Articles | Volume 22, issue 5
https://doi.org/10.5194/bg-22-1237-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-1237-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geochemical and microbial factors driving crustacean assemblages in adjacent aquifer units within the same aquifer
Tiziana Di Lorenzo
CORRESPONDING AUTHOR
National Research Council – Research Institute on Terrestrial Ecosystems (CNR-IRET), 50019 Sesto Fiorentino, Florence, Italy
National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
“Emil Racoviţǎ” Institute of Speleology, 400535 Cluj-Napoca, Romania
Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute, and Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
Stefano Amalfitano
National Research Council – Water Research Institute (CNR-IRSA), 00010 Montelibretti, Rome, Italy
National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
Diana Maria Paola Galassi
Department of Life, Health, and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
Marco Melita
National Research Council – Water Research Institute (CNR-IRSA), 00010 Montelibretti, Rome, Italy
National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
Annamaria Zoppini
National Research Council – Water Research Institute (CNR-IRSA), 00010 Montelibretti, Rome, Italy
Daniele Parrone
National Research Council – Water Research Institute (CNR-IRSA), 00010 Montelibretti, Rome, Italy
Stefano Ghergo
National Research Council – Water Research Institute (CNR-IRSA), 00010 Montelibretti, Rome, Italy
David Rossi
National Research Council – Water Research Institute (CNR-IRSA), 00010 Montelibretti, Rome, Italy
Agostina Tabilio Di Camillo
Department of Life, Health, and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
National Research Council – Research Institute on Terrestrial Ecosystems (CNR-IRET), 50019 Sesto Fiorentino, Florence, Italy
Elisabetta Preziosi
National Research Council – Water Research Institute (CNR-IRSA), 00010 Montelibretti, Rome, Italy
Related subject area
Biodiversity and Ecosystem Function: Freshwater
Determination of appropriate land use/cover pattern based on the hydroclimatic regime to support regional ecological management in the agro-pastoral ecotone of northwest China
Environmental drivers of spatio-temporal dynamics in floodplain vegetation: grasslands as habitat for megafauna in Bardia National Park (Nepal)
Geodiversity influences limnological conditions and freshwater ostracode species distributions across broad spatial scales in the northern Neotropics
Arctic aquatic graminoid tundra responses to nutrient availability
Stable isotopic composition of top consumers in Arctic cryoconite holes: revealing divergent roles in a supraglacial trophic network
Experimental tests of water chemistry response to ornithological eutrophication: biological implications in Arctic freshwaters
Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?
Significance of climate and hydrochemistry on shape variation – a case study on Neotropical cytheroidean Ostracoda
Assembly processes of gastropod community change with horizontal and vertical zonation in ancient Lake Ohrid: a metacommunity speciation perspective
Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard
Unusual biogenic calcite structures in two shallow lakes, James Ross Island, Antarctica
Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes
Constant diversification rates of endemic gastropods in ancient Lake Ohrid: ecosystem resilience likely buffers environmental fluctuations
Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forested stream
Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes
Explosive demographic expansion by dreissenid bivalves as a possible result of astronomical forcing
Phytoplankton community structure in the Lena Delta (Siberia, Russia) in relation to hydrography
Lacustrine mollusc radiations in the Lake Malawi Basin: experiments in a natural laboratory for evolution
DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages
Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe
Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa
Spatially explicit analysis of gastropod biodiversity in ancient Lake Ohrid
A freshwater biodiversity hotspot under pressure – assessing threats and identifying conservation needs for ancient Lake Ohrid
Stratigraphic analysis of lake level fluctuations in Lake Ohrid: an integration of high resolution hydro-acoustic data and sediment cores
Sediment core fossils in ancient Lake Ohrid: testing for faunal change since the Last Interglacial
Testing the spatial and temporal framework of speciation in an ancient lake species flock: the leech genus Dina (Hirudinea: Erpobdellidae) in Lake Ohrid
Native Dreissena freshwater mussels in the Balkans: in and out of ancient lakes
Yuzuo Zhu and Xuefeng Xu
EGUsphere, https://doi.org/10.5194/egusphere-2023-2287, https://doi.org/10.5194/egusphere-2023-2287, 2023
Short summary
Short summary
Studies have found excessive re-vegetation causes negative environmental effects in the agro-pastoral ecotone of northwest China, while the latest national ecological project plans to expand grasslands to 60 %. Therefore incorporating an appropriate mixture of land use/cover into decision-making is urgently required. Thus, this paper identified the proper land use/cover pattern within the local hydrological and climatic metrics, for the first time, among scenarios simulated by CLM 5.0.
Jitse Bijlmakers, Jasper Griffioen, and Derek Karssenberg
Biogeosciences, 20, 1113–1144, https://doi.org/10.5194/bg-20-1113-2023, https://doi.org/10.5194/bg-20-1113-2023, 2023
Short summary
Short summary
At the foot of the Himalayas in Nepal, land cover time series and data of environmental drivers show changes in disturbance-dependent grasslands that serve as habitat for endangered megafauna. The changes in surface area and heterogeneity of the grassland patches are attributed to a relocation of the dominant river channel of the Karnali River and associated decline of hydromorphological disturbances and a decrease in anthropogenic disturbances after its establishment as conservation area.
