Williams, W. D.: Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025, Environ. Conserv., 29, 154–167, https://doi.org/10.1017/S0376892902000103, 2002.
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B.E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R., and Verma, S.: Energy balance closure at FLUXNET sites, Agr. Forest Meteorol., 113, 223–243, https://doi.org/10.1016/S0168-1923(02)00109-0, 2002.
Wu, Y., Wang, N., Zhao, L., Zhang, Z., Chen, L. I., Lu, Y., Lü, X., and Chang, J.: Hydrochemical characteristics and recharge sources of Lake Nuoertu in the Badain Jaran Desert, Sci. Bull., 59, 886–895, https://doi.org/10.1007/s11434-013-0102-8, 2014.
Wurtsbaugh, W. A., Miller, C., Null, S. E., DeRose, R. J., Wilcock, P., Hahnenberger, M., Howe, F., and Moore, J.: Decline of the world's saline lakes. Nat. Geosci., 10, 816–821, https://doi.org/10.1038/ngeo3052, 2017.
Yan, L. and Zheng, M.: Influence of climate change on saline lakes of the Tibet Plateau, 1973–2010, Geomorphology, 246, 68–78, https://doi.org/10.1016/j.geomorph.2015.06.006, 2015.
Yang, P., Wang, N. A., Zhao, L., Zhang, D., Zhao, H., Niu, Z., and Fan, G.: Variation characteristics and influencing mechanism of CO2 flux from lakes in the Badain Jaran Desert: A case study of Yindeer Lake, Ecol. Ind., 127, 107731, https://doi.org/10.1016/j.ecolind.2021.107731, 2021.
Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G., and Montoya, J. M.: Warming alters the metabolic balance of ecosystems, Phil. T. R. Soc. B, 365, 2117–2126, https://doi.org/10.1098/rstb.2010.0038, 2010.
Yvon-Durocher, G., Caffrey, J. M., Cescatti, A., Dossena, M., Giorgio, P. D., Gasol, J. M., Montoya, J. M., Pumpanen, J., Staehr, P. A., Trimmer, M., Woodwards, G., and Allen, A. P.: Reconciling the temperature dependence of respiration across timescales and ecosystem types, Nature, 487, 472–476, https://doi.org/10.1038/nature11205, 2012.
Short summary
Inland saline lakes are crucial in the global carbon cycle, but increased droughts may alter their carbon exchange capacity. We measured CO2 and CH4 fluxes in a Mediterranean saline lake using the eddy covariance method under dry and wet conditions. We found the lake acts as a carbon sink during wet periods but not during droughts. These results highlight the importance of saline lakes in carbon sequestration and their vulnerability to climate-change-induced droughts.
Inland saline lakes are crucial in the global carbon cycle, but increased droughts may alter...
Altmetrics
Final-revised paper
Preprint