Articles | Volume 22, issue 17
https://doi.org/10.5194/bg-22-4309-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-4309-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating the variability of deep-ocean particle flux collected by sediment traps using satellite data and machine learning
Univ Brest, CNRS, IRD, Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), IUEM, Plouzané, France
Chelsey A. Baker
National Oceanography Centre, Southampton, UK
Jonathan Gula
Univ Brest, CNRS, IRD, Ifremer, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, Plouzané, France
Institut Universitaire de France (IUF), Paris, France
Ronan Fablet
IMT Atlantique, Lab-STICC, Plouzané, France
Laurent Mémery
Univ Brest, CNRS, IRD, Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), IUEM, Plouzané, France
Richard Lampitt
National Oceanography Centre, Southampton, UK
Related authors
Théo Picard, Jonathan Gula, Ronan Fablet, Jeremy Collin, and Laurent Mémery
Ocean Sci., 20, 1149–1165, https://doi.org/10.5194/os-20-1149-2024, https://doi.org/10.5194/os-20-1149-2024, 2024
Short summary
Short summary
The biological carbon pump plays a key role in the climate system. Plankton absorb and transform CO2 into organic carbon, forming particles that sink to the ocean floor. Sediment traps catch these particles and measure the carbon stored in the abyss. However, the particles' surface origin is unknown as ocean currents alter their paths. Here, we train an AI model to predict the origin of these particles. This new tool enables a better link between deep-ocean observations and satellite images.
Maxime Ballarotta, Clément Ubelmann, Valentin Bellemin-Laponnaz, Florian Le Guillou, Guillaume Meda, Cécile Anadon, Alice Laloue, Antoine Delepoulle, Yannice Faugère, Marie-Isabelle Pujol, Ronan Fablet, and Gérald Dibarboure
Ocean Sci., 21, 63–80, https://doi.org/10.5194/os-21-63-2025, https://doi.org/10.5194/os-21-63-2025, 2025
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission provides unprecedented swath altimetry data. This study examines SWOT's impact on mapping systems, showing a moderate effect with the current nadir altimetry constellation and a stronger impact with a reduced one. Integrating SWOT with dynamic mapping techniques improves the resolution of satellite-derived products, offering promising solutions for studying and monitoring sea-level variability at finer scales.
Théo Picard, Jonathan Gula, Ronan Fablet, Jeremy Collin, and Laurent Mémery
Ocean Sci., 20, 1149–1165, https://doi.org/10.5194/os-20-1149-2024, https://doi.org/10.5194/os-20-1149-2024, 2024
Short summary
Short summary
The biological carbon pump plays a key role in the climate system. Plankton absorb and transform CO2 into organic carbon, forming particles that sink to the ocean floor. Sediment traps catch these particles and measure the carbon stored in the abyss. However, the particles' surface origin is unknown as ocean currents alter their paths. Here, we train an AI model to predict the origin of these particles. This new tool enables a better link between deep-ocean observations and satellite images.
Chloé Baumas, Robin Fuchs, Marc Garel, Jean-Christophe Poggiale, Laurent Memery, Frédéric A. C. Le Moigne, and Christian Tamburini
Biogeosciences, 20, 4165–4182, https://doi.org/10.5194/bg-20-4165-2023, https://doi.org/10.5194/bg-20-4165-2023, 2023
Short summary
Short summary
Through the sink of particles in the ocean, carbon (C) is exported and sequestered when reaching 1000 m. Attempts to quantify C exported vs. C consumed by heterotrophs have increased. Yet most of the conducted estimations have led to C demands several times higher than C export. The choice of parameters greatly impacts the results. As theses parameters are overlooked, non-accurate values are often used. In this study we show that C budgets can be well balanced when using appropriate values.
Maxime Beauchamp, Quentin Febvre, Hugo Georgenthum, and Ronan Fablet
Geosci. Model Dev., 16, 2119–2147, https://doi.org/10.5194/gmd-16-2119-2023, https://doi.org/10.5194/gmd-16-2119-2023, 2023
Short summary
Short summary
4DVarNet is a learning-based method based on traditional data assimilation (DA). This new class of algorithms can be used to provide efficient reconstructions of a dynamical system based on single observations. We provide a 4DVarNet application to sea surface height reconstructions based on nadir and future Surface Water and Ocean and Topography data. It outperforms other methods, from optimal interpolation to sophisticated DA algorithms. This work is part of on-going AI Chair Oceanix projects.
