Articles | Volume 22, issue 14
https://doi.org/10.5194/bg-22-3699-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-3699-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating ocean alkalinity enhancement as a carbon dioxide removal strategy in the North Sea
Institute of Coastal Systems, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Ute Daewel
Institute of Coastal Systems, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Jan Kossack
Institute of Coastal Systems, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Kubilay Timur Demir
Institute of Coastal Systems, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Helmuth Thomas
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
Corinna Schrum
Institute of Coastal Systems, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Institute of Oceanography, University of Hamburg, Hamburg, Germany
Related authors
Kubilay Timur Demir, Moritz Mathis, Jan Kossack, Feifei Liu, Ute Daewel, Christoph Stegert, Helmuth Thomas, and Corinna Schrum
Biogeosciences, 22, 2569–2599, https://doi.org/10.5194/bg-22-2569-2025, https://doi.org/10.5194/bg-22-2569-2025, 2025
Short summary
Short summary
This study examines how variations in the ratios of carbon, nitrogen, and phosphorus in organic matter affect carbon cycling in the northwest European shelf seas. Traditional models with fixed ratios tend to underestimate biological carbon uptake. By integrating variable ratios into a regional model, we find that carbon dioxide uptake increases by 9 %–31 %. These results highlight the need to include variable ratios for accurate assessments of regional and global carbon cycles.
Kubilay Timur Demir, Moritz Mathis, Jan Kossack, Feifei Liu, Ute Daewel, Christoph Stegert, Helmuth Thomas, and Corinna Schrum
Biogeosciences, 22, 2569–2599, https://doi.org/10.5194/bg-22-2569-2025, https://doi.org/10.5194/bg-22-2569-2025, 2025
Short summary
Short summary
This study examines how variations in the ratios of carbon, nitrogen, and phosphorus in organic matter affect carbon cycling in the northwest European shelf seas. Traditional models with fixed ratios tend to underestimate biological carbon uptake. By integrating variable ratios into a regional model, we find that carbon dioxide uptake increases by 9 %–31 %. These results highlight the need to include variable ratios for accurate assessments of regional and global carbon cycles.
Hoa Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
Geosci. Model Dev., 18, 2961–2982, https://doi.org/10.5194/gmd-18-2961-2025, https://doi.org/10.5194/gmd-18-2961-2025, 2025
Short summary
Short summary
Parameterization is key in modeling to reproduce observations well but is often done manually. This study presents a particle-swarm-optimizer-based toolbox for marine ecosystem models, compatible with the Framework for Aquatic Biogeochemical Models, thus enhancing its reusability. Applied to the Sylt ecosystem, the toolbox effectively (1) identified multiple parameter sets that matched observations well, providing different insights into ecosystem dynamics, and (2) optimized model complexity.
Alberto Elizalde, Naveed Akhtar, Beate Geyer, and Corinna Schrum
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-64, https://doi.org/10.5194/wes-2025-64, 2025
Preprint under review for WES
Short summary
Short summary
As green energy demand rises, offshore wind farms in the North Sea are expanding. This study examines the uncertainties in power output predictions, considering turbine arrangements and weather conditions. Using an advanced climate model, we found that power output can vary by up to 13 %. These findings are vital for accurate economic and environmental planning. This research will contribute to a better understanding of the potential of offshore wind energy.
David Johannes Amptmeijer, Andrea Padilla, Sofia Modesti, Corinna Schrum, and Johannes Bieser
EGUsphere, https://doi.org/10.5194/egusphere-2025-1494, https://doi.org/10.5194/egusphere-2025-1494, 2025
Short summary
Short summary
This paper combines a literature review with a 1D coupled Hg speciation and bioaccumulation model to assess how feeding strategy influences inorganic and methylmercury levels at the food web's base. We find that filter feeders have higher MeHg concentrations, while suspension feeders show very low MeHg. These results highlight feeding strategy as a key driver in MeHg bioaccumulation variability.
David Johannes Amptmeijer, Elena Mikhavee, Ute Daewel, Johannes Bieser, and Corinna Schrum
EGUsphere, https://doi.org/10.5194/egusphere-2025-1486, https://doi.org/10.5194/egusphere-2025-1486, 2025
Short summary
Short summary
In this study, we analyze mercury bioaccumulation, including both methylated and inorganic Hg. While methylmercury is the primary toxin of concern, modeling inorganic Hg bioaccumulation reveals its role in marine mercury cycling. We find that bioaccumulation strongly influences mercury dynamics, increasing methylmercury levels. This effect is more pronounced in well-mixed coastal waters than in permanently stratified deep waters.
Claudia Elena Schmidt, Tristan Zimmermann, Katarzyna Koziorowska, Daniel Pröfrock, and Helmuth Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2025-291, https://doi.org/10.5194/egusphere-2025-291, 2025
Short summary
Short summary
This study explores how ocean currents, melting sea ice, and freshwater runoff alter biogeochemical cycles on the west Greenland shelf. By analyzing water samples on a high-resolution, large-scale grid, we found that these factors create distinct regional and spatial distribution patterns and significantly impact biological productivity during late summer. The study highlights the need for ongoing monitoring to understand the effects of climate change in this sensitive area.
Mona Norbisrath, Justus E. E. van Beusekom, and Helmuth Thomas
Ocean Sci., 20, 1423–1440, https://doi.org/10.5194/os-20-1423-2024, https://doi.org/10.5194/os-20-1423-2024, 2024
Short summary
Short summary
We present an observational study investigating total alkalinity (TA) in the Dutch Wadden Sea. Discrete water samples were used to identify the TA spatial distribution patterns and locate and shed light on TA sources. By observing a tidal cycle, the sediments and pore water exchange were identified as local TA sources. We assumed metabolically driven CaCO3 dissolution as the TA source in the upper, oxic sediments and anaerobic metabolic processes as TA sources in the deeper, anoxic ones.
Julia Meyer, Yoana G. Voynova, Bryce Van Dam, Lara Luitjens, Dagmar Daehne, and Helmuth Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3048, https://doi.org/10.5194/egusphere-2024-3048, 2024
Short summary
Short summary
The study highlights the inter-seasonal variability of the carbonate dynamics of the East Frisian Wadden Sea, the world's largest intertidal area. During spring, increased biological activity leads to lower CO2 and nitrate levels, while total alkalinity (TA) rises slightly. In summer, TA increases, enhancing the ocean's ability to absorb CO2. Our research emphasizes the vital role of these intertidal regions in regulating carbon, contributing to a better understanding of carbon storage.
Lucas Porz, Wenyan Zhang, Nils Christiansen, Jan Kossack, Ute Daewel, and Corinna Schrum
Biogeosciences, 21, 2547–2570, https://doi.org/10.5194/bg-21-2547-2024, https://doi.org/10.5194/bg-21-2547-2024, 2024
Short summary
Short summary
Seafloor sediments store a large amount of carbon, helping to naturally regulate Earth's climate. If disturbed, some sediment particles can turn into CO2, but this effect is not well understood. Using computer simulations, we found that bottom-contacting fishing gears release about 1 million tons of CO2 per year in the North Sea, one of the most heavily fished regions globally. We show how protecting certain areas could reduce these emissions while also benefitting seafloor-living animals.
Peter Arlinghaus, Corinna Schrum, Ingrid Kröncke, and Wenyan Zhang
Earth Surf. Dynam., 12, 537–558, https://doi.org/10.5194/esurf-12-537-2024, https://doi.org/10.5194/esurf-12-537-2024, 2024
Short summary
Short summary
Benthos is recognized to strongly influence sediment stability, deposition, and erosion. This is well studied on small scales, but large-scale impact on morphological change is largely unknown. We quantify the large-scale impact of benthos by modeling the evolution of a tidal basin. Results indicate a profound impact of benthos by redistributing sediments on large scales. As confirmed by measurements, including benthos significantly improves model results compared to an abiotic scenario.
Mona Norbisrath, Andreas Neumann, Kirstin Dähnke, Tina Sanders, Andreas Schöl, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 20, 4307–4321, https://doi.org/10.5194/bg-20-4307-2023, https://doi.org/10.5194/bg-20-4307-2023, 2023
Short summary
Short summary
Total alkalinity (TA) is the oceanic capacity to store CO2. Estuaries can be a TA source. Anaerobic metabolic pathways like denitrification (reduction of NO3− to N2) generate TA and are a major nitrogen (N) sink. Another important N sink is anammox that transforms NH4+ with NO2− into N2 without TA generation. By combining TA and N2 production, we identified a TA source, denitrification, occurring in the water column and suggest anammox as the dominant N2 producer in the bottom layer of the Ems.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Philipp Heinrich, Stefan Hagemann, Ralf Weisse, Corinna Schrum, Ute Daewel, and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023, https://doi.org/10.5194/nhess-23-1967-2023, 2023
Short summary
Short summary
High seawater levels co-occurring with high river discharges have the potential to cause destructive flooding. For the past decades, the number of such compound events was larger than expected by pure chance for most of the west-facing coasts in Europe. Additionally rivers with smaller catchments showed higher numbers. In most cases, such events were associated with a large-scale weather pattern characterized by westerly winds and strong rainfall.
Johannes Bieser, David J. Amptmeijer, Ute Daewel, Joachim Kuss, Anne L. Soerensen, and Corinna Schrum
Geosci. Model Dev., 16, 2649–2688, https://doi.org/10.5194/gmd-16-2649-2023, https://doi.org/10.5194/gmd-16-2649-2023, 2023
Short summary
Short summary
MERCY is a 3D model to study mercury (Hg) cycling in the ocean. Hg is a highly harmful pollutant regulated by the UN Minamata Convention on Mercury due to widespread human emissions. These emissions eventually reach the oceans, where Hg transforms into the even more toxic and bioaccumulative pollutant methylmercury. MERCY predicts the fate of Hg in the ocean and its buildup in the food chain. It is the first model to consider Hg accumulation in fish, a major source of Hg exposure for humans.
Mona Norbisrath, Johannes Pätsch, Kirstin Dähnke, Tina Sanders, Gesa Schulz, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 19, 5151–5165, https://doi.org/10.5194/bg-19-5151-2022, https://doi.org/10.5194/bg-19-5151-2022, 2022
Short summary
Short summary
Total alkalinity (TA) regulates the oceanic storage capacity of atmospheric CO2. TA is also metabolically generated in estuaries and influences coastal carbon storage through its inflows. We used water samples and identified the Hamburg port area as the one with highest TA generation. Of the overall riverine TA load, 14 % is generated within the estuary. Using a biogeochemical model, we estimated potential effects on the coastal carbon storage under possible anthropogenic and climate changes.
Bryce Van Dam, Nele Lehmann, Mary A. Zeller, Andreas Neumann, Daniel Pröfrock, Marko Lipka, Helmuth Thomas, and Michael Ernst Böttcher
Biogeosciences, 19, 3775–3789, https://doi.org/10.5194/bg-19-3775-2022, https://doi.org/10.5194/bg-19-3775-2022, 2022
Short summary
Short summary
We quantified sediment–water exchange at shallow sites in the North and Baltic seas. We found that porewater irrigation rates in the former were approximately twice as high as previously estimated, likely driven by relatively high bioirrigative activity. In contrast, we found small net fluxes of alkalinity, ranging from −35 µmol m−2 h−1 (uptake) to 53 µmol m−2 h−1 (release). We attribute this to low net denitrification, carbonate mineral (re-)precipitation, and sulfide (re-)oxidation.