Laura Macario-González, Sergio Cohuo, Philipp Hoelzmann, Liseth Pérez, Manuel Elías-Gutiérrez, Margarita Caballero, Alexis Oliva, Margarita Palmieri, María Renée Álvarez, and Antje Schwalb
Biogeosciences, 19, 5167–5185, https://doi.org/10.5194/bg-19-5167-2022, https://doi.org/10.5194/bg-19-5167-2022, 2022
Short summary
Short summary
We evaluate the relationships between geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. Geological, limnological, geochemical, and mineralogical characteristics of 76 systems reveal two main limnological regions and seven subregions. Water ionic and sediment composition are the most influential. Geodiversity strongly influences limnological conditions, which in turn influence ostracode composition and distribution.
Christian G. Andresen and Vanessa L. Lougheed
Biogeosciences, 18, 2649–2662, https://doi.org/10.5194/bg-18-2649-2021, https://doi.org/10.5194/bg-18-2649-2021, 2021
Short summary
Short summary
Aquatic tundra plants dominate productivity and methane fluxes in the Arctic coastal plain. We assessed how environmental nutrient availability influences production of biomass and greenness of aquatic tundra. We found phosphorous to be the main nutrient limiting biomass productivity and greenness in Arctic aquatic grasses. This study highlights the importance of nutrient pools and mobilization between terrestrial–aquatic systems and their influence on regional carbon and energy feedbacks.
Tereza Novotná Jaroměřská, Jakub Trubač, Krzysztof Zawierucha, Lenka Vondrovicová, Miloslav Devetter, and Jakub D. Žárský
Biogeosciences, 18, 1543–1557, https://doi.org/10.5194/bg-18-1543-2021, https://doi.org/10.5194/bg-18-1543-2021, 2021
Short summary
Short summary
Cryoconite holes are ponds on the glacier surface that play an important role in glacier nutrient pathways. This paper presents the first description of the carbon and nitrogen isotopic composition of cryoconite consumers (tardigrades and rotifers) and their potential food. We showed that consumers differ in nitrogen isotopes and carbon isotopes vary between taxa and between glaciers. The study contributes to improving knowledge about cryoconite hole functioning and cryoconite trophic networks.
Heather L. Mariash, Milla Rautio, Mark Mallory, and Paul A. Smith
Biogeosciences, 16, 4719–4730, https://doi.org/10.5194/bg-16-4719-2019, https://doi.org/10.5194/bg-16-4719-2019, 2019
Short summary
Short summary
Across North America and Europe, goose populations have increased exponentially in response to agricultural intensification. By using an experimental approach, we empirically demonstrated that geese act as bio-vectors, making terrestrial nutrients more bioavailable to freshwater systems. The study revealed that the nutrient loading from goose faeces has the potential to change phytoplankton community composition, with a shift toward an increased presence of cyanobacteria.
Gwenaël Abril and Alberto V. Borges
Biogeosciences, 16, 769–784, https://doi.org/10.5194/bg-16-769-2019, https://doi.org/10.5194/bg-16-769-2019, 2019
Short summary
Short summary
Based on classical concepts in ecology, and a literature survey, we highlight the importance of flooded land as a preferential source of atmospheric carbon to aquatic systems at the global scale. Studies in terrestrial and aquatic ecosystems could be reconciled by considering the occurrence of an efficient wetland CO2 pump to river systems. New methodological approaches coupling hydrology and ecology are also necessary to improve scientific knowledge on carbon fluxes at the land–water interface.
Claudia Wrozyna, Thomas A. Neubauer, Juliane Meyer, Maria Ines F. Ramos, and Werner E. Piller
Biogeosciences, 15, 5489–5502, https://doi.org/10.5194/bg-15-5489-2018, https://doi.org/10.5194/bg-15-5489-2018, 2018
Short summary
Short summary
How environmental change affects a species' phenotype is crucial for taxonomy and biodiversity assessments and for their application as paleoecological indicators. Morphometric data of a Neotropical ostracod species, as well as several climatic and hydrochemical variables, were used to investigate the link between morphology and environmental conditions. Temperature seasonality, annual precipitation, and chloride and sulphate concentrations were identified as drivers for ostracod ecophenotypy.
Torsten Hauffe, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 2901–2911, https://doi.org/10.5194/bg-13-2901-2016, https://doi.org/10.5194/bg-13-2901-2016, 2016
T. R. Vonnahme, M. Devetter, J. D. Žárský, M. Šabacká, and J. Elster
Biogeosciences, 13, 659–674, https://doi.org/10.5194/bg-13-659-2016, https://doi.org/10.5194/bg-13-659-2016, 2016
Short summary
Short summary
The diversity of microalgae and cyanobacteria in cryoconites on three high-Arctic glaciers was investigated. Possible bottom-up controls via nutrient limitation, wind dispersal, and hydrological stability were measured. Grazer populations were quantified to estimate the effect of top-down controls. Nutrient limitation appeared to be the most important control on the diversity and competition outcomes of microalgae and cyanobacteria.