Etienne Pauthenet, Loïc Bachelot, Kevin Balem, Guillaume Maze, Anne-Marie Tréguier, Fabien Roquet, Ronan Fablet, and Pierre Tandeo
Ocean Sci., 18, 1221–1244, https://doi.org/10.5194/os-18-1221-2022, https://doi.org/10.5194/os-18-1221-2022, 2022
Short summary
Short summary
Temperature and salinity profiles are essential for studying the ocean’s stratification, but there are not enough of these data. Satellites are able to measure daily maps of the surface ocean. We train a machine to learn the link between the satellite data and the profiles in the Gulf Stream region. We can then use this link to predict profiles at the high resolution of the satellite maps. Our prediction is fast to compute and allows us to get profiles at any locations only from surface data.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
R. Fablet, M. M. Amar, Q. Febvre, M. Beauchamp, and B. Chapron
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2021, 295–302, https://doi.org/10.5194/isprs-annals-V-3-2021-295-2021, https://doi.org/10.5194/isprs-annals-V-3-2021-295-2021, 2021
Cited articles
Alldredge, A. L. and Gotschalk, C.: In situ settling behavior of marine snow, Limnol. Oceanogr., 33, 339–351 https://doi.org/10.4319/lo.1988.33.3.0339, 1988. a
Alvain, S., Moulin, C., Dandonneau, Y., and Bréon, F. M.: Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery, Deep-Sea Res. Pt. I, 52, 1989–2004, https://doi.org/10.1016/j.dsr.2005.06.015, 2005. a
Alvain, S., Moulin, C., Dandonneau, Y., Loisel, H., and Bréon, F. M.: A species-dependent bio-optical model of case I waters for global ocean color processing, Deep-Sea Res. Pt. I, 53, 917–925, https://doi.org/10.1016/j.dsr.2006.01.011, 2006. a
Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S. G.: A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals, Deep-Sea Res. Pt. II, 49, 219–236, https://doi.org/10.1016/S0967-0645(01)00101-1, 2001. a
Baker, C. A., Henson, S. A., Cavan, E. L., Giering, S. L., Yool, A., Gehlen, M., Belcher, A., Riley, J. S., Smith, H. E., and Sanders, R.: Slow-sinking particulate organic carbon in the Atlantic Ocean: magnitude, flux, and potential controls, Global Biogeochem. Cy., 31, 1051–1065, https://doi.org/10.1002/2017GB005638, 2017. a
Baker, C. A., Estapa, M. L., Iversen, M., Lampitt, R., and Buesseler, K.: Are all sediment traps created equal? An intercomparison study of carbon export methodologies at the PAP-SO site, Prog. Oceanogr., 184, 102317, https://doi.org/10.1016/j.pocean.2020.102317, 2020. a, b
Baker, C. A., Martin, A. P., Yool, A., and Popova, E.: Biological carbon pump sequestration efficiency in the North Atlantic: a leaky or a long term sink?, Global Biogeochem. Cy., 36, e2021GB007286, https://doi.org/10.1029/2021GB007286, 2022. a
Bates, N. R. and Johnson, R. J.: Forty years of ocean acidification observations (1983–2023) in the Sargasso Sea at the Bermuda Atlantic Time-series Study site, Frontiers in Marine Science, 10, 1289931, https://doi.org/10.3389/fmars.2023.1289931, 2023. a
Beauchamp, M., Amar, M. M., Febvre, Q., and Fablet, R.: End-to-end learning of variational interpolation schemes for satellite-derived SSH data, in: 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 7418–7421, https://doi.org/10.1109/IGARSS47720.2021.9554800, 2021.
Beauchamp, M., Febvre, Q., Georgenthum, H., and Fablet, R.: 4DVarNet-SSH: end-to-end learning of variational interpolation schemes for nadir and wide-swath satellite altimetry, Geosci. Model Dev., 16, 2119–2147, https://doi.org/10.5194/gmd-16-2119-2023, 2023. a
Berelson, W. M.: Particle settling rates increase with depth in the ocean, Deep-Sea Res. Pt. II, 49, 237–251, https://doi.org/10.1016/S0967-0645(01)00102-3, 2001. a
Berloff, P. S. and McWilliams, J. C.: Material transport in oceanic gyres. Part III: Randomized stochastic models, J. Phys. Oceanogr., 33, 1416–1445, https://doi.org/10.1175/1520-0485(2003)033<1416:MTIOGP>2.0.CO;2, 2003. a
Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distribution, Bull. Calcutta Math. S., 35, 99–110, 1943. a
Bolton, T. and Zanna, L.: Applications of deep learning to ocean data inference and subgrid parameterization, J. Adv. Model. Earth Sy., 11, 376–399, https://doi.org/10.1029/2018MS001472, 2019. a, b