Veli Çağlar Yumruktepe, Annette Samuelsen, and Ute Daewel
Geosci. Model Dev., 15, 3901–3921, https://doi.org/10.5194/gmd-15-3901-2022, https://doi.org/10.5194/gmd-15-3901-2022, 2022
Short summary
Short summary
We describe the coupled bio-physical model ECOSMO II(CHL), which is used for regional configurations for the North Atlantic and the Arctic hind-casting and operational purposes. The model is consistent with the large-scale climatological nutrient settings and is capable of representing regional and seasonal changes, and model primary production agrees with previous measurements. For the users of this model, this paper provides the underlying science, model evaluation and its development.
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences, 18, 6271–6286, https://doi.org/10.5194/bg-18-6271-2021, https://doi.org/10.5194/bg-18-6271-2021, 2021
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves in combination with a surface water time series and repeat transect observations, we investigate surface CO2 variability on the Scotian Shelf. The study highlights a strong seasonal cycle in shelf-wide pCO2 and spatial variability throughout the summer months driven by physical events. The simulated net flux of CO2 on the Scotian Shelf is out of the ocean, deviating from the global air–sea CO2 flux trend in continental shelves.
Chantal Mears, Helmuth Thomas, Paul B. Henderson, Matthew A. Charette, Hugh MacIntyre, Frank Dehairs, Christophe Monnin, and Alfonso Mucci
Biogeosciences, 17, 4937–4959, https://doi.org/10.5194/bg-17-4937-2020, https://doi.org/10.5194/bg-17-4937-2020, 2020
Short summary
Short summary
Major research initiatives have been undertaken within the Arctic Ocean, highlighting this area's global importance and vulnerability to climate change. In 2015, the international GEOTRACES program addressed this importance by devoting intense research activities to the Arctic Ocean. Among various tracers, we used radium and carbonate system data to elucidate the functioning and vulnerability of the hydrographic regime of the Canadian Arctic Archipelago, bridging the Pacific and Atlantic oceans.
Fabian Schwichtenberg, Johannes Pätsch, Michael Ernst Böttcher, Helmuth Thomas, Vera Winde, and Kay-Christian Emeis
Biogeosciences, 17, 4223–4245, https://doi.org/10.5194/bg-17-4223-2020, https://doi.org/10.5194/bg-17-4223-2020, 2020
Short summary
Short summary
Ocean acidification has a range of potentially harmful consequences for marine organisms. It is related to total alkalinity (TA) mainly produced in oxygen-poor situations like sediments in tidal flats. TA reduces the sensitivity of a water body to acidification. The decomposition of organic material and subsequent TA release in the tidal areas of the North Sea (Wadden Sea) is responsible for reduced acidification in the southern North Sea. This is shown with the results of an ecosystem model.
Alexis Beaupré-Laperrière, Alfonso Mucci, and Helmuth Thomas
Biogeosciences, 17, 3923–3942, https://doi.org/10.5194/bg-17-3923-2020, https://doi.org/10.5194/bg-17-3923-2020, 2020
Short summary
Short summary
Ocean acidification is the process by which the oceans are changing due to carbon dioxide emissions from human activities. Studying this process in the Arctic Ocean is essential as this ocean and its ecosystems are more vulnerable to the effects of acidification. Water chemistry measurements made in recent years show that waters in and around the Canadian Arctic Archipelago are considerably affected by this process and show dynamic conditions that might have an impact on local marine organisms.
Louise Delaigue, Helmuth Thomas, and Alfonso Mucci
Biogeosciences, 17, 547–566, https://doi.org/10.5194/bg-17-547-2020, https://doi.org/10.5194/bg-17-547-2020, 2020
Short summary
Short summary
This paper reports on the first compilation and analysis of the surface water pCO2 distribution in the Saguenay Fjord, the southernmost subarctic fjord in the Northern Hemisphere, and thus fills a significant knowledge gap in current regional estimates of estuarine CO2 emissions.
Laurie M. Charrieau, Karl Ljung, Frederik Schenk, Ute Daewel, Emma Kritzberg, and Helena L. Filipsson
Biogeosciences, 16, 3835–3852, https://doi.org/10.5194/bg-16-3835-2019, https://doi.org/10.5194/bg-16-3835-2019, 2019
Short summary
Short summary
We reconstructed environmental changes in the Öresund during the last 200 years, using foraminifera (microfossils), sediment, and climate data. Five zones were identified, reflecting oxygen, salinity, food content, and pollution levels for each period. The largest changes occurred ~ 1950, towards stronger currents. The foraminifera responded quickly (< 10 years) to the changes. Moreover, they did not rebound when the system returned to the previous pattern, but displayed a new equilibrium state.
Johannes Pein, Annika Eisele, Richard Hofmeister, Tina Sanders, Ute Daewel, Emil V. Stanev, Justus van Beusekom, Joanna Staneva, and Corinna Schrum
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-265, https://doi.org/10.5194/bg-2019-265, 2019
Revised manuscript not accepted
Short summary
Short summary
The Elbe estuary is subject to vigorous tidal forcing from the sea side and considerable biological inputs from the land side. Our 3D numerical coupled physical-biogeochemical integrates these forcing signals and provides highly realistic hindcasts of the associated dynamics. Model simulations show that the freshwater part of Elbe estuary is inhabited by plankton. According to simulations these organism play a key role in converting organic inputs into nitrate, the major inorganic nutrient.
Ute Daewel, Corinna Schrum, and Jed I. Macdonald
Geosci. Model Dev., 12, 1765–1789, https://doi.org/10.5194/gmd-12-1765-2019, https://doi.org/10.5194/gmd-12-1765-2019, 2019
Short summary
Short summary
Here we propose a novel modelling approach that includes an extended food web in a functional-group-type marine ecosystem model (ECOSMO E2E) by formulating new groups for macrobenthos and fish. This enables the estimation of the dynamics of the higher-trophic-level production potential and constitutes a more consistent closure term for the lower-trophic-level ecosystem. Thus, the model allows for the study of the control mechanisms for marine ecosystems at a high spatial and temporal resolution.
Changjin Zhao, Ute Daewel, and Corinna Schrum
Earth Syst. Dynam., 10, 287–317, https://doi.org/10.5194/esd-10-287-2019, https://doi.org/10.5194/esd-10-287-2019, 2019
Short summary
Short summary
Our study highlights the importance of tides in controlling the spatial and temporal distributions North Sea primary production based on numerical experiments. We identified two different response chains acting in different regions of the North Sea. (i) In the southern shallow areas, strong tidal mixing dilutes phytoplankton concentrations and increases turbidity, thus decreasing NPP. (ii) In the frontal regions, tidal mixing infuses nutrients into the surface mixed layer, thus increasing NPP.
Rachel M. Horwitz, Alex E. Hay, William J. Burt, Richard A. Cheel, Joseph Salisbury, and Helmuth Thomas
Biogeosciences, 16, 605–616, https://doi.org/10.5194/bg-16-605-2019, https://doi.org/10.5194/bg-16-605-2019, 2019
Short summary
Short summary
High-frequency CO2 measurements are used to quantify the daily and tidal cycles of dissolved carbon in the Bay of Fundy – home to the world's largest tides. The oscillating tidal flows drive a net carbon transport, and these results suggest that previously unaccounted for tidal variation could substantially modulate the coastal ocean's response to global ocean acidification. Evaluating the impact of rising atmospheric CO2 on coastal systems requires understanding this short-term variability.
Jonathan Lemay, Helmuth Thomas, Susanne E. Craig, William J. Burt, Katja Fennel, and Blair J. W. Greenan
Biogeosciences, 15, 2111–2123, https://doi.org/10.5194/bg-15-2111-2018, https://doi.org/10.5194/bg-15-2111-2018, 2018
Short summary
Short summary
We report a detailed mechanistic investigation of the impact of Hurricane Arthur on the CO2 cycling on the Scotian Shelf. We can show that in contrast to common thinking, the deepening of the surface during the summer months can lead to increased CO2 uptake as carbon-poor waters from subsurface water are brought up to the surface. Only during prolonged storm events is the deepening of the mixed layer strong enough to bring the (expected) carbon-rich water to the surface.
Jacoba Mol, Helmuth Thomas, Paul G. Myers, Xianmin Hu, and Alfonso Mucci
Biogeosciences, 15, 1011–1027, https://doi.org/10.5194/bg-15-1011-2018, https://doi.org/10.5194/bg-15-1011-2018, 2018
Short summary
Short summary
In the fall of 2014, the upwelling of water from the deep Canada Basin brought water onto the shallower Mackenzie Shelf in the Beaufort Sea. This increased the concentration of CO2 in water on the shelf, which alters pH and changes the transfer of CO2 between the ocean and atmosphere. These findings were a combined result of water sampling for CO2 parameters and the use of a computer model that simulates water movement in the ocean.
Ute Daewel and Corinna Schrum
Earth Syst. Dynam., 8, 801–815, https://doi.org/10.5194/esd-8-801-2017, https://doi.org/10.5194/esd-8-801-2017, 2017
Short summary
Short summary
Processes behind observed long-term variations in marine ecosystems are difficult to be deduced from in situ observations only. By statistically analysing a 61-year model simulation for the North Sea and Baltic Sea and additional model scenarios, we identified major modes of variability in the environmental variables and associated those with changes in primary production. We found that the dominant impact on changes in ecosystem productivity was introduced by modulations of the wind fields.
Rachel Hussherr, Maurice Levasseur, Martine Lizotte, Jean-Éric Tremblay, Jacoba Mol, Helmuth Thomas, Michel Gosselin, Michel Starr, Lisa A. Miller, Tereza Jarniková, Nina Schuback, and Alfonso Mucci
Biogeosciences, 14, 2407–2427, https://doi.org/10.5194/bg-14-2407-2017, https://doi.org/10.5194/bg-14-2407-2017, 2017
Short summary
Short summary
This study assesses the impact of ocean acidification on phytoplankton and its synthesis of the climate-active gas dimethyl sulfide (DMS), as well as its modulation, by two contrasting light regimes in the Arctic. The light regimes tested had no significant impact on either the phytoplankton or DMS concentration, whereas both variables decreased linearly with the decrease in pH. Thus, a rapid decrease in surface water pH could alter the algal biomass and inhibit DMS production in the Arctic.
William J. Burt, Helmuth Thomas, Lisa A. Miller, Mats A. Granskog, Tim N. Papakyriakou, and Leah Pengelly
Biogeosciences, 13, 4659–4671, https://doi.org/10.5194/bg-13-4659-2016, https://doi.org/10.5194/bg-13-4659-2016, 2016
Short summary
Short summary
This study assesses the state of the carbon cycle in Hudson Bay, an ecologically important region of the Canadian Arctic. Results show that river input, sea-ice melt, biological activity, and general circulation patterns all have significant, and regionally dependent, impacts on the carbon cycle. The study also highlights the importance of detailed sampling procedures in highly stratified waters, and reveals that the deep Hudson Bay is primarily filled with waters of Pacific origin.
Fabian Große, Naomi Greenwood, Markus Kreus, Hermann-Josef Lenhart, Detlev Machoczek, Johannes Pätsch, Lesley Salt, and Helmuth Thomas
Biogeosciences, 13, 2511–2535, https://doi.org/10.5194/bg-13-2511-2016, https://doi.org/10.5194/bg-13-2511-2016, 2016
Short summary
Short summary
We used the ECOHAM5 model to provide a consistent picture of the physical and biological drivers of oxygen deficiency in the North Sea. Regions susceptible to oxygen deficiency are characterised by low tidal mixing and moderate water depth (~ 40 m). Variations in upper layer productivity drive the year-to-year variability of bottom oxygen conditions. The model-based analysis reveals that benthic and pelagic remineralisation account for 90 % of bottom oxygen consumption observed at North Dogger.
