Articles | Volume 22, issue 17
https://doi.org/10.5194/bg-22-4349-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-4349-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Forestlines in Italian mountains are shifting upward: detection and monitoring using satellite time series
Lorena Baglioni
CORRESPONDING AUTHOR
Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
Donato Morresi
Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden
Matteo Garbarino
Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
Carlo Urbinati
Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
Emanuele Lingua
Department of Land, Environment, Agriculture and Forestry, University of Padua, Padua, Italy
Raffaella Marzano
Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
Alessandro Vitali
Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
Related authors
No articles found.
Erik Carrieri, Donato Morresi, Fabio Meloni, Nicolò Anselmetto, Emanuele Lingua, Raffaella Marzano, Carlo Urbinati, Alessandro Vitali, and Matteo Garbarino
EGUsphere, https://doi.org/10.5194/egusphere-2024-3757, https://doi.org/10.5194/egusphere-2024-3757, 2024
Short summary
Short summary
Alpine treelines reflect the impacts of climate and land use changes on ecosystems. Using low-cost drones and deep learning, we developed a method to map tree spatial patterns at fine scales across diverse environments. Our results reveal accurate detection and delineation of trees and spatial trends like clustering and size-class interactions. This efficient, adaptable approach enhances forest monitoring, aiding global efforts to assess treeline dynamics and their responses to global change.
M. Balestra, S. Chiappini, A. Vitali, E. Tonelli, F. Malandra, A. Galli, C. Urbinati, E. S. Malinverni, and R. Pierdicca
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 833–839, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-833-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-833-2022, 2022
B. Leblon, F. Ogunjobi Oluwamuyiwa, E. Lingua, and A. LaRocque
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1115–1120, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1115-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1115-2022, 2022
Cited articles
Ameztegui, A., Coll, L., Brotons, L., and Ninot, J. M.: Land-use legacies rather than climate change are driving the recent upward shift of the mountain tree line in the Pyrenees, Global Ecol. Biogeogr., 25, 263–273, https://doi.org/10.1111/geb.12407, 2016.
Anselmetto, N., Sibona, E. M., Meloni, F., Gagliardi, L., Bocca, M., and Garbarino, M.: Land Use Modeling Predicts Divergent Patterns of Change Between Upper and Lower Elevations in a Subalpine Watershed of the Alps, Ecosystems, 25, 1295–1310, https://doi.org/10.1007/s10021-021-00716-7, 2022.
Arekhi, M., Yesil, A., Ozkan, U. Y., and Balik Sanli, F.: Detecting treeline dynamics in response to climate warming using forest stand maps and Landsat data in a temperate forest, Forest Ecosystems, 5, 23, https://doi.org/10.1186/s40663-018-0141-3, 2018.
Bader, M. Y., Llambí, L. D., Case, B. S., Buckley, H. L., Toivonen, J. M., Camarero, J. J., Cairns, D. M., Brown, C. D., Wiegand, T., and Resler, L. M.: A global framework for linking alpine-treeline ecotone patterns to underlying processes, Ecography, 44, 265–292, https://doi.org/10.1111/ecog.05285, 2021.
Bayle, A., Gascoin, S., Berner, L. T., and Choler, P.: Landsat-based greening trends in alpine ecosystems are inflated by multidecadal increases in summer observations, Ecography, 2024, e07394, https://doi.org/10.1111/ecog.07394, 2024.
Bayle, A., Nicoud, B., Mansons, J., Francon, L., Corona, C., and Choler, P.: Alpine greening deciphered by forest stand and structure dynamics in advancing treelines of the southwestern European Alps, Remote Sens. Ecol. Conserv., https://doi.org/10.1002/rse2.430, 2025.
Bengtsson, H.: A Unifying Framework for Parallel and Distributed Processing in R using Futures, R J., 13, 208–227, https://doi.org/10.32614/RJ-2021-048, 2021.
Berdanier, A.: Global treeline position, Nature Education Knowledge, 3, 11–19, 2010.