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.: Multi-faceted particle pumps drive carbon sequestration in the ocean, Nature, 568, 327–335, https://doi.org/10.1038/s41586-019-1098-2, 2019. a
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, https://doi.org/10.1007/bf00058655, 1996. a
Briggs, N., Dall'Olmo, G., and Claustre, H.: Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans, Science, 367, 791–793, https://doi.org/10.1126/science.aay1790, 2020. a
Buesseler, K. O., Lamborg, C. H., Boyd, P. W., Lam, P. J., Trull, T. W., Bidigare, R. R., Bishop, J. K., Casciotti, K. L., Dehairs, F., Elskens, M., Honda, M., Karl, D. M., Siegel, D. A., Silver, M. W., Steinberg, D. K., Valdes, J., Van Mooy, B., and Wilson, S.: Revisiting carbon flux through the ocean's twilight zone, Science, 316, 567–570, https://doi.org/10.1126/science.1137959, 2007. a, b
Burd, A., Buchan, A., Church, M. J., Landry, M. R., McDonnell, A. M. P., Passow, U., Steinberg, D. K., and Benway, H. M.: Towards a transformative understanding of the oceans biological pump: Priorities for future research – Report on the NSF Biology of the Biological Pump Workshop, NSF Biology of the Biological Pump Workshop, Hyatt Place New Orleans, New Orleans, LA, 19–20 February 2016, https://doi.org/10.1575/1912/8263, 2016. a
Burd, A. B., Hansell, D. A., Steinberg, D. K., Anderson, T. R., Arístegui, J., Baltar, F., Beaupré, S. R., Buesseler, K. O., DeHairs, F., Jackson, G. A., Kadko, D. C., Koppelmann, R., Lampitt, R. S., Nagata, T., Reinthaler, T., Robinson, C., Robison, B. H., Tamburini, C., and Tanaka, T.: Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @$#! is wrong with present calculations of carbon budgets?, Deep-Sea Res. Pt. II, 57, 1557–1571, https://doi.org/10.1016/j.dsr2.2010.02.022, 2010. a
Carli, E., Siegelman, L., Morrow, R., and Vergara, O.: Surface quasi geostrophic reconstruction of vertical velocities and vertical heat fluxes in the Southern Ocean: perspectives for SWOT, J. Geophys. Res.-Oceans, 129, e2024JC021216, https://doi.org/10.1029/2024JC021216, 2024. a
Cetinić, I., Rousseaux, C. S., Carroll, I. T., Chase, A. P., Kramer, S. J., Werdell, P. J., Siegel, D. A., Dierssen, H. M., Catlett, D., Neeley, A., Soto Ramos, I. M., Wolny, J. L., Sadoff, N., Urquhart, E., Westberry, T. K., Stramski, D., Pahlevan, N., Seegers, B. N., Sirk, E., Lange, P. K., Vandermeulen, R. A., Graff, J. R., Allen, J. G., Gaube, P., McKinna, L. I., McKibben, S. M., Binding, C. E., Calzado, V. S., and Sayers, M.: Phytoplankton composition from sPACE: requirements, opportunities, and challenges, Remote Sens. Environ., 302, 113964, https://doi.org/10.1016/j.rse.2023.113964, 2024. a
Chapman, C. and Charantonis, A. A.: Reconstruction of subsurface velocities from satellite observations using iterative self-organizing maps, IEEE Geosci. Remote S., 14, 617–620, https://doi.org/10.1109/LGRS.2017.2665603, 2017. a
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002, 2011. a, b
Claustre, H., Johnson, K. S., and Takeshita, Y.: Observing the global ocean with Biogeochemical-Argo, Annu. Rev. Mar. Sci., 12, 23–48, https://doi.org/10.1146/annurev-marine-010419-010956, 2020. a
Cutolo, E., Pascual, A., Ruiz, S., Zarokanellos, N., and Fablet, R.: CLOINet: Ocean state reconstructions through remote-sensing, in-situ sparse observations and Deep Learning, arXiv [preprint], https://doi.org/10.48550/arXiv.2210.10767 2022. a
Dall'Olmo, G., Dingle, J., Polimene, L., Brewin, R. J., and Claustre, H.: Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump, Nat. Geosci., 9, 820–823, https://doi.org/10.1038/ngeo2818, 2016. a
Deuser, W. G., Muller-Karger, F. E., and Hemleben, C.: Temporal variations of particle fluxes in the deep subtropical and tropical North Atlantic: Eulerian versus Lagrangian effects, J. Geophys. Res., 93, 6857–6862, https://doi.org/10.1029/JC093iC06p06857, 1988. a
Deuser, W. G., Muller-Karger, F. E., Evans, R. H., Brown, O. B., Esaias, W. E., and Feldman, G. C.: Surface-ocean color and deep-ocean carbon flux: how close a connection?, Deep-Sea Res., 37, 1331–1343, https://doi.org/10.1016/0198-0149(90)90046-X, 1990. a