N. Jiao, C. Robinson, F. Azam, H. Thomas, F. Baltar, H. Dang, N. J. Hardman-Mountford, M. Johnson, D. L. Kirchman, B. P. Koch, L. Legendre, C. Li, J. Liu, T. Luo, Y.-W. Luo, A. Mitra, A. Romanou, K. Tang, X. Wang, C. Zhang, and R. Zhang
Biogeosciences, 11, 5285–5306, https://doi.org/10.5194/bg-11-5285-2014, https://doi.org/10.5194/bg-11-5285-2014, 2014
S. E. Craig, H. Thomas, C. T. Jones, W. K. W. Li, B. J. W. Greenan, E. H. Shadwick, and W. J. Burt
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-11255-2013, https://doi.org/10.5194/bgd-10-11255-2013, 2013
Revised manuscript not accepted
W. J. Burt, H. Thomas, K. Fennel, and E. Horne
Biogeosciences, 10, 53–66, https://doi.org/10.5194/bg-10-53-2013, https://doi.org/10.5194/bg-10-53-2013, 2013
Related subject area
Biogeochemistry: Coastal Ocean
Spring–neap tidal cycles modulate the strength of the carbon source at the estuary–coast interface
Spatiotemporal variations in surface marine carbonate system properties across the western Mediterranean Sea using volunteer observing ship data
Amplified bottom water acidification rates on the Bering Sea shelf from 1970–2022
Depositional controls and budget of organic carbon burial in fine-grained sediments of the North Sea – the Helgoland Mud Area as a natural laboratory
Effects of submarine groundwater on nutrient concentration and primary production in a deep bay of the Japan Sea
The bacteria–protist link as a main route of dissolved organic matter across contrasting productivity areas on the Patagonian Shelf
Ocean alkalinity enhancement (OAE) does not cause cellular stress in a phytoplankton community of the subtropical Atlantic Ocean
Reviews and syntheses: On increasing hypoxia in eastern boundary upwelling systems – zooplankton under metabolic stress
Zinc stimulation of phytoplankton in a low carbon dioxide, coastal Antarctic environment: evidence for the Zn hypothesis
Technical note: Testing a new approach for the determination of N2 fixation rates by coupling a membrane equilibrator to a mass spectrometer for long-term observations
A niche for diverse cable bacteria in continental margin sediments overlain by oxygen-deficient waters
Phytoplankton community succession and biogeochemistry in a bloom simulation experiment at an estuary-ocean interface
Long-term variations in pH in coastal waters along the Korean Peninsula
The effect of carbonate mineral additions on biogeochemical conditions in surface sediments and benthic–pelagic exchange fluxes
Estimation of Metabolic Dynamics of Restored Seagrass Meadows in a Southeast Asia Islet: Insights from Ex Situ Benthic Incubation
Assessing the impacts of simulated ocean alkalinity enhancement on viability and growth of nearshore species of phytoplankton
Human Activities Caused Hypoxia Expansion in a Large Eutrophic Estuary: Non-negligible Role of Riverine Suspended Sediments
Photosynthetic electron, carbon and oxygen fluxes within a mosaic of Fe limitation in the California Current Upwelling System
Responses of microbial metabolic rates to non-equilibrated silicate- versus calcium-based ocean alkalinity enhancement
High metabolic zinc demand within native Amundsen and Ross sea phytoplankton communities determined by stable isotope uptake rate measurements
The influence of zooplankton and oxygen on the particulate organic carbon flux in the Benguela Upwelling System
Reviews and syntheses: Biological indicators of low-oxygen stress in marine water-breathing animals
Temperature-enhanced effects of iron on Southern Ocean phytoplankton
Riverine nutrient impact on global ocean nitrogen cycle feedbacks and marine primary production in an Earth system model
The Northeast Greenland Shelf as a potential late-summer CO2 source to the atmosphere
Technical note: Ocean Alkalinity Enhancement Pelagic Impact Intercomparison Project (OAEPIIP)
Estimates of carbon sequestration potential in an expanding Arctic fjord (Hornsund, Svalbard) affected by dark plumes of glacial meltwater
An assessment of ocean alkalinity enhancement using aqueous hydroxides: kinetics, efficiency, and precipitation thresholds
Dissolved nitric oxide in the lower Elbe Estuary and the Port of Hamburg area
Variable contribution of wastewater treatment plant effluents to downstream nitrous oxide concentrations and emissions
Improved understanding of eutrophication trends, indicators and problem areas using machine learning
Distribution of nutrients and dissolved organic matter in a eutrophic equatorial estuary: the Johor River and the East Johor Strait
Investigating the effect of silicate- and calcium-based ocean alkalinity enhancement on diatom silicification
Ocean alkalinity enhancement using sodium carbonate salts does not lead to measurable changes in Fe dynamics in a mesocosm experiment
Quantification and mitigation of bottom-trawling impacts on sedimentary organic carbon stocks in the North Sea
Influence of ocean alkalinity enhancement with olivine or steel slag on a coastal plankton community in Tasmania
Multi-model comparison of trends and controls of near-bed oxygen concentration on the northwest European continental shelf under climate change
Picoplanktonic methane production in eutrophic surface waters
Vertical mixing alleviates autumnal oxygen deficiency in the central North Sea
Hypoxia also occurs in small highly turbid estuaries: the example of the Charente (Bay of Biscay)
Seasonality and response of ocean acidification and hypoxia to major environmental anomalies in the southern Salish Sea, North America (2014–2018)
Oceanographic processes driving low-oxygen conditions inside Patagonian fjords
Above- and belowground plant mercury dynamics in a salt marsh estuary in Massachusetts, USA
Variability and drivers of carbonate chemistry at shellfish aquaculture sites in the Salish Sea, British Columbia
Unusual Hemiaulus bloom influences ocean productivity in Northeastern US Shelf waters
Insights into carbonate environmental conditions in the Chukchi Sea
UAV approaches for improved mapping of vegetation cover and estimation of carbon storage of small saltmarshes: examples from Loch Fleet, northeast Scotland
Iron “ore” nothing: benthic iron fluxes from the oxygen-deficient Santa Barbara Basin enhance phytoplankton productivity in surface waters
Marine anoxia initiates giant sulfur-oxidizing bacterial mat proliferation and associated changes in benthic nitrogen, sulfur, and iron cycling in the Santa Barbara Basin, California Borderland
Uncertainty in the evolution of northwestern North Atlantic circulation leads to diverging biogeochemical projections
Vlad A. Macovei, Louise C. V. Rewrie, Rüdiger Röttgers, and Yoana G. Voynova
Biogeosciences, 22, 3375–3396, https://doi.org/10.5194/bg-22-3375-2025, https://doi.org/10.5194/bg-22-3375-2025, 2025
Short summary
Short summary
We found that biogeochemical variability at the land–sea interface (LSI) in two major temperate estuaries is modulated by the 14 d spring–neap tidal cycle, with large effects on dissolved inorganic and organic carbon concentrations and distribution. As this effect increases the strength of the carbon source to the atmosphere by up to 74 % during spring tide, it should be accounted for in regional models, which aim to resolve biogeochemical processing at the LSI.
David Curbelo-Hernández, David González-Santana, Aridane G. González, J. Magdalena Santana-Casiano, and Melchor González-Dávila
Biogeosciences, 22, 3329–3356, https://doi.org/10.5194/bg-22-3329-2025, https://doi.org/10.5194/bg-22-3329-2025, 2025
Short summary
Short summary
This study offers a unique high-resolution dataset (2019–2024) on surface physicochemical properties in the western Mediterranean Sea. It reveals accelerated surface warming, significantly altering CO2 levels and pH. Currently a net CO2 sink, the region may become a CO2 source by 2030 due to weakening in-gassing. The research highlights the value of VOS (volunteer observing ship) lines for monitoring climate impacts and emphasizes the need for ongoing observations to enhance long-term trend accuracy and future projections.
Darren J. Pilcher, Jessica N. Cross, Natalie Monacci, Linquan Mu, Kelly A. Kearney, Albert J. Hermann, and Wei Cheng
Biogeosciences, 22, 3103–3125, https://doi.org/10.5194/bg-22-3103-2025, https://doi.org/10.5194/bg-22-3103-2025, 2025
Short summary
Short summary
The Bering Sea shelf is a highly productive marine ecosystem that is vulnerable to ocean acidification. We use a computational model to simulate the carbon cycle and acidification rates from 1970–2022. The results suggest that bottom water acidification rates are more than twice as great as surface rates. Bottom waters are also naturally more acidic. Thus these waters will pass key thresholds known to negatively impact marine organisms, such as red king crab, much sooner than surface waters.
Daniel Müller, Bo Liu, Walter Geibert, Moritz Holtappels, Lasse Sander, Elda Miramontes, Heidi Taubner, Susann Henkel, Kai-Uwe Hinrichs, Denise Bethke, Ingrid Dohrmann, and Sabine Kasten
Biogeosciences, 22, 2541–2567, https://doi.org/10.5194/bg-22-2541-2025, https://doi.org/10.5194/bg-22-2541-2025, 2025
Short summary
Short summary
Coastal and shelf sediments are the most important sinks for organic carbon (OC) on Earth. We produced a new high-resolution sediment and porewater data set from the Helgoland Mud Area (HMA), North Sea, to determine which depositional factors control the preservation of OC. The burial efficiency is highest in an area of high sedimentation and terrigenous OC. The HMA covers 0.09 % of the North Sea but accounts for 0.76 % of its OC accumulation, highlighting the importance of the depocentre.
Menghong Dong, Xinyu Guo, Takuya Matsuura, Taichi Tebakari, and Jing Zhang
Biogeosciences, 22, 2383–2402, https://doi.org/10.5194/bg-22-2383-2025, https://doi.org/10.5194/bg-22-2383-2025, 2025
Short summary
Short summary
Submarine groundwater discharge (SGD), a common coastal hydrological process that involves submarine inflow of groundwater into the sea, is associated with a large nutrient load. To clarify the distribution of SGD-derived nutrients after release at the bottom of the sea and their contribution to phytoplankton growth in the marine ecosystem, we modeled the SGD process in Toyama Bay using a specialized computer code that can distinguish SGD-derived nutrients from nutrients from other sources.
M. Celeste López-Abbate, John E. Garzón-Cardona, Ricardo Silva, Juan-Carlos Molinero, Laura A. Ruiz-Etcheverry, Ana M. Martínez, Azul S. Gilabert, and Rubén J. Lara
Biogeosciences, 22, 2309–2325, https://doi.org/10.5194/bg-22-2309-2025, https://doi.org/10.5194/bg-22-2309-2025, 2025
Short summary
Short summary
This study explores how microbial dynamics influence the dissolved organic matter (DOM) pool in the Patagonian Shelf. Despite high phytoplankton biomass, selective grazing on fast-growing bacteria led to DOM accumulation, likely due to reduced DOM-consuming bacteria and added egestion compounds. Experiments showed that bacteria not only acted as a carbon sink through mineralization but also transferred assimilated carbon dioxide (CO2) to higher trophic levels.