J. Elster, L. Nedbalová, R. Vodrážka, K. Láska, J. Haloda, and J. Komárek
Biogeosciences, 13, 535–549, https://doi.org/10.5194/bg-13-535-2016, https://doi.org/10.5194/bg-13-535-2016, 2016
J. Comte, C. Lovejoy, S. Crevecoeur, and W. F. Vincent
Biogeosciences, 13, 175–190, https://doi.org/10.5194/bg-13-175-2016, https://doi.org/10.5194/bg-13-175-2016, 2016
Short summary
Short summary
Thaw ponds and lakes varied in their bacterial community structure. A small number of taxa occurred in high abundance and dominated many of the communities. Nevertheless, there were taxonomic differences among different valleys implying some degree of habitat selection. Association networks were composed of a limited number of highly connected OTUs. These "keystone species" were not merely the abundant taxa, whose loss would greatly alter the structure and functioning of these aquatic ecosystem.
K. Föller, B. Stelbrink, T. Hauffe, C. Albrecht, and T. Wilke
Biogeosciences, 12, 7209–7222, https://doi.org/10.5194/bg-12-7209-2015, https://doi.org/10.5194/bg-12-7209-2015, 2015
Short summary
Short summary
Based on our molecular data and performed analyses we found that the gastropods studied represent a comparatively old group that most likely evolved with a constant rate of diversification. However, preliminary data of the SCOPSCO deep-drilling program indicate signatures of environmental/climatic perturbations in Lake Ohrid. We therefore propose that the constant rate observed has been caused by a potential lack of catastrophic environmental events and/or a high ecosystem resilience.
S. Bernal, A. Lupon, M. Ribot, F. Sabater, and E. Martí
Biogeosciences, 12, 1941–1954, https://doi.org/10.5194/bg-12-1941-2015, https://doi.org/10.5194/bg-12-1941-2015, 2015
Short summary
Short summary
Terrestrial inputs are considered the major driver of longitudinal patterns of nutrient concentration. Yet we show that longitudinal trends result from hydrological mixing with terrestrial inputs and in-stream processes. We challenge the idea that nutrient concentrations decrease downstream when in-stream net uptake is high. Conversely, in-stream processes can strongly affect stream nutrient chemistry and fluxes even in the absence of consistent longitudinal trends in nutrient concentration.
P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, V. E. Villafañe, and E. W. Helbling
Biogeosciences, 12, 697–712, https://doi.org/10.5194/bg-12-697-2015, https://doi.org/10.5194/bg-12-697-2015, 2015
Short summary
Short summary
Under UVR and stratification,the commensalistic algae-bacteria interaction was strengthened in the high-UVR lake, where excretion of organic carbon rates exceeded the bacterial carbon demand,but did not occur in the low-UVR lake.The greater UVR damage to algae and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates these lakes would be especially vulnerable to UVR. These results have implications for the C cycle in lakes of the Mediterranean region.
M. Harzhauser, O. Mandic, A. K. Kern, W. E. Piller, T. A. Neubauer, C. Albrecht, and T. Wilke
Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, https://doi.org/10.5194/bg-10-8423-2013, 2013
A. C. Kraberg, E. Druzhkova, B. Heim, M. J. G. Loeder, and K. H. Wiltshire
Biogeosciences, 10, 7263–7277, https://doi.org/10.5194/bg-10-7263-2013, https://doi.org/10.5194/bg-10-7263-2013, 2013
D. Van Damme and A. Gautier
Biogeosciences, 10, 5767–5778, https://doi.org/10.5194/bg-10-5767-2013, https://doi.org/10.5194/bg-10-5767-2013, 2013
I. Domaizon, O. Savichtcheva, D. Debroas, F. Arnaud, C. Villar, C. Pignol, B. Alric, and M. E. Perga
Biogeosciences, 10, 3817–3838, https://doi.org/10.5194/bg-10-3817-2013, https://doi.org/10.5194/bg-10-3817-2013, 2013
E. W. Helbling, P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, M. Villar-Argaiz, and V. E. Villafañe
Biogeosciences, 10, 1037–1050, https://doi.org/10.5194/bg-10-1037-2013, https://doi.org/10.5194/bg-10-1037-2013, 2013
C. H. Hsieh, Y. Sakai, S. Ban, K. Ishikawa, T. Ishikawa, S. Ichise, N. Yamamura, and M. Kumagai
Biogeosciences, 8, 1383–1399, https://doi.org/10.5194/bg-8-1383-2011, https://doi.org/10.5194/bg-8-1383-2011, 2011
T. Hauffe, C. Albrecht, K. Schreiber, K. Birkhofer, S. Trajanovski, and T. Wilke
Biogeosciences, 8, 175–188, https://doi.org/10.5194/bg-8-175-2011, https://doi.org/10.5194/bg-8-175-2011, 2011
G. Kostoski, C. Albrecht, S. Trajanovski, and T. Wilke
Biogeosciences, 7, 3999–4015, https://doi.org/10.5194/bg-7-3999-2010, https://doi.org/10.5194/bg-7-3999-2010, 2010
K. Lindhorst, H. Vogel, S. Krastel, B. Wagner, A. Hilgers, A. Zander, T. Schwenk, M. Wessels, and G. Daut
Biogeosciences, 7, 3531–3548, https://doi.org/10.5194/bg-7-3531-2010, https://doi.org/10.5194/bg-7-3531-2010, 2010
C. Albrecht, H. Vogel, T. Hauffe, and T. Wilke
Biogeosciences, 7, 3435–3446, https://doi.org/10.5194/bg-7-3435-2010, https://doi.org/10.5194/bg-7-3435-2010, 2010
S. Trajanovski, C. Albrecht, K. Schreiber, R. Schultheiß, T. Stadler, M. Benke, and T. Wilke
Biogeosciences, 7, 3387–3402, https://doi.org/10.5194/bg-7-3387-2010, https://doi.org/10.5194/bg-7-3387-2010, 2010
T. Wilke, R. Schultheiß, C. Albrecht, N. Bornmann, S. Trajanovski, and T. Kevrekidis
Biogeosciences, 7, 3051–3065, https://doi.org/10.5194/bg-7-3051-2010, https://doi.org/10.5194/bg-7-3051-2010, 2010
Cited articles
Altermatt, F., Westram, A. M., Pasinelli, G., and Burri, R.: Advances and challenges in using DNA barcoding and metabarcoding to study biodiversity, Mol. Ecol., 32, 881–897, https://doi.org/10.1111/mec.16955, 2023.