Dever, M., Nicholson, D., Omand, M. M., and Mahadevan, A.: Size differentiated export flux in different dynamical regimes in the ocean, Global Biogeochem. Cy., 35, e2020GB006764, https://doi.org/10.1029/2020GB006764, 2021. a
Durkin, C. A., Mooy, B. A. S. V., Dyhrman, S. T., and Buesseler, K. O.: Sinking phytoplankton associated with carbon flux in the Atlantic Ocean, Limnol. Oceanogr., 61, 1172–1187, https://doi.org/10.1002/lno.10253, 2016. a
El Hourany, R., Abboud-Abi Saab, M., Faour, G., Aumont, O., Crépon, M., and Thiria, S.: Estimation of secondary phytoplankton pigments from satellite observations using Self-Organizing Maps (SOMs), J. Geophys. Res.-Oceans, 124, 1357–1378, https://doi.org/10.1029/2018JC014450, 2019. a, b
E.U. Copernicus Marine Service Information (CMEMS): Global Ocean Gridded L4 Sea Surface Heights And Derived Variables Reprocessed 1993 Ongoing, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00148, 2024a. a
E.U. Copernicus Marine Service Information (CMEMS): Global Ocean OSTIA Sea Surface Temperature and Sea Ice Reprocessed, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00168, 2024b. a
E.U. Copernicus Marine Service Information (CMEMS): Global Ocean Colour Plankton and Reflectances MY L3 daily observations, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00282, 2024c. a
E.U. Copernicus Marine Service Information (CMEMS): Global Ocean 3D Chlorophyll-a concentration, Particulate Backscattering coefficient and Particulate Organic Carbon, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00046, 2024d. a
Falk, T., Mai, D., Bensch, R., Çiçek, Ö., Abdulkadir, A., Marrakchi, Y., Böhm, A., Deubner, J., Jäckel, Z., Seiwald, K., Dovzhenko, A., Tietz, O., Dal Bosco, C., Walsh, S., Saltukoglu, D., Tay, T. L., Prinz, M., Palme, K., Simons, M., Diester, I., Brox, T., and Ronneberger, O.: U-Net: deep learning for cell counting, detection, and morphometry, Nat. Methods, 16, 67–70, https://doi.org/10.1038/s41592-018-0261-2, 2019. a
Febvre, Q., Sommer, J. L., Ubelmann, C., and Fablet, R.: Training neural mapping schemes for satellite altimetry with simulation data, arXiv [preprint], https://doi.org/10.48550/arXiv.2309.14350, 2023. a
Fischer, G. and Karakaş, G.: Sinking rates and ballast composition of particles in the Atlantic Ocean: implications for the organic carbon fluxes to the deep ocean, Biogeosciences, 6, 85–102, https://doi.org/10.5194/bg-6-85-2009, 2009. a
Frigstad, H., Henson, S. A., Hartman, S. E., Omar, A. M., Jeansson, E., Cole, H., Pebody, C., and Lampitt, R. S.: Links between surface productivity and deep ocean particle flux at the Porcupine Abyssal Plain sustained observatory, Biogeosciences, 12, 5885–5897, https://doi.org/10.5194/bg-12-5885-2015, 2015. a, b, c, d, e, f, g
Garrett, C.: On the initial streakness of a dispersing tracer in two- and three-dimensional turbulence, Dynam. Atmos. Oceans, 7, 265–277, https://doi.org/10.1016/0377-0265(83)90008-8, 1983. a
Giering, S. L., Sanders, R., Martin, A. P., Lindemann, C., Möller, K. O., Daniels, C. J., Mayor, D. J., and St. John, M. A.: High export via small particles before the onset of the North Atlantic spring bloom, J. Geophys. Res.-Oceans, 121, 6929–6945, https://doi.org/10.1002/2016JC012048, 2016. a, b
Grabowski, E., Letelier, R. M., Laws, E. A., and Karl, D. M.: Coupling carbon and energy fluxes in the North Pacific Subtropical Gyre, Nat. Commun., 10, 1895, https://doi.org/10.1038/s41467-019-09772-z, 2019. a
Guidi, L., Legendre, L., Reygondeau, G., Uitz, J., Stemmann, L., and Henson, S. A.: A new look at ocean carbon remineralization for estimating deepwater sequestration, Global Biogeochem. Cy., 29, 1044–1059, https://doi.org/10.1002/2014GB005063, 2015. a
Hartman, S. E., Bett, B. J., Durden, J. M., Henson, S. A., Iversen, M., Jeffreys, R. M., Horton, T., Lampitt, R., and Gates, A. R.: Enduring science: three decades of observing the Northeast Atlantic from the Porcupine Abyssal Plain Sustained Observatory (PAP-SO), Prog. Oceanogr., 191, 102508, https://doi.org/10.1016/j.pocean.2020.102508, 2021. a