Librada Ramírez, Leonardo J. Pozzo-Pirotta, Aja Trebec, Víctor Manzanares-Vázquez, José L. Díez, Javier Arístegui, Ulf Riebesell, Stephen D. Archer, and María Segovia
Biogeosciences, 22, 1865–1886, https://doi.org/10.5194/bg-22-1865-2025, https://doi.org/10.5194/bg-22-1865-2025, 2025
Short summary
Short summary
We studied the potential effects of increasing ocean alkalinity on a natural plankton community in subtropical waters of the Atlantic near Gran Canaria, Spain. Alkalinity is the capacity of water to resist acidification, and plankton are usually microscopic plants (phytoplankton) and animals (zooplankton), often less than 2.5 cm in length. This study suggests that increasing ocean alkalinity did not have a significant negative impact on the plankton community studied.
Leissing Frederick, Mauricio A. Urbina, and Ruben Escribano
Biogeosciences, 22, 1839–1852, https://doi.org/10.5194/bg-22-1839-2025, https://doi.org/10.5194/bg-22-1839-2025, 2025
Short summary
Short summary
Evidence shows that due to global warming, zooplankton inhabiting the coastal upwelling zone are exposed to increasing hypoxia affecting their physiology, metabolism, and population dynamics. The adaptive responses of zooplankton to cope with mild/severe hypoxia may depend on trade-offs with other metabolic/energy demands, implying less energy for growth, feeding, and reproduction, with ecological consequences for the zooplankton population and the marine food web.
Riss M. Kell, Adam V. Subhas, Nicole L. Schanke, Lauren E. Lees, Rebecca J. Chmiel, Deepa Rao, Margaret M. Brisbin, Dawn M. Moran, Matthew R. McIlvin, Francesco Bolinesi, Olga Mangoni, Raffaella Casotti, Cecilia Balestra, Tristan Horner, Robert B. Dunbar, Andrew E. Allen, Giacomo R. DiTullio, and Mak A. Saito
EGUsphere, https://doi.org/10.1101/2023.11.05.565706, https://doi.org/10.1101/2023.11.05.565706, 2025
Short summary
Short summary
Photosynthetic productivity is strongly influenced by water column nutrient availability. Despite the importance of zinc, definitive evidence for oceanic zinc limitation of photosynthesis has been scarce. We applied multiple biogeochemical measurements to a field site in Terra Nova Bay, Antarctica, to demonstrate that the phytoplankton community was experiencing zinc limitation. This field evidence paves the way for future experimental studies to consider Zn as a limiting oceanic micronutrient.
Sören Iwe, Oliver Schmale, and Bernd Schneider
Biogeosciences, 22, 1767–1779, https://doi.org/10.5194/bg-22-1767-2025, https://doi.org/10.5194/bg-22-1767-2025, 2025
Short summary
Short summary
We present a novel method for quantifying N2 fixation by cyanobacteria, which is crucial in Baltic Sea eutrophication. Our Gas Equilibrium – Membrane-Inlet Mass Spectrometer (GE-MIMS), designed for operation on voluntary observing ships (VOSs), enables large-scale monitoring of surface water N2 depletion caused by N2 fixation. Laboratory tests confirm the device’s accuracy and precision, ensuring that it can complement current methods and contribute valuable data for better understanding N2 fixation in the Baltic Sea.
Caroline P. Slomp, Martijn Hermans, Niels A. G. M. van Helmond, Silke Severmann, James McManus, Marit R. van Erk, and Sairah Malkin
EGUsphere, https://doi.org/10.5194/egusphere-2025-817, https://doi.org/10.5194/egusphere-2025-817, 2025
Short summary
Short summary
Cable bacteria couple oxidation of sulfide at depth in sediments with reduction of oxygen, nitrate or nitrite near the sediment surface, thereby preventing release of toxic hydrogen sulfide to the overlying water. We show evidence for a diversity of cable bacteria in sediments from hypoxic and anoxic basins along the continental margin of California and Mexico. Cable bacteria activity in this setting is likely periodic and dependent on the supply of organic matter and/or oxygen.
Jenna Alyson Lee, Joseph H. Vineis, Mathieu A. Poupon, Laure Resplandy, and Bess B. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-871, https://doi.org/10.5194/egusphere-2025-871, 2025
Short summary
Short summary
Concurrent sampling of environmental parameters, productivity rates, photopigments, and DNA were used to analyze a 24–L estuarine diatom bloom microcosm. Biogeochemical data and an ecological model indicated that the bloom was terminated by grazing. Comparisons to previous studies revealed (1) additional community and diversity complexity using 18S amplicon vs. traditional pigment–based analyses, and (2) a potential global productivity–diversity relationship using 18S and carbon transport rates.
Yong-Woo Lee, Mi-Ok Park, Seong-Gil Kim, Tae-Hoon Kim, Yong Hwa Oh, Sang Heon Lee, and DongJoo Joung
Biogeosciences, 22, 675–690, https://doi.org/10.5194/bg-22-675-2025, https://doi.org/10.5194/bg-22-675-2025, 2025
Short summary
Short summary
Long-term pH variation in coastal waters along the Korean Peninsula was assessed for the first time, and it exhibited no significant pH change over an 11-year period. This contrasts with the ongoing pH decline in open oceans and other coastal areas. Analysis of environmental data showed that pH is mainly controlled by dissolved oxygen in bottom waters. This suggests that ocean warming could cause a pH decline in Korean coastal waters, affecting many fish and seaweed aquaculture operations.
Kadir Biçe, Tristen Myers Stewart, George G. Waldbusser, and Christof Meile
Biogeosciences, 22, 641–657, https://doi.org/10.5194/bg-22-641-2025, https://doi.org/10.5194/bg-22-641-2025, 2025
Short summary
Short summary
We studied the effect of addition of carbonate minerals on coastal sediments. We carried out laboratory experiments to quantify the dissolution kinetics and integrated these observations into a numerical model that describes biogeochemical cycling in surficial sediments. Using the model, we demonstrate the buffering effect of the mineral additions and their duration. We quantify the effect under different environmental conditions and assess the potential for increased atmospheric CO2 uptake.
Mariche Bandibas Natividad, Jian-Jhih Chen, Hsin-Yu Chou, Lan-Feng Fan, Yi-Le Shen, and Wen-Chen Chou
EGUsphere, https://doi.org/10.5194/egusphere-2024-4000, https://doi.org/10.5194/egusphere-2024-4000, 2025
Short summary
Short summary
Seagrass restoration serves as a nature-based solution for CO2 removal. We examined the organic carbon and carbonate dynamics of restored seagrasses (SG) and bare sediments (BS) using ex situ core incubations. SG exhibited higher net ecosystem metabolism compared to BS, while no significant difference was observed in net ecosystem calcification. Consequently, SG demonstrated a significantly enhanced overall capacity for carbon uptake.
Jessica L. Oberlander, Mackenzie E. Burke, Cat A. London, and Hugh L. MacIntyre
Biogeosciences, 22, 499–512, https://doi.org/10.5194/bg-22-499-2025, https://doi.org/10.5194/bg-22-499-2025, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising negative emission technology that results in the net sequestration of atmospheric carbon. In this paper, we assess the potential impact of OAE on phytoplankton through an analysis of prior studies and the effects of simulated OAE on photosynthetic competence. Our findings suggest that there may be little if any significant impact on most phytoplankton studied to date if OAE is conducted in well-flushed, nearshore environments.
Yue Nan, Zheng Chen, Bin Wang, Bo Liang, and Jiatang Hu
EGUsphere, https://doi.org/10.5194/egusphere-2024-4013, https://doi.org/10.5194/egusphere-2024-4013, 2025
Short summary
Short summary
Human activities are changing the coastal water environment, but the role of suspended sediments in oxygen loss is not well understood. We used a model to compare dissolved oxygen levels and related factors in the 1990s and 2010s in the Pearl River Estuary. Reduced suspended sediments and increased pollution have expanded low-oxygen areas by 1.5 times. It highlights that declining suspended sediments increase hypoxia in estuaries, especially with rising nutrients, which need urgent attention.
Yayla Sezginer, Kate Schuler, Emily Speciale, Adrian Marchetti, Claire Till, Ralph Till, and Philippe Tortell
EGUsphere, https://doi.org/10.5194/egusphere-2024-3812, https://doi.org/10.5194/egusphere-2024-3812, 2025
Short summary
Short summary
We recorded three metrics of photosynthesis in the California Current. Real-time observations of microalgae physiology and productivity revealed signs of iron limitation where the continental shelf rapidly dropped off. Iron limitation influenced how efficiently light was absorbed and used for carbon fixation but did not appear to affect net photosynthetic oxygen production. Our results offer useful insights towards efforts to model carbon fixation rates from microalgae optical properties.
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, and Ulf Riebesell
Biogeosciences, 21, 5707–5724, https://doi.org/10.5194/bg-21-5707-2024, https://doi.org/10.5194/bg-21-5707-2024, 2024
Short summary
Short summary
This study exposed a natural community to two non-CO2-equilibrated ocean alkalinity enhancement (OAE) deployments using different minerals. Adding alkalinity in this manner decreases dissolved CO2, essential for photosynthesis. While photosynthesis was not suppressed, bloom formation was mildly delayed, potentially impacting marine food webs. The study emphasizes the need for further research on OAE without prior equilibration and on its ecological implications.
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Ichiko Sugiyama, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024, https://doi.org/10.5194/bg-21-5685-2024, 2024
Short summary
Short summary
Despite interest in modeling the biogeochemical uptake and cycling of the trace metal zinc (Zn), measurements of Zn uptake in natural marine phytoplankton communities have not been conducted previously. To fill this gap, we employed a stable isotope uptake rate measurement method to quantify Zn uptake into natural phytoplankton assemblages within the Southern Ocean. Zn demand was high and rapid enough to depress the inventory of Zn available to phytoplankton on seasonal timescales.
Luisa Chiara Meiritz, Tim Rixen, Anja Karin van der Plas, Tarron Lamont, and Niko Lahajnar
Biogeosciences, 21, 5261–5276, https://doi.org/10.5194/bg-21-5261-2024, https://doi.org/10.5194/bg-21-5261-2024, 2024
Short summary
Short summary
Moored and drifting sediment trap experiments in the northern (nBUS) and southern (sBUS) Benguela Upwelling System showed that active carbon fluxes by vertically migrating zooplankton were about 3 times higher in the sBUS than in the nBUS. Despite these large variabilities, the mean passive particulate organic carbon (POC) fluxes were almost equal in the two subsystems. The more intense near-bottom oxygen minimum layer seems to lead to higher POC fluxes and accumulation rates in the nBUS.
Michael R. Roman, Andrew H. Altieri, Denise Breitburg, Erica M. Ferrer, Natalya D. Gallo, Shin-ichi Ito, Karin Limburg, Kenneth Rose, Moriaki Yasuhara, and Lisa A. Levin
Biogeosciences, 21, 4975–5004, https://doi.org/10.5194/bg-21-4975-2024, https://doi.org/10.5194/bg-21-4975-2024, 2024
Short summary
Short summary
Oxygen-depleted ocean waters have increased worldwide. In order to improve our understanding of the impacts of this oxygen loss on marine life it is essential that we develop reliable indicators that track the negative impacts of low oxygen. We review various indicators of low-oxygen stress for marine animals including their use, research needs, and application to confront the challenges of ocean oxygen loss.