Arnosti, C., Bell, C., Moorhead, D. L., Sinsabaugh, R. L., Steen, A. D., Stromberger, M., Wallenstein, M., and Weintraub, M. N.: Extracellular enzymes in terrestrial, freshwater, and marine environments: perspectives on system variability and common research needs, Biogeochemistry, 117, 5–21, https://doi.org/10.1007/s10533-013-9906-5, 2014.
Ademollo, N., Amalfitano, S., Benedetti, B., Del Bon, A., Falconi, F., Fazi, S., Gallo, S., Ghergo, S., Mastroianni, D., Patrolecco, L., Petrangeli, A. B., Pettine, M., Preziosi, E., Rossi, D., and Zoppini, A.: Indagini per una caratterizzazione di dettaglio del sito di Quadro Alto – Riano (RM), Rapporto Tecnico Finale Convenzione tra Comune di Riano e IRSA-CNR, https://intranet.cnr.it/servizi/people/prodotto/scheda/i/213341 (last access: 28 November 2023), 2012.
Amalfitano, S., Fazi, S., Ejarque, E., Freixa, A., Romaní, A. M., and Butturini, A.: Deconvolution model to resolve cytometric microbial community patterns in flowing waters, Cytometry A, 93, 194–200, https://doi.org/10.1002/cyto.a.23304, 2018.
Anderson, M. J., Gorley, R. N., and Clarke, K. R. (Eds.): PERMANOVA+for PRIMER: Guide to Software and Statistical Methods, PRIMER-E: Plymouth, UK, 214 pp., 2008.
Aquilina, L., Stumpp, C., Tonina, D., and Buffington, J. M.: Hydrodynamics and geomorphology of groundwater environments, in: Groundwater Ecology and Evolution, 2nd Edn., edited by: Malard, F., Griebler, C., and Rétaux, S., Academic Press, San Diego, 3–37, https://doi.org/10.1016/B978-0-12-819119-4.00014-7, 2023.
Brad, T., Iepure, S., and Sarbu, S. M.: The Chemoautotrophically Based Movile Cave Groundwater Ecosystem, a Hotspot of Subterranean Biodiversity, Diversity, 13, 128, https://doi.org/10.3390/d13030128, 2021.
Bregović, P., Fišer, C., and Zagmajster, M.: Contribution of rare and common species to subterranean species richness patterns, Ecol. Evol., 9, 11606–11618, https://doi.org/10.1002/ece3.5604, 2019.
Cadotte M. W. and Tucker C. M.: Should Environmental Filtering be Abandoned?, Trend. Ecol. Evol., 32, 429–437, https://doi.org/10.1016/j.tree.2017.03.004, 2017.
Clarke, K. R. and Gorley, R. N.: PRIMER: Getting started with v6, PRIMER-E Ltd., Plymouth, UK, 932, 2005.
Cornwell, W. K., Schwilk, D. W., and Ackerly, D. D.: A trait-based test for habitat filtering: convex hull volume, Ecology, 87, 1465–1471, https://doi.org/10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2, 2006.
Culver, D. C., Deharveng, L., Pipan, T., and Bedos, A.: An Overview of Subterranean Biodiversity Hotspots, Diversity, 13, 487, https://doi.org/10.3390/d13100487, 2021.
Di Lorenzo, T., Cifoni, M., Lombardo, P., Fiasca, B., and Galassi, D. M. P.: Ammonium threshold values for groundwater quality in the EU may not protect groundwater fauna: evidence from an alluvial aquifer in Italy, Hydrobiologia, 743, 139–150, https://doi.org/10.1007/s10750-014-2018-y, 2015.
Di Lorenzo, T., Di Marzio, W. D., Fiasca, B., Galassi, D. M. P., Korbel, K., Iepure, S., Pereira, J. L., Reboleira, A. S. P. S., Schmidt, S. I., and Hose, G. C.: Recommendations for ecotoxicity testing with stygobiotic species in the framework of groundwater environmental risk assessment, Sci. Total Environ., 681, 292–304, https://doi.org/10.1016/j.scitotenv.2019.05.030, 2019.