Henson, S. A., Sanders, R., and Madsen, E.: Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean, Global Biogeochem. Cy., 26, 1–14, https://doi.org/10.1029/2011GB004099, 2012. a
Henson, S. A., Yool, A., and Sanders, R.: Global Biogeochemical Cycles carbon export: A model study, Global Biogeochem. Cy., 29, 33–45, https://doi.org/10.1002/2014GB004965. a
Henson, S. A., Laufkötter, C., Leung, S., Giering, S. L., Palevsky, H. I., and Cavan, E. L.: Uncertain response of ocean biological carbon export in a changing world, Nat. Geosci., 15, 248–254, https://doi.org/10.1038/s41561-022-00927-0, 2022. a
Honjo, S., Manganini, S. J., Krishfield, R. A., and Francois, R.: Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983, Prog. Oceanogr., 76, 217–285, https://doi.org/10.1016/j.pocean.2007.11.003, 2008. a
Howe, B. M., Lukas, R., Duennebier, F., and Karl, D.: ALOHA cabled observatory installation, in: OCEANS'11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011, https://doi.org/10.23919/OCEANS.2011.6107301, 1–11, 2011. a
Jenkins, J., Paiement, A., Ourmières, Y., Le Sommer, J., Verron, J., Ubelmann, C., and Glotin, H.: A DNN Framework for Learning Lagrangian Drift With Uncertainty, Appl. Intell., 53, 23729–23739, https://doi.org/10.1007/s10489-023-04625-1, 2023. a, b
Jenkins, J., Paiement, A., Ourmières, Y., Sommer, J. L., Verron, J., Ubelmann, C., and Glotin, H.: A DNN Framework for Learning Lagrangian Drift With Uncertainty, Appl Intell., 53, 23729–23739, https://doi.org/10.1007/s10489-023-04625-1, 2023.
Jokulsdottir, T. and Archer, D.: A stochastic, Lagrangian model of sinking biogenic aggregates in the ocean (SLAMS 1.0): model formulation, validation and sensitivity, Geosci. Model Dev., 9, 1455–1476, https://doi.org/10.5194/gmd-9-1455-2016, 2016. a
Kingma, D. P. and Ba, J. L.: Adam: A method for stochastic optimization, in: 3rd International Conference on Learning Representations, ICLR 2015 – Conference Track Proceedings, San Diego, 30 January 2017, arXiv, https://doi.org/10.48550/arXiv.1412.6980, 2015. a
Kwon, E. Y., Primeau, F., and Sarmiento, J. L.: The impact of remineralization depth on the air-sea carbon balance, Nat. Geosci., 2, 630–635, https://doi.org/10.1038/ngeo612, 2009. a, b
Lampitt, R. and Pebody, C.: Sediment Trap data from the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) site on PAP3 mooring at 3000 metres April 1989–June 2019 Version 2,NERC EDS British Oceanographic Data Centre NOC [data set], https://doi.org/10.5285/06bd25d5-fcd3-0f63-e063-6c86abc0481e, 2023. a
Lampitt, R. S., Noji, T., and von Bodungen, B.: What happens to zooplankton faecal pellets? Implications for material flux, Mar. Biol., 104, 15–23, https://doi.org/10.1007/BF01313152, 1990. a
Lampitt, R. S., Bett, B. J., Kiriakoulakis, K., Popova, E. E., Ragueneau, O., Vangriesheim, A., and Wolff, G. A.: Material supply to the abyssal seafloor in the northeast Atlantic, Prog. Oceanogr., 50, 27–63, https://doi.org/10.1016/S0079-6611(01)00047-7, 2001. a
Lampitt, R. S., Salter, I., and Johns, D.: Radiolaria: major exporters of organic carbon to the deep ocean, Global Biogeochem. Cy., 23, 1–9, https://doi.org/10.1029/2008GB003221, 2009. a
Lampitt, R., Salter, I., de Cuevas, B., Hartman, S., Larkin, K., and Pebody, C.: Long-term variability of downward particle flux in the deep northeast Atlantic: causes and trends, Deep-Sea Res. Pt. II, 57, 1346–1361, https://doi.org/10.1016/j.dsr2.2010.01.011, 2010. a, b, c
Lampitt, R. S., Briggs, N., Cael, B. B., Espinola, B., Hélaouët, P., Henson, S. A., Norrbin, F., Pebody, C. A., and Smeed, D.: Deep ocean particle flux in the Northeast Atlantic over the past 30 years: carbon sequestration is controlled by ecosystem structure in the upper ocean, Front. Earth Sci., 11, 1–19, https://doi.org/10.3389/feart.2023.1176196, 2023. a, b, c, d, e, f, g, h, i
Le Corre, M., Gula, J., and Tréguier, A.-M.: Barotropic vorticity balance of the North Atlantic subpolar gyre in an eddy-resolving model, Ocean Sci., 16, 451–468, https://doi.org/10.5194/os-16-451-2020, 2020. a
Le Moigne, F. A. C.: Pathways of organic carbon downward transport by the oceanic biological carbon pump, Frontiers in Marine Science, 6, 482488, https://doi.org/10.3389/fmars.2019.00634, 2019. a, b
