Articles | Volume 22, issue 15
https://doi.org/10.5194/bg-22-3769-2025
https://doi.org/10.5194/bg-22-3769-2025
Research article
 | 
05 Aug 2025
Research article |  | 05 Aug 2025

Improved understanding of nitrate trends, eutrophication indicators, and risk areas using machine learning

Deep S. Banerjee and Jozef Skákala

Related authors

Marine data assimilation in the UK: the past, the present, and the vision for the future
Jozef Skákala, David Ford, Keith Haines, Amos Lawless, Matthew J. Martin, Philip Browne, Marcin Chrust, Stefano Ciavatta, Alison Fowler, Daniel Lea, Matthew Palmer, Andrea Rochner, Jennifer Waters, Hao Zuo, Deep S. Banerjee, Mike Bell, Davi M. Carneiro, Yumeng Chen, Susan Kay, Dale Partridge, Martin Price, Richard Renshaw, Georgy Shapiro, and James While
Ocean Sci., 21, 1709–1734, https://doi.org/10.5194/os-21-1709-2025,https://doi.org/10.5194/os-21-1709-2025, 2025
Short summary
A Digital Twin Ocean: Can we improve Coastal Ocean Forecasts using targeted Marine Autonomy?
Dale Partridge, Deep Banerjee, David Ford, Ke Wang, Jozef Skakala, Juliane Wihsgott, Prathyush Menon, Susan Kay, Daniel Clewley, Andrea Rochner, Emma Sullivan, and Matthew Palmer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3346,https://doi.org/10.5194/egusphere-2025-3346, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary

Cited articles

Anderson, D. M., Cembella, A. D., and Hallegraeff, G. M.: Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management, Annu. Rev. Mar. Sci., 4, 143–176, 2012. a
Axe, P., Clausen, U., Leujak, W., Malcolm, S., and Harvey, E.: Eutrophication status of the OSPAR maritime area, Third Integrated Report on the Eutrophication Status of the OSPAR Maritime Area, https://www.vliz.be/imisdocs/publications/308897.pdf (last access: 20 June 2025), 2017. a, b, c, d, e
Axe, P., Sonesten, L., and Skarbövik, E.: Inputs of Nutrients to the OSPAR Maritime Area, https://oap-cloudfront.ospar.org/media/filer_public/5d/10/5d10879f-0a4e-4c9a-b8b8-138b4215cd0b/p00930_inputs_of_nutrients_qsr2023.pdf (last access: 20 June 2025), 2022. a, b, c, d
Banerjee, D S. : Neural Network Model code, GitHub [code], https://github.com/dsbanerjee90/neccton_algo_bgcnn, last access: 20 June 2025. a
Download
Short summary
Nitrate is a crucial nutrient in oceans, whose excess can trigger uncontrolled algae growth that damages marine ecosystems. We used machine learning to generate skilled, gap-free, bi-decadal surface nitrate data from sparse observations, revealing areas on the North-West European Shelf that are more vulnerable to excess algae growth if nutrient pollution occurs. We also looked at bi-decadal trends in coastal nitrate and the impact of winter nitrate on spring phytoplankton blooms.
Share
Altmetrics
Final-revised paper
Preprint