Di Lorenzo, T., Fiasca, B., Tabilio Di Camillo, A., Murolo, A., Di Cicco, M., and Galassi, D. M. P.: The weighted Groundwater Health Index (wGHI) by Korbel and Hose (2017) in European groundwater bodies in nitrate vulnerable zones, Ecol. Indic., 116, 106525, https://doi.org/10.1016/j.ecolind.2020.106525, 2020.
Di Lorenzo, T., Fiasca, B., Di Cicco, M., Cifoni, M., and Galassi, D. M. P.: Taxonomic and functional trait variation along a gradient of ammonium contamination in the hyporheic zone of a Mediterranean stream, Ecol. Indic., 132, 108268, https://doi.org/10.1016/j.ecolind.2021.108268, 2021.
Di Lorenzo, T., Avramov, M., Galassi, D. M. P., Iepure, S., Mammola, S., Reboleira, A. S. P. S., and Hervant, F.: Physiological tolerance and ecotoxicological constraints of groundwater fauna, in: Groundwater Ecology and Evolution, 2nd Edn., edited by: Malard, F., Griebler, C., and Rétaux, S., Academic Press, San Diego, 457–479, https://doi.org/10.1016/B978-0-12-819119-4.15004-8, 2023.
Di Marzio, W. D., Cifoni, M., Sáenz, M. E., Galassi, D. M. P., and Di Lorenzo, T.: The ecotoxicity of binary mixtures of Imazamox and ionized ammonia on freshwater copepods: Implications for environmental risk assessment in groundwater bodies, Ecotoxicol. Environ. Saf., 149, 72–79, https://doi.org/10.1016/j.ecoenv.2017.11.031, 2018.
Duchi, V., Matassoni, L., Tassi, F., and Nisi, B.: Studio geochimico dei fluidi (acque e gas) circolanti nella regione vulcanica dei M.ti Vulsini (Italia Centrale), Ital. J. Geosci., 122, 47–61, 2003.
Dussart, B. and Defaye, D. (Eds): World directory of Crustacea Copepoda of inland waters, Backhuys, Backhuys Publishers, Leiden, the Netherlands, ISBN 90-5782-175-3, 2002.
Ferguson, G., McIntosh, J. C., Warr, O., Sherwood Lollar, B., Ballentine, C. J., Famiglietti, J. S., Kim, J. -H., Michalski, J. R., Mustard, J. F., Tarnas, J., and McDonnell, J. J.: Crustal Groundwater Volumes Greater Than Previously Thought, Geophys. Res. Lett., 48, e2021GL093549, https://doi.org/10.1029/2021GL093549, 2021.
Ficetola, G. F., Canedoli, C., and Stoch, F.: The Racovitzan impediment and the hidden biodiversity of unexplored environments, Conserv. Biol., 33, 214–216, https://doi.org/10.1111/cobi.13179, 2019.
Fillinger, L., Griebler, C., Hellal, J., Joulian, C., and Weaver, L.: Microbial diversity and processes in groundwater, in: Groundwater Ecology and Evolution, 2nd End., edited by: Malard, F., Griebler, C., and Rétaux, S., Academic Press, San Diego, 211–240, https://doi.org/10.1016/B978-0-12-819119-4.00009-3, 2023.
Fišer, C., Brancelj, A., Yoshizawa, M., Mammola, S., and Fišer, Ž.: Dissolving morphological and behavioral traits of groundwater animals into a functional phenotype, in: Groundwater Ecology and Evolution, 2nd End., edited by: Malard, F., Griebler, C., and Rétaux, S., Academic Press: Cambridge, MA, USA, Chap. 18, 415–438, 2023.
Fišer, C.: Niphargus – A model system for evolution and ecology, in: Encyclopedia of caves, 746–755, Elsevier Academic Press, London, UK, ISBN 9780128141243, 2019.
Flemming, H.-C. and Wuertz, S.: Bacteria and archaea on Earth and their abundance in biofilms, Nat. Rev. Microbiol., 17, 247–260, https://doi.org/10.1038/s41579-019-0158-9, 2019.
Foulquier, A., Simon, L., Gilbert, F., Fourel, F., Malard, F., and Mermillod-Blondin, F.: Relative influences of DOC flux and subterranean fauna on microbial abundance and activity in aquifer sediments: new insights from 13C-tracer experiments, Freshw. Biol., 55, 1560–1576, https://doi.org/10.1111/j.1365-2427.2010.02385.x, 2010.
Galassi, D. M. P.: Groundwater copepods: diversity patterns over ecological and evolutionary scales, Hydrobiologia, 453, 227–253, https://doi.org/10.1023/A:1013100924948, 2001.
Galassi, D. M. P. and De Laurentiis, P.: Little-known cyclopoids from groundwater in Italy: re-validation of Acanthocyclops agamus and redescription of Speocyclops italicus (Crustacea, Copepoda, Cyclopoida), Vie et Milieu/Life & Environment, 203–222, ISSN: 0240-8759, 2004.