Lecun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521, 436–444, https://doi.org/10.1038/nature14539, 2015. a
Ledwell, J. R., Watson, A. J., and Law, C. S.: Mixing of a tracer in the pycnocline, J. Geophys. Res.-Oceans, 103, 21499–21529, https://doi.org/10.1029/98JC01738, 1998. a
Lellouche, J.-M., Greiner, E., Bourdallé Badie, R., Gilles, G., Angélique, M., Marie, D., Clément, B., Mathieu, H., Olivier, L. G., Charly, R., Tony, C., Charles-Emmanuel, T., Florent, G., Giovanni, R., Mounir, B., Yann, D., and Pierre-Yves, L. T.: The Copernicus global ° oceanic and sea ice GLORYS12 reanalysis, Front. Earth Sci., 9, 1–27, https://doi.org/10.3389/feart.2021.698876, 2021. a, b
Lguensat, R., Sun, M., Fablet, R., Tandeo, P., Mason, E., and Chen, G.: EddyNet: A Deep Neural Network For Pixel-Wise Classification of Oceanic Eddies, in: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018, https://doi.org/10.1109/IGARSS.2018.8518411, 1764–1767, 2018. a
Liu, G., Bracco, A., and Passow, U.: The influence of mesoscale and submesoscale circulation on sinking particles in the northern Gulf of Mexico, Elementa, 6, 36, https://doi.org/10.1525/elementa.292, 2018. a, b
Ma, W., Xiu, P., Chai, F., Ran, L., Wiesner, M. G., Xi, J., Yan, Y., and Fredj, E.: Impact of mesoscale eddies on the source funnel of sediment trap measurements in the South China Sea, Prog. Oceanogr., 194, 102566, https://doi.org/10.1016/j.pocean.2021.102566, 2021. a
Manucharyan, G. E., Siegelman, L., and Klein, P.: A deep learning approach to spatiotemporal sea surface height interpolation and estimation of deep currents in geostrophic ocean turbulence, J. Adv. Model. Earth Sy., 13, 1–17, https://doi.org/10.1029/2019MS001965, 2021. a
McDonnell, A. M., Lam, P. J., Lamborg, C. H., Buesseler, K. O., Sanders, R., Riley, J. S., Marsay, C., Smith, H. E., Sargent, E. C., Lampitt, R. S., and Bishop, J. K.: The oceanographic toolbox for the collection of sinking and suspended marine particles, Prog. Oceanogr., 133, 17–31, https://doi.org/10.1016/j.pocean.2015.01.007, 2015. a
Messié, M. and Chavez, F. P.: Nutrient supply, surface currents, and plankton dynamics predict zooplankton hotspots in coastal upwelling systems, Geophys. Res. Lett., 44, 8979–8986, https://doi.org/10.1002/2017GL074322, 2017. a
Messié, M., Sancho-Gallegos, D. A., Fiechter, J., Santora, J. A., and Chavez, F. P.: Satellite-based Lagrangian model reveals how upwelling and oceanic circulation shape krill hotspots in the California current system, Frontiers in Marine Science, 9, 1–19, https://doi.org/10.3389/fmars.2022.835813, 2022. a
Mignot, A., Claustre, H., Uitz, J., Poteau, A., D'Ortenzio, F., and Xing, X.: Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: a Bio-Argo float investigation, Global Biogeochem. Cy., 28, 856–879, https://doi.org/10.1002/2013GB004781, 2014. a
Mínguez, R., Abascal, A. J., Castanedo, S., and Medina, R.: Stochastic Lagrangian trajectory model for drifting objects in the ocean, Stoch. Env. Res. Risk. A., 26, 1081–1093, https://doi.org/10.1007/s00477-011-0548-7, 2012. a
Miquel, J.-C., Martín, J., Gasser, B., Rodriguez-y Baena, A., Toubal, T., and Fowler, S. W.: Dynamics of particle flux and carbon export in the northwestern Mediterranean Sea: a two decade time-series study at the DYFAMED site, Prog. Oceanogr., 91, 461–481, https://doi.org/10.1016/j.pocean.2011.07.018, 2011. a
Nencioli, F., d'Ovidio, F., Doglioli, A. M., and Petrenko, A. A.: In situ estimates of submesoscale horizontal eddy diffusivity across an ocean front, J. Geophys. Res.-Oceans, 118, 7066–7080, https://doi.org/10.1002/2013JC009252, 2013. a
Nowicki, M.: Quantifying the carbon export and sequestration pathways of the ocean's biological carbon pump, Global Biogeochem. Cy., 3, 1–22, https://doi.org/10.1029/2021GB007083, 2022. a
Palevsky, H. I. and Nicholson, D. P.: The North Atlantic biological pump: insights from the ocean observatories initiative irminger sea array, Oceanography, 31, 42–49, https://doi.org/10.5670/oceanog.2018.108, 2018. a