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024, https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used shipboard Fe clean incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 21, 4469–4493, https://doi.org/10.5194/bg-21-4469-2024, https://doi.org/10.5194/bg-21-4469-2024, 2024
Short summary
Short summary
Marine biological production is highly dependent on the availability of nitrogen and phosphorus. Rivers are the main source of phosphorus to the oceans but poorly represented in global model oceans. We include dissolved nitrogen and phosphorus from river export in a global model ocean and find that the addition of riverine phosphorus affects marine biology on millennial timescales more than riverine nitrogen alone. Globally, riverine phosphorus input increases primary production rates.
Esdoorn Willcox, Marcos Lemes, Thomas Juul-Pedersen, Mikael Kristian Sejr, Johnna Marchiano Holding, and Søren Rysgaard
Biogeosciences, 21, 4037–4050, https://doi.org/10.5194/bg-21-4037-2024, https://doi.org/10.5194/bg-21-4037-2024, 2024
Short summary
Short summary
In this work, we measured the chemistry of seawater from samples obtained from different depths and locations off the east coast of the Northeast Greenland National Park to determine what is influencing concentrations of dissolved CO2. Historically, the region has always been thought to take up CO2 from the atmosphere, but we show that it is possible for the region to become a source in late summer. We discuss the variables that may be related to such changes.
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024, https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is an emerging marine CO2 removal method, but its environmental effects are insufficiently understood. The OAE Pelagic Impact Intercomparison Project (OAEPIIP) provides funding for a standardized and globally replicated microcosm experiment to study the effects of OAE on plankton communities. Here, we provide a detailed manual for the OAEPIIP experiment. We expect OAEPIIP to help build scientific consensus on the effects of OAE on plankton.
Marlena Szeligowska, Déborah Benkort, Anna Przyborska, Mateusz Moskalik, Bernabé Moreno, Emilia Trudnowska, and Katarzyna Błachowiak-Samołyk
Biogeosciences, 21, 3617–3639, https://doi.org/10.5194/bg-21-3617-2024, https://doi.org/10.5194/bg-21-3617-2024, 2024
Short summary
Short summary
The European Arctic is experiencing rapid regional warming, causing glaciers that terminate in the sea to retreat onto land. Due to this process, the area of a well-studied fjord, Hornsund, has increased by around 100 km2 (40%) since 1976. Combining satellite and in situ data with a mathematical model, we estimated that, despite some negative consequences of glacial meltwater release, such emerging coastal waters could mitigate climate change by increasing carbon uptake and storage by sediments.
Mallory C. Ringham, Nathan Hirtle, Cody Shaw, Xi Lu, Julian Herndon, Brendan R. Carter, and Matthew D. Eisaman
Biogeosciences, 21, 3551–3570, https://doi.org/10.5194/bg-21-3551-2024, https://doi.org/10.5194/bg-21-3551-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement leverages the large surface area and carbon storage capacity of the oceans to store atmospheric CO2 as dissolved bicarbonate. We monitored CO2 uptake in seawater treated with NaOH to establish operational boundaries for carbon removal experiments. Results show that CO2 equilibration occurred on the order of weeks to months, was consistent with values expected from equilibration calculations, and was limited by mineral precipitation at high pH and CaCO3 saturation.
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024, https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Short summary
Our research is the first to measure dissolved NO concentrations in temperate estuarine waters, providing insights into its distribution under varying conditions and enhancing our understanding of its production processes. Dissolved NO was supersaturated in the Elbe Estuary, indicating that it is a source of atmospheric NO. The observed distribution of dissolved NO most likely resulted from nitrification.
Weiyi Tang, Jeff Talbott, Timothy Jones, and Bess B. Ward
Biogeosciences, 21, 3239–3250, https://doi.org/10.5194/bg-21-3239-2024, https://doi.org/10.5194/bg-21-3239-2024, 2024
Short summary
Short summary
Wastewater treatment plants (WWTPs) are known to be hotspots of greenhouse gas emissions. However, the impact of WWTPs on the emission of the greenhouse gas N2O in downstream aquatic environments is less constrained. We found spatially and temporally variable but overall higher N2O concentrations and fluxes in waters downstream of WWTPs, pointing to the need for efficient N2O removal in addition to the treatment of nitrogen in WWTPs.
Deep S. Banerjee and Jozef Skakala
EGUsphere, https://doi.org/10.22541/essoar.171405637.76928549/v1, https://doi.org/10.22541/essoar.171405637.76928549/v1, 2024
Short summary
Short summary
Nitrate is a crucial nutrient in oceans. Excess nutrients can trigger uncontrolled algae growth (eutrophication), damaging marine ecosystems. We used a machine learning tool to generate a skilled, gap-free, bi-decadal surface nitrate dataset from sparse observations. This dataset reveals areas on the North West European Shelf at risk of eutrophication, bi-decadal trends in coastal nitrate, and an impact of winter nitrate on spring phytoplankton blooms.
Amanda Y. L. Cheong, Kogila Vani Annammala, Ee Ling Yong, Yongli Zhou, Robert S. Nichols, and Patrick Martin
Biogeosciences, 21, 2955–2971, https://doi.org/10.5194/bg-21-2955-2024, https://doi.org/10.5194/bg-21-2955-2024, 2024
Short summary
Short summary
We measured nutrients and dissolved organic matter for 1 year in a eutrophic tropical estuary to understand their sources and cycling. Our data show that the dissolved organic matter originates partly from land and partly from microbial processes in the water. Internal recycling is likely important for maintaining high nutrient concentrations, and we found that there is often excess nitrogen compared to silicon and phosphorus. Our data help to explain how eutrophication persists in this system.
Aaron Ferderer, Kai G. Schulz, Ulf Riebesell, Kirralee G. Baker, Zanna Chase, and Lennart T. Bach
Biogeosciences, 21, 2777–2794, https://doi.org/10.5194/bg-21-2777-2024, https://doi.org/10.5194/bg-21-2777-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising method of atmospheric carbon removal; however, its ecological impacts remain largely unknown. We assessed the effects of simulated silicate- and calcium-based mineral OAE on diatom silicification. We found that increased silicate concentrations from silicate-based OAE increased diatom silicification. In contrast, the enhancement of alkalinity had no effect on community silicification and minimal effects on the silicification of different genera.
David González-Santana, María Segovia, Melchor González-Dávila, Librada Ramírez, Aridane G. González, Leonardo J. Pozzo-Pirotta, Veronica Arnone, Victor Vázquez, Ulf Riebesell, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 2705–2715, https://doi.org/10.5194/bg-21-2705-2024, https://doi.org/10.5194/bg-21-2705-2024, 2024
Short summary
Short summary
In a recent experiment off the coast of Gran Canaria (Spain), scientists explored a method called ocean alkalinization enhancement (OAE), where carbonate minerals were added to seawater. This process changed the levels of certain ions in the water, affecting its pH and buffering capacity. The researchers were particularly interested in how this could impact the levels of essential trace metals in the water.
Lucas Porz, Wenyan Zhang, Nils Christiansen, Jan Kossack, Ute Daewel, and Corinna Schrum
Biogeosciences, 21, 2547–2570, https://doi.org/10.5194/bg-21-2547-2024, https://doi.org/10.5194/bg-21-2547-2024, 2024
Short summary
Short summary
Seafloor sediments store a large amount of carbon, helping to naturally regulate Earth's climate. If disturbed, some sediment particles can turn into CO2, but this effect is not well understood. Using computer simulations, we found that bottom-contacting fishing gears release about 1 million tons of CO2 per year in the North Sea, one of the most heavily fished regions globally. We show how protecting certain areas could reduce these emissions while also benefitting seafloor-living animals.
Jiaying A. Guo, Robert F. Strzepek, Kerrie M. Swadling, Ashley T. Townsend, and Lennart T. Bach
Biogeosciences, 21, 2335–2354, https://doi.org/10.5194/bg-21-2335-2024, https://doi.org/10.5194/bg-21-2335-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement aims to increase atmospheric CO2 sequestration by adding alkaline materials to the ocean. We assessed the environmental effects of olivine and steel slag powder on coastal plankton. Overall, slag is more efficient than olivine in releasing total alkalinity and, thus, in its ability to sequester CO2. Slag also had less environmental effect on the enclosed plankton communities when considering its higher CO2 removal potential based on this 3-week experiment.
Giovanni Galli, Sarah Wakelin, James Harle, Jason Holt, and Yuri Artioli
Biogeosciences, 21, 2143–2158, https://doi.org/10.5194/bg-21-2143-2024, https://doi.org/10.5194/bg-21-2143-2024, 2024
Short summary
Short summary
This work shows that, under a high-emission scenario, oxygen concentration in deep water of parts of the North Sea and Celtic Sea can become critically low (hypoxia) towards the end of this century. The extent and frequency of hypoxia depends on the intensity of climate change projected by different climate models. This is the result of a complex combination of factors like warming, increase in stratification, changes in the currents and changes in biological processes.
Sandy E. Tenorio and Laura Farías
Biogeosciences, 21, 2029–2050, https://doi.org/10.5194/bg-21-2029-2024, https://doi.org/10.5194/bg-21-2029-2024, 2024
Short summary
Short summary
Time series studies show that CH4 is highly dynamic on the coastal ocean surface and planktonic communities are linked to CH4 accumulation, as found in coastal upwelling off Chile. We have identified the crucial role of picoplankton (> 3 µm) in CH4 recycling, especially with the addition of methylated substrates (trimethylamine and methylphosphonic acid) during upwelling and non-upwelling periods. These insights improve understanding of surface ocean CH4 recycling, aiding CH4 emission estimates.
Charlotte A. J. Williams, Tom Hull, Jan Kaiser, Claire Mahaffey, Naomi Greenwood, Matthew Toberman, and Matthew R. Palmer
Biogeosciences, 21, 1961–1971, https://doi.org/10.5194/bg-21-1961-2024, https://doi.org/10.5194/bg-21-1961-2024, 2024
Short summary
Short summary
Oxygen (O2) is a key indicator of ocean health. The risk of O2 loss in the productive coastal/continental slope regions is increasing. Autonomous underwater vehicles equipped with O2 optodes provide lots of data but have problems resolving strong vertical O2 changes. Here we show how to overcome this and calculate how much O2 is supplied to the low-O2 bottom waters via mixing. Bursts in mixing supply nearly all of the O2 to bottom waters in autumn, stopping them reaching ecologically low levels.
Sabine Schmidt and Ibrahima Iris Diallo
Biogeosciences, 21, 1785–1800, https://doi.org/10.5194/bg-21-1785-2024, https://doi.org/10.5194/bg-21-1785-2024, 2024
Short summary
Short summary
Along the French coast facing the Bay of Biscay, the large Gironde and Loire estuaries suffer from hypoxia. This prompted a study of the small Charente estuary located between them. This work reveals a minimum oxygen zone in the Charente estuary, which extends for about 25 km. Temperature is the main factor controlling the hypoxia. This calls for the monitoring of small turbid macrotidal estuaries that are vulnerable to hypoxia, a risk expected to increase with global warming.
Simone R. Alin, Jan A. Newton, Richard A. Feely, Samantha Siedlecki, and Dana Greeley
Biogeosciences, 21, 1639–1673, https://doi.org/10.5194/bg-21-1639-2024, https://doi.org/10.5194/bg-21-1639-2024, 2024
Short summary
Short summary
We provide a new multi-stressor data product that allows us to characterize the seasonality of temperature, O2, and CO2 in the southern Salish Sea and delivers insights into the impacts of major marine heatwave and precipitation anomalies on regional ocean acidification and hypoxia. We also describe the present-day frequencies of temperature, O2, and ocean acidification conditions that cross thresholds of sensitive regional species that are economically or ecologically important.