Galassi, D. M. P., De Laurentiis, P., and Dole-Olivier, M.: Phylogeny and biogeography of the genus Pseudectinosoma, and description of P. janineae sp. n. (Crustacea, Copepoda, Ectinosomatidae), Zool. Scr., 28, 289–303, https://doi.org/10.1046/j.1463-6409.1999.00018.x, 1999.
Galassi, D. M. P., Huys, R., and Reid, J. W.: Diversity, ecology and evolution of groundwater copepods, Freshw. Biol., 54, 691–708, https://doi.org/10.1111/j.1365-2427.2009.02185.x, 2009.
Galassi, D. M. P., Fiasca, B., Di Lorenzo, T., Montanari, A., Porfirio, S., and Fattorini, S.: Groundwater biodiversity in a chemoautotrophic cave ecosystem: how geochemistry regulates microcrustacean community structure, Aquat. Ecol., 51, 75–90, https://doi.org/10.1007/s10452-016-9599-7, 2017.
Gasol, J. M., Zweifel, U. L., Peters, F., Fuhrman, J. A., and Hagström, Å: Significance of Size and Nucleic Acid Content Heterogeneity as Measured by Flow Cytometry in Natural Planktonic Bacteria, Appl. Environ. Microbiol., 65, 4475–4483, https://doi.org/10.1128/AEM.65.10.4475-4483.1999, 1999.
Griebler, C. and Lueders, T.: Microbial biodiversity in groundwater ecosystems, Freshw. Biol., 54, 649–677, https://doi.org/10.1111/j.1365-2427.2008.02013.x, 2009.
Griebler, C., Mindl, B., Slezak, D., and Geiger-Kaiser, M.: Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm, Aquat. Microb. Ecol., 28, 117–129, https://doi.org/10.3354/ame028117, 2002.
Hahn, H. J. and Fuchs, A.: Distribution patterns of groundwater communities across aquifer types in south-western Germany, Freshw. Biol., 54, 848–860, https://doi.org/10.1111/j.1365-2427.2008.02132.x, 2009.
Hose, G. C. and Stumpp, C.: Architects of the underworld: bioturbation by groundwater invertebrates influences aquifer hydraulic properties. Aquat. Sci., 81, 20, https://doi.org/10.1007/s00027-018-0613-0, 2019.
Hu, W., Zhang, H., Lin, X., Liu, R., Bartlam, M., and Wang, Y.: Characteristics, Biodiversity, and Cultivation Strategy of Low Nucleic Acid Content Bacteria, Front. Microbiol., 13, 900669, https://doi.org/10.3389/fmicb.2022.900669, 2022.
Hurvich, C. M. and Tsai, C.: A corrected Akaike information criterion for vector autoregressive model selection, J. Time Ser. Anal., 14, 271–279, https://doi.org/10.1111/j.1467-9892.1993.tb00144.x, 1993.
Iannella, M., Fiasca, B., Di Lorenzo, T., Biondi, M., Di Cicco, M., and Galassi, D. M. P.: Spatial distribution of stygobitic crustacean harpacticoids at the boundaries of groundwater habitat types in Europe, Sci. Rep., 10, 19043, https://doi.org/10.1038/s41598-020-76018-0, 2020.
Jasechko, S., Birks, S. J., Gleeson, T., Wada, Y., Fawcett, P. J., Sharp, Z. D., McDonnell, J. J., and Welker, J. M.: The pronounced seasonality of global groundwater recharge, Water Resour. Res., 50, 8845e8867, https://doi.org/10.1002/2014wr015809, 2014.
Kimmel, K., Avolio, M. L., and Ferraro, P. J.: Empirical evidence of widespread exaggeration bias and selective reporting in ecology, Nat. Ecol. Evol., 7, 1525–1536, https://doi.org/10.1038/s41559-023-02144-3, 2023.
Korbel, K. L. and Hose, G. C.: A tiered framework for assessing groundwater ecosystem health, Hydrobiologia, 661, 329–349, https://doi.org/10.1007/s10750-010-0541-z, 2011.
Korbel, K. L. and Hose, G. C.: Habitat, water quality, seasonality, or site? Identifying environmental correlates of the distribution of groundwater biota, Freshw. Sci., 34, 329–343, https://doi.org/10.1086/680038, 2015.
Korbel, K. L. and Hose, G. C.: The weighted groundwater health index: Improving the monitoring and management of groundwater resources, Ecol. Indic., 75, 164–181, https://doi.org/10.1016/j.ecolind.2016.11.039, 2017.
Korbel, K. L., Chariton, A., Stephenson, S., Greenfield, P., and Hose, G. C.: Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems, Sci. Rep., 7, 40702, https://doi.org/10.1038/srep40702, 2017.
Kraft, N. J. B., Adler, P. B., Godoy, O., James, E. C., Fuller, S., and Levine, J. M.: Community assembly, coexistence and the environmental filtering metaphor, Funct. Ecol., 29, 592–599, https://doi.org/10.1111/1365-2435.12345, 2015.
Lebaron, P., Servais, P., Baudoux, A.-C., Bourrain, M., Courties, C., and Parthuisot, N.: Variations of bacterial-specific activity with cell size and nucleic acid content assessed by flow cytometry, Aquat. Microb. Ecol., 28, 131–140, https://doi.org/10.3354/ame028131, 2002.