Parekh, P., Dutkiewicz, S., Follows, M. J., and Ito, T.: Atmospheric carbon dioxide in a less duty world, Geophys. Res. Lett., 33, 2–5, https://doi.org/10.1029/2005GL025098, 2006. a
Passow, U. and Carlson, C. A.: The biological pump in a high CO2 world, Mar. Ecol. Prog. Ser., 470, 249–271, https://doi.org/10.3354/meps09985, 2012. a
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury Google, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Xamla, A. K., Yang, E., Devito, Z., Raison Nabla, M., Tejani, A., Chilamkurthy, S., Ai, Q., Steiner, B., Facebook, L. F., Facebook, J. B., and Chintala, S.: PyTorch: An imperative style, high-performance deep learning library, in: Advances in Neural Information Processing Systems, edited by: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., NeurIPS, 8026–8037, arXiv, https://doi.org/10.48550/arXiv.1912.01703, 2019. a
Picard, T.: Video for learning-based prediction of the particles catchment area of PAP sediment traps, Zenodo [video], https://doi.org/10.5281/zenodo.10261827, 2023. a
Picard, T.: Catchment areas of PAP sediment traps at 3000m depth from 2000 to 2022, Seanoe [data set], https://doi.org/10.17882/102535, 2024a. a
Picard, T.: SPARO: v2.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.13899396, 2024b. a
Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation, arXiv [preprint], https://doi.org/10.48550/arXiv.1505.04597 2015. a
Ruhl, H. A., Bahr, F. L., Henson, S. A., Hosking, W. B., Espinola, B., Kahru, M., Daniel, P., Drake, P., and Edwards, C. A.: Understanding the remote influences of ocean weather on the episodic pulses of particulate organic carbon flux, Deep-Sea Res. Pt. II, 173, 104741, https://doi.org/10.1016/j.dsr2.2020.104741, 2020. a
Saba, V. S., Friedrichs, M. A. M., Antoine, D., Armstrong, R. A., Asanuma, I., Behrenfeld, M. J., Ciotti, A. M., Dowell, M., Hoepffner, N., Hyde, K. J. W., Ishizaka, J., Kameda, T., Marra, J., Mélin, F., Morel, A., O'Reilly, J., Scardi, M., Smith Jr., W. O., Smyth, T. J., Tang, S., Uitz, J., Waters, K., and Westberry, T. K.: An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe, Biogeosciences, 8, 489–503, https://doi.org/10.5194/bg-8-489-2011, 2011. a
Sauzède, R., Claustre, H., Uitz, J., Jamet, C., Dall'Olmo, G., D'Ortenzio, F., Gentili, B., Poteau, A., and Schmechtig, C.: A neural network-based method for merging ocean color and Argo data to extend surface bio-optical properties to depth: retrieval of the particulate backscattering coefficient, J. Geophys. Res.-Oceans, 121, 2552–2571, https://doi.org/10.1002/2015JC011408, 2016. a
Sauzède, R., Bittig, H. C., Claustre, H., de Fommervault, O. P., Gattuso, J. P., Legendre, L., and Johnson, K. S.: Estimates of water-column nutrient concentrations and carbonate system parameters in the global ocean: a novel approach based on neural networks, Frontiers in Marine Science, 4, 1–17, https://doi.org/10.3389/fmars.2017.00128, 2017. a
Schmidt, K., De La Rocha, C. L., Gallinari, M., and Cortese, G.: Not all calcite ballast is created equal: differing effects of foraminiferan and coccolith calcite on the formation and sinking of aggregates, Biogeosciences, 11, 135–145, https://doi.org/10.5194/bg-11-135-2014, 2014. a
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Model., 9, 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002, 2005. a
Siegel, D. A., Granata, T. C., Michaels, A. F., and Dickey, T. D.: Mesoscale eddy diffusion, particle sinking, and the interpretation of sediment trap data, J. Geophys. Res., 95, 5305–5311, https://doi.org/10.1029/JC095iC04p05305, 1990. a
Siegel, D. A., Fields, E., and Buesseler, K. O.: A bottom-up view of the biological pump: modeling source funnels above ocean sediment traps, Deep-Sea Res. Pt. I, 55,108–127, https://doi.org/10.1016/j.dsr.2007.10.006, 2008. a
Siegel, D. A., Buesseler, K. O., Behrenfeld, M. J., Benitez-Nelson, C. R., Boss, E., Brzezinski, M. A., Burd, A., Carlson, C. A., D'Asaro, E. A., Doney, S. C., Perry, M. J., Stanley, R. H., and Steinberg, D. K.: Prediction of the export and fate of global ocean net primary production: the exports science plan, Frontiers in Marine Science, 3, 1–10, https://doi.org/10.3389/fmars.2016.00022, 2016. a