Pamela Linford, Iván Pérez-Santos, Paulina Montero, Patricio A. Díaz, Claudia Aracena, Elías Pinilla, Facundo Barrera, Manuel Castillo, Aida Alvera-Azcárate, Mónica Alvarado, Gabriel Soto, Cécile Pujol, Camila Schwerter, Sara Arenas-Uribe, Pilar Navarro, Guido Mancilla-Gutiérrez, Robinson Altamirano, Javiera San Martín, and Camila Soto-Riquelme
Biogeosciences, 21, 1433–1459, https://doi.org/10.5194/bg-21-1433-2024, https://doi.org/10.5194/bg-21-1433-2024, 2024
Short summary
Short summary
The Patagonian fjords comprise a world region where low-oxygen water and hypoxia conditions are observed. An in situ dataset was used to quantify the mechanism involved in the presence of these conditions in northern Patagonian fjords. Water mass analysis confirmed the contribution of Equatorial Subsurface Water in the advection of the low-oxygen water, and hypoxic conditions occurred when the community respiration rate exceeded the gross primary production.
Ting Wang, Buyun Du, Inke Forbrich, Jun Zhou, Joshua Polen, Elsie M. Sunderland, Prentiss H. Balcom, Celia Chen, and Daniel Obrist
Biogeosciences, 21, 1461–1476, https://doi.org/10.5194/bg-21-1461-2024, https://doi.org/10.5194/bg-21-1461-2024, 2024
Short summary
Short summary
The strong seasonal increases of Hg in aboveground biomass during the growing season and the lack of changes observed after senescence in this salt marsh ecosystem suggest physiologically controlled Hg uptake pathways. The Hg sources found in marsh aboveground tissues originate from a mix of sources, unlike terrestrial ecosystems, where atmospheric GEM is the main source. Belowground plant tissues mostly take up Hg from soils. Overall, the salt marsh currently serves as a small net Hg sink.
Eleanor Simpson, Debby Ianson, Karen E. Kohfeld, Ana C. Franco, Paul A. Covert, Marty Davelaar, and Yves Perreault
Biogeosciences, 21, 1323–1353, https://doi.org/10.5194/bg-21-1323-2024, https://doi.org/10.5194/bg-21-1323-2024, 2024
Short summary
Short summary
Shellfish aquaculture operates in nearshore areas where data on ocean acidification parameters are limited. We show daily and seasonal variability in pH and saturation states of calcium carbonate at nearshore aquaculture sites in British Columbia, Canada, and determine the contributing drivers of this variability. We find that nearshore locations have greater variability than open waters and that the uptake of carbon by phytoplankton is the major driver of pH and saturation state variability.
S. Alejandra Castillo Cieza, Rachel H. R. Stanley, Pierre Marrec, Diana N. Fontaine, E. Taylor Crockford, Dennis J. McGillicuddy Jr., Arshia Mehta, Susanne Menden-Deuer, Emily E. Peacock, Tatiana A. Rynearson, Zoe O. Sandwith, Weifeng Zhang, and Heidi M. Sosik
Biogeosciences, 21, 1235–1257, https://doi.org/10.5194/bg-21-1235-2024, https://doi.org/10.5194/bg-21-1235-2024, 2024
Short summary
Short summary
The coastal ocean in the northeastern USA provides many services, including fisheries and habitats for threatened species. In summer 2019, a bloom occurred of a large unusual phytoplankton, the diatom Hemiaulus, with nitrogen-fixing symbionts. This led to vast changes in productivity and grazing rates in the ecosystem. This work shows that the emergence of one species can have profound effects on ecosystem function. Such changes may become more prevalent as the ocean warms due to climate change.
Claudine Hauri, Brita Irving, Sam Dupont, Rémi Pagés, Donna D. W. Hauser, and Seth L. Danielson
Biogeosciences, 21, 1135–1159, https://doi.org/10.5194/bg-21-1135-2024, https://doi.org/10.5194/bg-21-1135-2024, 2024
Short summary
Short summary
Arctic marine ecosystems are highly susceptible to impacts of climate change and ocean acidification. We present pH and pCO2 time series (2016–2020) from the Chukchi Ecosystem Observatory and analyze the drivers of the current conditions to get a better understanding of how climate change and ocean acidification could affect the ecological niches of organisms.
William Hiles, Lucy C. Miller, Craig Smeaton, and William E. N. Austin
Biogeosciences, 21, 929–948, https://doi.org/10.5194/bg-21-929-2024, https://doi.org/10.5194/bg-21-929-2024, 2024
Short summary
Short summary
Saltmarsh soils may help to limit the rate of climate change by storing carbon. To understand their impacts, they must be accurately mapped. We use drone data to estimate the size of three saltmarshes in NE Scotland. We find that drone imagery, combined with tidal data, can reliably inform our understanding of saltmarsh size. When compared with previous work using vegetation communities, we find that our most reliable new estimates of stored carbon are 15–20 % smaller than previously estimated.
De'Marcus Robinson, Anh L. D. Pham, David J. Yousavich, Felix Janssen, Frank Wenzhöfer, Eleanor C. Arrington, Kelsey M. Gosselin, Marco Sandoval-Belmar, Matthew Mar, David L. Valentine, Daniele Bianchi, and Tina Treude
Biogeosciences, 21, 773–788, https://doi.org/10.5194/bg-21-773-2024, https://doi.org/10.5194/bg-21-773-2024, 2024
Short summary
Short summary
The present study suggests that high release of ferrous iron from the seafloor of the oxygen-deficient Santa Barabara Basin (California) supports surface primary productivity, creating positive feedback on seafloor iron release by enhancing low-oxygen conditions in the basin.
David J. Yousavich, De'Marcus Robinson, Xuefeng Peng, Sebastian J. E. Krause, Frank Wenzhöfer, Felix Janssen, Na Liu, Jonathan Tarn, Franklin Kinnaman, David L. Valentine, and Tina Treude
Biogeosciences, 21, 789–809, https://doi.org/10.5194/bg-21-789-2024, https://doi.org/10.5194/bg-21-789-2024, 2024
Short summary
Short summary
Declining oxygen (O2) concentrations in coastal oceans can threaten people’s ways of life and food supplies. Here, we investigate how mats of bacteria that proliferate on the seafloor of the Santa Barbara Basin sustain and potentially worsen these O2 depletion events through their unique chemoautotrophic metabolism. Our study shows how changes in seafloor microbiology and geochemistry brought on by declining O2 concentrations can help these mats grow as well as how that growth affects the basin.
Krysten Rutherford, Katja Fennel, Lina Garcia Suarez, and Jasmin G. John
Biogeosciences, 21, 301–314, https://doi.org/10.5194/bg-21-301-2024, https://doi.org/10.5194/bg-21-301-2024, 2024
Short summary
Short summary
We downscaled two mid-century (~2075) ocean model projections to a high-resolution regional ocean model of the northwest North Atlantic (NA) shelf. In one projection, the NA shelf break current practically disappears; in the other it remains almost unchanged. This leads to a wide range of possible future shelf properties. More accurate projections of coastal circulation features would narrow the range of possible outcomes of biogeochemical projections for shelf regions.
Cited articles
Albretsen, J., Aure, J., Sætre, R., and Danielssen, D. S: Climatic variability in the Skagerrak and coastal waters of Norway, ICES J. Marine Sci., 69, 758–763, https://doi.org/10.4135/9781412953924.n678, 2012.
Artioli, Y., Blackford, J. C., Butenschön, M., Holt, J. T., Wakelin, S. L., Thomas, H., Borges, A. V., and Allen, J. I.: The carbonate system in the North Sea: Sensitivity and model validation, J. Marine Syst., 102, 1–13, https://doi.org/10.1016/j.jmarsys.2012.04.006, 2012.
Bach, L. T.: The additionality problem of ocean alkalinity enhancement, Biogeosciences, 21, 261–277, https://doi.org/10.5194/bg-21-261-2024, 2024.
Bach, L. T., Gill, S. J., Rickaby, R. E., Gore, S., and Renforth, P.: CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems, Front. Climate, 1, 476698, https://doi.org/10.3389/fclim.2019.00007, 2019.
Baschek, B., Schroeder, F., Brix, H., Riethmüller, R., Badewien, T. H., Breitbach, G., Brügge, B., Colijn, F., Doerffer, R., Eschenbach, C., Friedrich, J., Fischer, P., Garthe, S., Horstmann, J., Krasemann, H., Metfies, K., Merckelbach, L., Ohle, N., Petersen, W., Pröfrock, D., Röttgers, R., Schlüter, M., Schulz, J., Schulz-Stellenfleth, J., Stanev, E., Staneva, J., Winter, C., Wirtz, K., Wollschläger, J., Zielinski, O., and Ziemer, F.: The Coastal Observing System for Northern and Arctic Seas (COSYNA), Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017, 2017.
Blaas, M., Kerkhoven, D., and de Swart, H. E: Large-scale circulation and flushing characteristics of the North Sea under various climate forcings, Clim. Res., 18, 47–54, https://doi.org/10.3354/cr018047, 2001.
Blackford, J. C. and Gilbert, F. J: pH variability and CO2 induced acidification in the North Sea, J. Marine Syst., 64, 229–241, https://doi.org/10.1016/j.jmarsys.2006.03.016, 2007.
Boyer, T. P., García, H. E., Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Reagan, J. R., Weathers, K. A., Baranova, O. K., Paver, C. R., Seidov, D., and Smolyar, I.V.: World Ocean Atlas 2018, NOAA [data set], https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (last access: 29 July 2022), 2018.
Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A., Takahashi, T., Key, R. M., Tanhua, T., González-Dávila, M., Jeansson, E., Kozyr, A., and van Heuven, S. M. A. C.: A global monthly climatology of total alkalinity: a neural network approach, Earth Syst. Sci. Data, 11, 1109–1127, https://doi.org/10.5194/essd-11-1109-2019, 2019.
Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A., Takahashi, T., Key, R. M., Tanhua, T., Santana-Casiano, J. M., and Kozyr, A.: A global monthly climatology of oceanic total dissolved inorganic carbon: a neural network approach, Earth Syst. Sci. Data, 12, 1725–1743, https://doi.org/10.5194/essd-12-1725-2020, 2020.
Bruggeman, J. and Bolding, K.: A general framework for aquatic biogeochemical models, Environ. Model. Softw., 61, 249–265, https://doi.org/10.1016/j.envsoft.2014.04.002, 2014.
Burt, D. J., Fröb, F., and Ilyina, T.: The Sensitivity of the Marine Carbonate System to Regional Ocean Alkalinity Enhancement. Front. Climate, 3, 624075, https://doi.org/10.3389/fclim.2021.624075, 2021.
Butenschön, M., Lovato, T., Masina, S., Caserini, S., and Grosso, M.: Alkalinization Scenarios in the Mediterranean Sea for Efficient Removal of Atmospheric CO2 and the Mitigation of Ocean Acidification, Front. Climate, 3, 614537, https://doi.org/10.3389/fclim.2021.614537, 2021.
Carstensen, J. and Duarte, C. M.: Drivers of pH Variability in Coastal Ecosystems, Environ. Sci. Technol., 53, 4020–4029, https://doi.org/10.1021/acs.est.8b03655, 2019.
Carvalho, F., Kohut, J., Oliver, M. J., and Schofield, O.: Defining the ecologically relevant mixed-layer depth for Antarctica's coastal seas, Geophys. Res. Lett., 44, 338–345, https://doi.org/10.1002/2016GL071205, 2017.