Legendre, P. and Anderson, M. J.: Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments, Ecol. Monogr., 69, 512–512, https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2, 1999.
Lombardi, G. and Meucci, C.: Il Tufo Giallo della Via Tiberina (Roma) utilizzato nei monumenti romani, Rend. Lincei., 17, 263–287, https://doi.org/10.1007/BF02904766, 2006.
Magurran, A. E.: Measuring biological diversity, Curr. Biol., 31, R1174–R1177, https://doi.org/10.1016/j.cub.2021.07.049, 2021.
Magurran, A. E. and McGill, B. J. (Eds.): Biological diversity: Frontiers in measurement and assessment, Oxford University Press, Oxford New York, USA, 345 pp., ISBN 978-0-19-958067-5, 2011.
Malard, F., Dole-Olivier, M.-J., Mathieu, J., and Stoch, F.: Sampling Manual for the Assessment of Regional Groundwater Biodiversity, ResearchGate, https://www.researchgate.net/publication/267567541 (last access: 28 November 2023), 2002.
Malard, F., Griebler, C., and Retaux, S. (Eds.): Groundwater Ecology and Evolution, Academic Press, San Diego, 610 pp., ISBN 9780128191194, 2023a.
Malard, F., Machado, E. G., Casane, D., Cooper, S., Fišer, C., and Eme, D.: Dispersal and geographic range size in groundwater, in: Groundwater Ecology and Evolution (Second Edition), edited by: Malard, F., Griebler, C., and Rétaux, S., Academic Press, San Diego, 185–207, https://doi.org/10.1016/B978-0-12-819119-4.15003-6, 2023b.
Mammola, S., Lunghi, E., Bilandžija, H., Cardoso, P., Grimm, V., Schmidt, S. I., Hesselberg, T., and Martínez, A.: Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them, Ecol. Evol., 11, 5911–5926, https://doi.org/10.1002/ece3.7556, 2021.
Maurice, L., Robertson, A. R., White, D., Knight, L., Johns, T., Edwards, F., Arietti, M., Sorensen, J. P. R., Weitowitz, D., Marchant, B. P., and Bloomfield, J. P.: The invertebrate ecology of the Chalk aquifer in England (UK), Hydrogeol. J., 24, 459–474, https://doi.org/10.1007/s10040-015-1334-2, 2016.
Melita, M., Amalfitano, S., Preziosi, E., Ghergo, S., Frollini, E., Parrone, D., and Zoppini, A.: Physiological Profiling and Functional Diversity of Groundwater Microbial Communities in a Municipal Solid Waste Landfill Area, Water, 11, 2624, https://doi.org/10.3390/w11122624, 2019.
Melita, M., Amalfitano, S., Preziosi, E., Ghergo, S., Frollini, E., Parrone, D., and Zoppini, A.: Redox conditions and a moderate anthropogenic impairment of groundwater quality reflected on the microbial functional traits in a volcanic aquifer, Aquat. Sci., 85, 3, https://doi.org/10.1007/s00027-022-00899-8, 2023.
Mermillod-Blondin, F., Hose, G. C., Simon, K. S., Korbel, K., Avramov, M., and Vorste, R. V.: Role of invertebrates in groundwater ecosystem processes and services, in: Groundwater Ecology and Evolution, 2nd Edn., Elsevier Academic Press, London, UK, ISBN 9780128141243, 2023.
Oest, A., Alsaffar, A., Fenner, M., Azzopardi, D., and Tiquia-Arashiro, S. M.: Patterns of Change in Metabolic Capabilities of Sediment Microbial Communities in River and Lake Ecosystems, Int. J. Microbiol., 2018, 1–15, https://doi.org/10.1155/2018/6234931, 2018.
Parrone, D., Ghergo, S., and Preziosi, E.: A multi-method approach for the assessment of natural background levels in groundwater, Sci. Total Environ., 659, 884–894, https://doi.org/10.1016/j.scitotenv.2018.12.350, 2019.
Parrone, D., Ghergo, S., Frollini, E., Rossi, D., and Preziosi, E.: Arsenic-fluoride co-contamination in groundwater: Background and anomalies in a volcanic-sedimentary aquifer in central Italy, J. Geochem. Explor., 217, 106590, https://doi.org/10.1016/j.gexplo.2020.106590, 2020.
Parrone, D., Ghergo, S., Preziosi, E., and Casentini, B.: Water-Rock Interaction Processes: A Local Scale Study on Arsenic Sources and Release Mechanisms from a Volcanic Rock Matrix, Toxics, 10, 288, https://doi.org/10.3390/toxics10060288, 2022.
Preziosi, E., Petrangeli, A. B., and Giuliano, G.: Tailoring groundwater quality monitoring to vulnerability: a GIS procedure for network design, Environ. Monit. Assess., 185, 3759–3781, https://doi.org/10.1007/s10661-012-2826-3, 2013.
Preziosi, E., Parrone, D., Del Bon, A., and Ghergo, S.: Natural background level assessment in groundwaters: probability plot versus pre-selection method, J. Geochem. Explor., 143, 43–53, https://doi.org/10.1016/j.gexplo.2014.03.015, 2014.