Siegel, D. A., Devries, T., Doney, S. C., and Bell, T.: Assessing the sequestration time scales of some ocean-based carbon dioxide reduction strategies, Environ. Res. Lett., 16, 10, https://doi.org/10.1088/1748-9326/ac0be0, 2021. a
Siegel, D. A., Devries, T., Cetinić, I., and Bisson, K. M.: Quantifying the ocean's biological pump and its carbon cycle impacts on global scales, Annu. Rev. Mar. Sci., 15, 329–356, https://doi.org/10.1146/annurev-marine-040722-115226, 2023. a, b
Smilenova, A., Gula, J., Le Corre, M., Houpert, L., and Reecht, Y.: A persistent deep anticyclonic vortex in the rockall trough sustained by anticyclonic vortices shed from the slope current and wintertime convection, J. Geophys. Res.-Oceans, 125, e2019JC015905, https://doi.org/10.1029/2019JC015905, 2020. a, b, c
Smith, K. L., Ruhl, H. A., Huffard, C. L., Messié, M., and Kahru, M.: Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific, P. Natl. Acad. Sci. USA, 115, 12235–12240, https://doi.org/10.1073/pnas.1814559115, 2018. a, b
Stange, P., Bach, L. T., Le Moigne, F. A., Taucher, J., Boxhammer, T., and Riebesell, U.: Quantifying the time lag between organic matter production and export in the surface ocean: implications for estimates of export efficiency, Geophys. Res. Lett., 44, 268–276, https://doi.org/10.1002/2016GL070875, 2017. a
Steinberg, D. K. and Landry, M. R.: Zooplankton and the ocean carbon cycle, Annu. Rev. Mar. Sci., 9, 413–444, https://doi.org/10.1146/annurev-marine-010814-015924, 2017. a
Villa-Alfageme, M., de Soto, F., Le Moigne, F. A. C., Giering, S. L. C., Sanders, R., and García-Tenorio, R.: Observations and modeling of slow-sinking particles in the twilight zone, Global Biogeochem. Cy., 28, 1327–1342, https://doi.org/10.1002/2014GB004981, 2014. a
Villa-Alfageme, M., de Soto, F. C., Ceballos, E., Giering, S. L. C., Le Moigne, F. A. C., Henson, S., Mas, J. L., and Sanders, R. J.: Geographical, seasonal, and depth variation in sinking particle speeds in the North Atlantic, Geophys. Res. Lett., 43, 8609–8616, https://doi.org/10.1002/2016GL069233, 2016. a, b, c, d
Wang, Y., He, X., Bai, Y., Li, T., Wang, D., Zhu, Q., and Gong, F.: Satellite-derived bottom depth for optically shallow waters based on hydrolight simulations, Remote Sens.-Basel, 14, 4590, https://doi.org/10.3390/rs14184590, 2022b. a
Waniek, J., Koeve, W., and Prien, R. D.: Trajectories sinking particles and the catchment areas above sediment traps in the northeast atlantic, J. Mar. Res., 58, 983–1006, https://doi.org/10.1016/S0967-0637(97)00028-9, 2000. a, b
Wekerle, C., Krumpen, T., Dinter, T., von Appen, W. J., Iversen, M. H., and Salter, I.: Properties of sediment trap catchment areas in fram strait: results from Lagrangian modeling and remote sensing, Frontiers in Marine Science, 5, 407, https://doi.org/10.3389/fmars.2018.00407, 2018. a, b
Wilson, J. D., Andrews, O., Katavouta, A., de Melo Viríssimo, F., Death, R. M., Adloff, M., Baker, C. A., Blackledge, B., Goldsworth, F. W., Kennedy-Asser, A. T., Liu, Q., Sieradzan, K. R., Vosper, E., and Ying, R.: The biological carbon pump in CMIP6 models: 21st century trends and uncertainties, P. Natl. Acad. Sci. USA, 119, 11–13, https://doi.org/10.1073/pnas.2204369119, 2022. a
Worsfold, M., Good, S., Atkinson, C., and Embury, O.: Presenting a long-term, reprocessed dataset of global sea surface temperature produced using the OSTIA system, Remote Sens., 16, 3358, https://doi.org/10.3390/rs16183358, 2024.
Short summary
Ocean sediment traps measure the sequestrated sinking organic carbon. While sinking, the particles are affected by local currents, which presents a challenge with regard to linking the deep flux with the surface. We present a machine learning tool that predicts the source location of the sinking particles based on satellite data. The predictions demonstrate a stronger correlation between surface and deep carbon fluxes, allowing a more comprehensive understanding of the deep carbon sequestration drivers.
Ocean sediment traps measure the sequestrated sinking organic carbon. While sinking, the...
Altmetrics
Final-revised paper
Preprint