Christensen, K. H., Sperrevik, A. K., and Broström, G.: On the variability in the onset of the Norwegian Coastal Current, J. Phys. Oceanogr., 48, 723–738, https://doi.org/10.1175/JPO-D-17-0117.1, 2018.
Daewel, U. and Schrum, C.: Simulating long-term dynamics of the coupled North Sea and Baltic Sea ecosystem with ECOSMO II: Model description and validation, J. Marine Syst., 119, 30–49, https://doi.org/10.1016/j.jmarsys.2013.03.008, 2013.
Davies, P. A., Yuan, Q., and De Richter, R.: Desalination as a negative emissions technology, Environ. Sci.-Water Research and Technology, 4, 839–850, https://doi.org/10.1039/c7ew00502d, 2018.
Digdaya, I. A., Sullivan, I., Lin, M., Han, L., Cheng, W. H., Atwater, H. A., and Xiang, C.: A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater, Nat. Commun., 11, 1–10, https://doi.org/10.1038/s41467-020-18232-y, 2020.
Dowdall, M. and Lepland, A.: Elevated levels of radium-226 and radium-228 in marine sediments of the Norwegian Trench (“Norskrenna”) and Skagerrak, Marine Pollut. B., 64, 2069–2076, https://doi.org/10.1016/j.marpolbul.2012.07.022, 2012.
Feng, E. Y., Koeve, W., Keller, D. P., and Oschlies, A.: Model-Based Assessment of the CO2 Sequestration Potential of Coastal Ocean Alkalinization, Earth's Future, 5, 1252–1266, https://doi.org/10.1002/2017EF000659, 2017.
Fennel, K., Long, M. C., Algar, C., Carter, B., Keller, D., Laurent, A., Mattern, J. P., Musgrave, R., Oschlies, A., Ostiguy, J., Palter, J. B., and Whitt, D. B.: Modelling considerations for research on ocean alkalinity enhancement (OAE), in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 9, https://doi.org/10.5194/sp-2-oae2023-9-2023, 2023.
Ferderer, A., Chase, Z., Kennedy, F., Schulz, K. G., and Bach, L. T.: Assessing the influence of ocean alkalinity enhancement on a coastal phytoplankton community, Biogeosciences, 19, 5375–5399, https://doi.org/10.5194/bg-19-5375-2022, 2022.
Foteinis, S., Andresen, J., Campo, F., Caserini, S., and Renforth, P.: Life cycle assessment of ocean liming for carbon dioxide removal from the atmosphere, J. Clean. Prod., 370, 133309, https://doi.org/10.1016/j.jclepro.2022.133309, 2022.
Foteinis, S., Campbell, J. S., and Renforth, P.: Life cycle assessment of coastal enhanced weathering for carbon dioxide removal from air, Environ. Sci. Technol., 57, 6169–6178, https://doi.org/10.1021/acs.est.2c08633, 2023.
Frankignoulle, M. and Borges, A. V.: European continental shelf as a significant sink for atmospheric carbon dioxide, Global Biogeochem. Cycles, 15, 569–576, https://doi.org/10.1029/2000GB001307, 2001.
Fuhr, M., Geilert, S., Schmidt, M., Liebetrau, V., Vogt, C., Ledwig, B., and Wallmann, K.: Kinetics of Olivine Weathering in Seawater: An Experimental Study, Front. Climate, 4, 831587, https://doi.org/10.3389/fclim.2022.831587, 2022.
Geyer, B.: coastDat-3_COSMO-CLM_ERAi (World Data Center for Climate (WDCC) at DKRZ), http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=coastDat-3_COSMO-CLM_ERAi (last access: 22 June 2022), 2017.
González, M. F. and Ilyina, T.: Impacts of artificial ocean alkalinization on the carbon cycle and climate in Earth system simulations, Geophys. Res. Lett., 43, 6493–6502, https://doi.org/10.1002/2016GL068576, 2016.
Graham, J. A., Rosser, J. P., O'Dea, E., and Hewitt, H. T.: Resolving Shelf Break Exchange Around the European Northwest Shelf, Geophys. Res. Lett., 45, 12386–12395, https://doi.org/10.1029/2018GL079399, 2018.
Guihou, K., Polton, J., Harle, J., Wakelin, S., O'Dea, E., and Holt, J. Kilometric Scale Modeling of the North West European Shelf Seas: Exploring the Spatial and Temporal Variability of Internal Tides, J. Geophys. Res.-Oceans, 123, 688–707, https://doi.org/10.1002/2017JC012960, 2018.
Guo, J. A., Strzepek, R., Willis, A., Ferderer, A., and Bach, L. T.: Investigating the effect of nickel concentration on phytoplankton growth to assess potential side-effects of ocean alkalinity enhancement, Biogeosciences, 19, 3683–3697, https://doi.org/10.5194/bg-19-3683-2022, 2022.
Hagen, R., Winter, C., and Kösters, F.: Changes in tidal asymmetry in the German Wadden Sea, Ocean Dynam., 72, 325–340, https://doi.org/10.1007/s10236-022-01509-9, 2022.
Hangx, S. J. T. and Spiers, C. J.: Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability, Int. J. Greenh. Gas Contr., 3, 757–767, https://doi.org/10.1016/j.ijggc.2009.07.001, 2009.
Hansen, P. J.: Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession, Aquat. Microb. Ecol., 28, 279–288, https://doi.org/10.3354/ame028279, 2002.
Hartmann, J., West, A. J., Renforth, P., Köhler, P., De La Rocha, C. L., Wolf-Gladrow, D. A., Dürr, H. H., and Scheffran, J.: Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification, Rev. Geophys., 51, 113–149, https://doi.org/10.1002/rog.20004, 2013.
Hartmann, J., Suitner, N., Lim, C., Schneider, J., Marín-Samper, L., Arístegui, J., Renforth, P., Taucher, J., and Riebesell, U.: Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches – consequences for durability of CO2 storage, Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, 2023.
He, J. and Tyka, M. D.: Limits and CO2 equilibration of near-coast alkalinity enhancement, Biogeosciences, 20, 27–43, https://doi.org/10.5194/bg-20-27-2023, 2023.
Herzog, H., Caldeira, K., and Reilly, J.: An issue of permanence: Assessing the effectiveness of temporary carbon storage, Clim. Change, 59, 293–310, https://doi.org/10.1023/A:1024801618900, 2003.
Hjalmarsson, S., Wesslander, K., Anderson, L. G., Omstedt, A., Perttilä, M., and Mintrop, L.: Distribution, long-term development and mass balance calculation of total alkalinity in the Baltic Sea, Cont. Shelf Res., 28, 593–601, https://doi.org/10.1016/j.csr.2007.11.010, 2008.
Holt, J., Wakelin, S., and Huthnance, J.: Down-welling circulation of the northwest European continental shelf: A driving mechanism for the continental shelf carbon pump, Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2009GL038997, 2009.
Humphreys, M. P., Lewis, E. R., Sharp, J. D., and Pierrot, D.: PyCO2SYS v1.8: marine carbonate system calculations in Python, Geosci. Model Dev., 15, 15–43, https://doi.org/10.5194/gmd-15-15-2022, 2022.
Ilyina, T., Wolf-Gladrow, D., Munhoven, G., and Heinze, C.: Assessing the potential of calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidification, Geophys. Res. Lett., 40, 5909–5914, https://doi.org/10.1002/2013GL057981, 2013.
Jerlov, N. G.: Marine Optics, Elsevier Oceanography Series, vol. 14, Elsevier, ISBN 0-444-41 490-8, 1976.
Keller, D. P., Feng, E. Y., and Oschlies, A.: Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario, Nat. Commun., 5, 3304, https://doi.org/10.1038/ncomms4304, 2014.
Kheshgi, H. S.: Sequestering atmospheric carbon dioxide by increasing ocean alkalinity, Energy, 20, 915–922, https://doi.org/10.1016/0360-5442(95)00035-F, 1995.
Köhler, P., Abrams, J. F., Völker, C., Hauck, J., and Wolf-Gladrow, D. A.: Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology, Environ. Res. Lett., 8, 014009, https://doi.org/10.1088/1748-9326/8/1/014009, 2013.
Kossack, J., Mathis, M., Daewel, U., Zhang, Y. J., and Schrum, C.: Barotropic and baroclinic tides increase primary production on the Northwest European Shelf, Front. Marine Sci., 10, 1206062, https://doi.org/10.3389/fmars.2023.1206062, 2023.
Kossack, J., Mathis, M., Daewel, U., Liu, F., Demir, K. T., Thomas, H., and Schrum, C.: Tidal impacts on air-sea CO2 exchange on the North-West European shelf, Front. Marine Sci., 11, 1406896, https://doi.org/10.3389/fmars.2024.1406896, 2024.
Laane, R. W. P. M., Vethaak, A. D., Gandrass, J., Vorkamp, K., Köhler, A., Larsen, M. M., and Strand, J. Chemical contaminants in the Wadden Sea: Sources, transport, fate and effects, J. Sea Res., 82, 10–53, https://doi.org/10.1016/j.seares.2013.03.004, 2013.
Lan, X., Dlugokencky, E. J., Mund, J. W., Crotwell, A. M., Crotwell, M. J., Moglia, E., Madronich, M., Neff, D., and Thoning, K. W.: Atmospheric carbon dioxide dry air mole fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network, 1968–2021, Version: 2022-11-21, https://doi.org/10.15138/wkgj-f215, 2022.
Laruelle, G. G., Lauerwald, R., Pfeil, B., and Regnier, P.: Regionalized global budget of the CO2 exchange at the air-water interface in continental shelf seas, Global Biogeochem. Cycles, 28, 1199–1214, https://doi.org/10.1111/1462-2920.13280, 2014.
Laurent, A., Fennel, K., and Kuhn, A.: An observation-based evaluation and ranking of historical Earth system model simulations in the northwest North Atlantic Ocean, Biogeosciences, 18, 1803–1822, https://doi.org/10.5194/bg-18-1803-2021, 2021.
Legge, O., Johnson, M., Hicks, N., Jickells, T., Diesing, M., Aldridge, J., Andrews, J., Artioli, Y., Bakker, D. C., Burrows, M. T., Carr, N., Cripps, G., Felgate, S. L., Fernand, L., Greenwood, N., Hartman, S., Kröger, S., Lessin, G., Mahaffey, C., Mayor, D. J., Parker, R., Queirós, A. M., Shutler, J. D., Silva, T., Stahl, H., Tinker, J., Underwood, G. J., Van der Molen, J., Wakelin, S., Weston, K., and Williamson, P.: Carbon on the Northwest European Shelf: Contemporary Budget and Future Influences, Front. Marine Sci., 7, 143, https://doi.org/10.3389/fmars.2020.00143, 2020.
Liu, F., Daewel, U., Kossack, J., Demir, K. T., Thomas, H., and Schrum, C.: Support data for manuscript “Evaluating ocean alkalinity enhancement as a carbon dioxide removal strategy in the North Sea”, Zenodo [data set], https://doi.org/10.5281/zenodo.14061020, 2024.
Marion, G. M., Millero, F. J., and Feistel, R.: Precipitation of solid phase calcium carbonates and their effect on application of seawater SA–T–P models, Ocean Sci., 5, 285–291, https://doi.org/10.5194/os-5-285-2009, 2009.