Preziosi, E., Frollini, E., Zoppini, A., Ghergo, S., Melita, M., Parrone, D., Rossi, D., and Amalfitano, S.: Disentangling natural and anthropogenic impacts on groundwater by hydrogeochemical, isotopic and microbiological data: Hints from a municipal solid waste landfill, Waste. Manage., 84, 245–255, https://doi.org/10.1016/j.wasman.2018.12.005, 2019.
Proctor, C. R., Besmer, M. D., Langenegger, T., Beck, K., Walser, J.-C., Ackermann, M., Bürgmann, H., and Hammes, F.: Phylogenetic clustering of small low nucleic acid-content bacteria across diverse freshwater ecosystems, ISME J., 12, 1344–1359, https://doi.org/10.1038/s41396-018-0070-8, 2018.
R Development Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/ (last access: 27 February 2025), 2008.
Rubbens, P., Schmidt, M. L., Props, R., Biddanda, B. A., Boon, N., Waegeman, W., and Denef, V. J.: Randomized Lasso Links Microbial Taxa with Aquatic Functional Groups Inferred from Flow Cytometry, MSystems, 4, 101128, https://doi.org/10.1128/mSystems.00093-19, 2019.
Saccò, M., Blyth, A. J., Humphreys, W. F., Kuhl, A., Mazumder, D., Smith, C., and Grice, K.: Elucidating stygofaunal trophic web interactions via isotopic ecology, PLoS One, 14, e0223982, https://doi.org/10.1371/journal.pone.0223982, 2019.
Schminke, H. K.: Adaptations of Bathynellacea (Crustacea, Syncarida) to life in the interstitial system of freshwater aquifers. Int. Rev. ges. Hydrobiol. Hydrogr., 59, 617–625, 1974.
Segawa, T., Sugiyama, A., Kinoshita, T., Sohrin, R., Nakano, T., Nagaosa, K., Greenidge, D., and Kato, K.: Microbes in Groundwater of a Volcanic Mountain, Mt. Fuji, 16S rDNA Phylogenetic Analysis as a Possible Indicator for the Transport Routes of Groundwater, Geomicrobiol. J., 32, 677–688, https://doi.org/10.1080/01490451.2014.991811, 2015.
Shen, Y., Chapelle, F. H., Strom, E. W., and Benner, R.: Origins and bioavailability of dissolved organic matter in groundwater, Biogeochemistry, 122, 61–78, https://doi.org/10.1007/s10533-014-0029-4, 2015.
Sottili, G., Palladino, D. M., Marra, F., Jicha, B., Karner, D. B., and Renne, P.: Geochronology of the most recent activity in the Sabatini Volcanic District, Roman Province, central Italy, J. Volcanol. Geotherm. Res., 196, 20–30, https://doi.org/10.1016/j.jvolgeores.2010.07.003, 2010.
Stoch, F. and Galassi, D. M. P.: Stygobiotic crustacean species richness: a question of numbers, a matter of scale, in: Fifty Years after the “Homage to Santa Rosalia”: Old and New Paradigms on Biodiversity in Aquatic Ecosystems, Development in Hydrobiology, edited by: Naselli-Flores, L. and Rossetti, G., Springer Dordrecht, the Netherlands, 217–234, https://doi.org/10.1007/978-90-481-9908-2_16, 2010.
Trontelj, P., Blejec, A., and Fišer, C.: Ecomorphological convergence of cave communities, Evolution, 66, 3852–3865, https://doi.org/10.1111/j.1558-5646.2012.01734.x, 2012.
Vaccarelli, I., Cerasoli, F., Mammola, S., Fiasca, B., Di Cicco, M., Di Lorenzo, T., Stoch, F., and Galassi, D. M. P.: Environmental factors shaping copepod distributions in cave waters of the Lessinian unsaturated karst (NE-Italy), Front. Ecol. Evol., 11, 1143874, https://doi.org/10.3389/fevo.2023.1143874, 2023.
Wurzbacher, C., Kreiling, A. -K., Svantesson, S., Van den Wyngaert, S., Larsson, E., Heeger, F., Nilsson, H. R., and Pálsson, S.: Fungal communities in groundwater springs along the volcanic zone of Iceland, Inland Waters, 10, 418–427, https://doi.org/10.1080/20442041.2019.1689065, 2020.
Zagmajster, M., Ferreira, R. L., Humphreys, W. F., Niemiller, M. L., and Malard, F.: Patterns and determinants of richness and composition of the groundwater fauna, in: Groundwater Ecology and Evolution (Second Edition), edited by: Malard, F., Griebler, C., and Rétaux, S., Academic Press, San Diego, 141–164, https://doi.org/10.1016/B978-0-12-819119-4.00006-8, 2023.
Short summary
This study examines the effects of geochemistry and microbial communities on crustacean assemblages in a volcanic aquifer. It uncovers that major ions, trace elements, and microbial traits dictate the composition and functionality of crustacean assemblages, revealing variations across adjacent groundwater bodies. The study highlights the importance of approaches that integrate geochemical, microbial, and biological indicators for understanding the dynamics of groundwater ecosystems.
This study examines the effects of geochemistry and microbial communities on crustacean...
Altmetrics
Final-revised paper
Preprint