Martens, P.: On trends in nutrient concentration in the northern Wadden Sea of Sylt, Helgoländer Meeresuntersuchungen, 43, 489–499, https://doi.org/10.1007/BF02365906, 1989.
Mathis, M., Logemann, K., Maerz, J., Lacroix, F., Hagemann, S., Chegini, F., Ramme, L., Ilyina, T., Korn, P., and Schrum, C.: Seamless Integration of the Coastal Ocean in Global Marine Carbon Cycle Modeling, J. Adv. Model. Earth Sy., 14, 1–44, https://doi.org/10.1029/2021MS002789, 2022.
Middelburg, J. J., Soetaert, K., and Hagens, M.: Ocean Alkalinity, Buffering and Biogeochemical Processes, Rev. Geophys., 58, e2019RG000681, https://doi.org/10.1029/2019RG000681, 2020.
Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H., and Pierrot, D.: Dissociation constants of carbonic acid in seawater as a function of salinity and temperature, Marine Chem., 100, 80–94, https://doi.org/10.1016/j.marchem.2005.12.001, 2006.
Montserrat, F., Renforth, P., Hartmann, J., Leermakers, M., Knops, P., and Meysman, F. J. R.: Olivine Dissolution in Seawater: Implications for CO2 Sequestration through Enhanced Weathering in Coastal Environments, Environ. Sci. Technol., 51, 3960–3972, https://doi.org/10.1021/acs.est.6b05942, 2017.
Moras, C. A., Bach, L. T., Cyronak, T., Joannes-Boyau, R., and Schulz, K. G.: Ocean alkalinity enhancement – avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution, Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, 2022.
Morse, J. W., Arvidson, R. S., and Lüttge, A.: Calcium carbonate formation and dissolution, Chem. Rev., 107, 342–381, https://doi.org/10.1021/cr050358j, 2007.
Nagwekar, T., Nissen, C., and Hauck, J.: Ocean alkalinity enhancement in deep water formation regions under low and high emission pathways, Earth's Future, 12, e2023EF004213, https://doi.org/10.1029/2023EF004213, 2024.
Neal, C. and Davies, H.: Water quality fluxes for eastern UK rivers entering the North Sea: A summary of information from the Land Ocean Interaction Study (LOIS), Sci. Total Environ., 314–316, 821–882, https://doi.org/10.1016/S0048-9697(03)00086-X, 2003.
Palmiéri, J. and Yool, A.: Global-Scale Evaluation of Coastal Ocean Alkalinity Enhancement in a Fully Coupled Earth System Model, Earth's Future, 12, e2023EF004018, https://doi.org/10.1029/2023EF004018, 2024.
Paquay, F. S. and Zeebe, R. E.: Assessing possible consequences of ocean liming on ocean pH, atmospheric CO2 concentration and associated costs, Int. J. Greenh. Gas Contr., 17, 183–188, https://doi.org/10.1016/j.ijggc.2013.05.005, 2013.
Pätsch, J. and Lenhart, H.: Daily Loads of Nutrients, Total Alkalinity, Dissolved Inorganic Carbon and Dissolved Organic Carbon of the European Continental Rivers for the Years 1977–2019, Ifm Wiki [data set], https://wiki.cen.uni-hamburg.de/ifm/ECOHAM/DATA_RIVER (last access:18 August 2022), 2022.
Pedersen, M. F. and Hansen, P. J.: Effects of high pH on the growth and survival of six marine heterotrophic protists, Marine Ecol. Prog. Series, 260, 33–41, https://doi.org/10.3354/meps260033, 2003.
Provoost, P., van Heuven, S., Soetaert, K., Laane, R. W. P. M., and Middelburg, J. J.: Seasonal and long-term changes in pH in the Dutch coastal zone, Biogeosciences, 7, 3869–3878, https://doi.org/10.5194/bg-7-3869-2010, 2010.
Rasmussen, M. B., Henriksen, K., and Jensen, A.: Possible causes of temporal fluctuations in primary production of the microphytobenthos in the Danish Wadden Sea, Marine Biol., 73, 109–114, https://doi.org/10.1007/BF00406878, 1983.
Redfield, A. C.: The influence of organisms on the composition of seawater, The Sea, 2, 26–77, 1963.
Renforth, P. and Henderson, G.: Assessing ocean alkalinity for carbon sequestration, Rev. Geophys., 55, 636–674, https://doi.org/10.1002/2016RG000533, 2017.
Renforth, P. and Kruger, T.: Coupling mineral carbonation and ocean liming, Energ. Fuels, 27, 4199–4207, https://doi.org/10.1021/ef302030w, 2013.
Rick, J. J., Scharfe, M., Romanova, T., van Beusekom, J. E. E., Asmus, R., Asmus, H., Mielck, F., Kamp, A., Sieger, R., and Wiltshire, K. H.: An evaluation of long-term physical and hydrochemical measurements at the Sylt Roads Marine Observatory (1973–2019), Wadden Sea, North Sea, Earth Syst. Sci. Data, 15, 1037–1057, https://doi.org/10.5194/essd-15-1037-2023, 2023.
Riebesell, U. and Tortell, P. D.: Effects of Ocean Acidification on Pelagic Organisms and Ecosystems, in: Ocean Acidification, Oxford University Press, https://doi.org/10.1093/oso/9780199591091.003.0011, 2011.
Rigopoulos, I., Harrison, A. L., Delimitis, A., Ioannou, I., Efstathiou, A. M., Kyratsi, T., and Oelkers, E. H.: Carbon sequestration via enhanced weathering of peridotites and basalts in seawater, Appl. Geochem., 91, 197–207, https://doi.org/10.1016/j.apgeochem.2017.11.001, 2018.
Rydberg, L., Haamer, J., and Liungman, O.: Fluxes of water and nutrients within and into the Skagerrak, J. Sea Res., 35, 23–38, https://doi.org/10.1016/s1385-1101(96)90732-7, 1996.
Samuelsen, A., Schrum, C., Yumruktepe, V. Ç., Daewel, U., and Roberts, E. M.: Environmental Change at Deep-Sea Sponge Habitats Over the Last Half Century: A Model Hindcast Study for the Age of Anthropogenic Climate Change, Front. Marine Sci., 9, 737164, https://doi.org/10.3389/fmars.2022.737164, 2022.
Subhas, A. V., Marx, L., Reynolds, S., Flohr, A., Mawji, E. W., Brown, P. J., and Cael, B. B.: Microbial ecosystem responses to alkalinity enhancement in the North Atlantic Subtropical Gyre, Front. Climate, 4, 784997, https://doi.org/10.3389/fclim.2022.784997, 2022.
Suitner, N., Faucher, G., Lim, C., Schneider, J., Moras, C. A., Riebesell, U., and Hartmann, J.: Ocean alkalinity enhancement approaches and the predictability of runaway precipitation processes: results of an experimental study to determine critical alkalinity ranges for safe and sustainable application scenarios, Biogeosciences, 21, 4587–4604, https://doi.org/10.5194/bg-21-4587-2024, 2024.
Svendsen, E., Sætre, R., and Mork, M.: Features of the northern North Sea circulation, Cont. Shelf Res., 11, 493–508, https://doi.org/10.1016/0278-4343(91)90055-B, 1991.
Thomas, H., Bozec, Y., de Baar, H. J. W., Elkalay, K., Frankignoulle, M., Schiettecatte, L.-S., Kattner, G., and Borges, A. V.: The carbon budget of the North Sea, Biogeosciences, 2, 87–96, https://doi.org/10.5194/bg-2-87-2005, 2005.
Thomas, H., Bozec, Y., Elkalay, K., and De Baar, H. J.: Enhanced Open Ocean Storage of CO2 from Shelf Sea Pumping, Science, 304, 1005–1008, https://doi.org/10.1126/science.1095491, 2004.
Van Leeuwen, S., Tett, P., Mills, D., and Van Der Molen, J.: Stratified and nonstratified areas in the North Sea: Long-term variability and biological and policy implications, J. Geophys. Res.-Oceans, 120, 4670–4686, https://doi.org/10.1002/2014JC010485, 2015.
Wang, H., Pilcher, D. J., Kearney, K. A., Cross, J. N., Shugart, O. M., Eisaman, M. D., and Carter, B. R.: Simulated Impact of Ocean Alkalinity Enhancement on Atmospheric CO2 Removal in the Bering Sea, Earth's Future, 11, 1–17, https://doi.org/10.1029/2022EF002816, 2023.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited, Limnol. Oceanogr.-Methods, 12, 351–362, https://doi.org/10.4319/lom.2014.12.351, 2014.
Winther, N. G. and Johannessen, J. A.: North Sea circulation: Atlantic inflow and its destination, J. Geophys. Res.-Oceans, 111, 1–12, https://doi.org/10.1029/2005JC003310, 2006.
Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A., and Dickson, A. G.: Total alkalinity: The explicit conservative expression and its application to biogeochemical processes, Marine Chem., 106, 287–300, https://doi.org/10.1016/j.marchem.2007.01.006, 2007.
Ye, F., Zhang, Y. J., Wang, H. V., Friedrichs, M. A. M., Irby, I. D., Alteljevich, E., Valle-Levinson, A., Wang, Z., Huang, H., Shen, J., and Du, J.: A 3D unstructured-grid model for Chesapeake Bay: Importance of bathymetry, Ocean Model., 127, 16–39, https://doi.org/10.1016/j.ocemod.2018.05.002, 2018.
Yu, H. C., Zhang, Y. J., Yu, J. C. S., Terng, C., Sun, W., Ye, F., Wang, H. V., Wang, Z., and Huang, H.: Simulating multi-scale oceanic processes around Taiwan on unstructured grids, Ocean Model., 119, 72–93, https://doi.org/10.1016/j.ocemod.2017.09.007, 2017.
Zeebe, R. E. and Wolf-Gladrow, D.: CO2 in Seawater: Equilibrium, Kinetics, Isotopes, Vol. 65, Elsevier Oceanography Book Series, Amsterdam, ISBN 0-444-50946-1, 2001.
Zhang, Y. J., Ateljevich, E., Yu, H. C., Wu, C. H., and Yu, J. C. S.: A new vertical coordinate system for a 3D unstructured-grid model, Ocean Model., 85, 16–31, https://doi.org/10.1016/j.ocemod.2014.10.003, 2015.
Zhang, Y. J., Ye, F., Stanev, E. V., and Grashorn, S.: Seamless cross-scale modeling with SCHISM, Ocean Model., 102, 64–81, https://doi.org/10.1016/j.ocemod.2016.05.002, 2016.
Zhu, T., Zheng, L., Li, F., Liu, J., and Zhuang, W.: Sustainable carbon sequestration via olivine based ocean alkalinity enhancement in the east and South China Sea: Adhering to environmental norms for nickel and chromium, Sci. Total Environ., 930, 172853, https://doi.org/10.1016/j.scitotenv.2024.172853, 2024.
Short summary
Ocean alkalinity enhancement (OAE) boosts oceanic CO₂ absorption, offering a climate solution. Using a regional model, we examined OAE in the North Sea, revealing that shallow coastal areas achieve higher CO₂ uptake than offshore where alkalinity is more susceptible to deep-ocean loss. Long-term carbon storage is limited, and pH shifts vary by location. Our findings guide OAE deployment to optimize carbon removal while minimizing ecological effects, supporting global climate mitigation efforts.
Ocean alkalinity enhancement (OAE) boosts oceanic CO₂ absorption, offering a climate solution....
Altmetrics
Final-revised paper
Preprint