Bharti, R. R., Adhikari, B. S., and Rawat, G. S.: Assessing vegetation changes in timberline ecotone of Nanda Devi National Park, Uttarakhand, Int. J. Appl. Earth Obs. Geoinformation, 18, 472–479, https://doi.org/10.1016/j.jag.2011.09.018, 2012.
Blasi, C., Capotorti, G., Copiz, R., Guida, D., Mollo, B., Smiraglia, D., and Zavattero, L.: Classification and mapping of the ecoregions of Italy, Plant Biosyst., 148, 1255–1345, https://doi.org/10.1080/11263504.2014.985756, 2014.
Bolton, D. K., Coops, N. C., Hermosilla, T., Wulder, M. A., and White, J. C.: Evidence of vegetation greening at alpine treeline ecotones: Three decades of Landsat spectral trends informed by lidar-derived vertical structure, Environ. Res. Lett., 13, 084022, https://doi.org/10.1088/1748-9326/aad5d2, 2018.
Bonanomi, G., Rita, A., Allevato, E., Cesarano, G., Saulino, L., di Pasquale, G., Allegrezza, M., Pesaresi, S., Borghetti, M., Rossi, S., and Saracino, A.: Anthropogenic and environmental factors affect the tree line position of Fagus sylvatica along the Apennines (Italy), J. Biogeogr., 45, 2595–2608, https://doi.org/10.1111/jbi.13408, 2018.
Bonanomi, G., Zotti, M., Mogavero, V., Cesarano, G., Saulino, L., Rita, A., Tesei, G., Allegrezza, M., Saracino, A., and Allevato, E.: Climatic and anthropogenic factors explain the variability of Fagus sylvatica treeline elevation in fifteen mountain groups across the Apennines, Forest Ecosystems, 7, 5, https://doi.org/10.1186/s40663-020-0217-8, 2020.
Bonanomi, G., Mogavero, V., Rita, A., Zotti, M., Saulino, L., Tesei, G., Allegrezza, M., Saracino, A., Rossi, S. and Allevato, E.: Shrub facilitation promotes advancing of the Fagus sylvatica treeline across the Apennines (Italy), Journal of Vegetation Sciences,32, e13054, https://doi.org/10.1111/jvs.13054, 2021.
Brown, F. C., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S., Mazzariello, J., Czerwinski, W., Pasquarella, V. J., Haertel, R., Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, F., Hanson, C., Guinan, O., Moore, R., and Tait, A. M.: DynamicWorld, Near real-time global 10m land use land cover mapping, [data set], Scientific Data, 9, 251, https://doi.org/10.1038/s41597-022-01307-4, 2022.
Caccianiga, M., Andreis, C., Armiraglio, S., Leonelli, G., Pelfini, M., and Sadla, D.: Climate continentality and treeline species distribution on the Alps, Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 142, 66–78, https://doi.org/10.1080/11263500701872416, 2008.
Camps-Valls, G., Campos-Taberner, M., Moreno-Martinez, Á., Walther, S., Duveiller, G., Cescatti, A., Mahecha, M. D., Muñoz-Marí J., García-Haro, F. J., Guanter, L., Jung, M., Gamon, J. A., Reichstein, M. and Running, S. W. : A unified vegetation index for quantifying the terrestrial biosphere, Science Advances, 7, eabc7447, https://doi.org/10.1126/sciadv.abc7447, 2021
Carlson, B. Z., Corona, M. C., Dentant, C., Bonet, R., Thuiller, W., and Choler, P.: Observed long-term greening of alpine vegetation – A case study in the French Alps, Environ. Res. Lett., 12, 114006, https://doi.org/10.1088/1748-9326/aa84bd, 2017.
Chhetri, P. K. and Thai, E.: Remote sensing and geographic information systems techniques in studies on treeline ecotone dynamics, J. Forestry Res., 30, 1543–1553, https://doi.org/10.1007/s11676-019-00897-x, 2019.
Choler, P., Bayle, A., Carlson, B. Z., Randin, C., Filippa, G., and Cremonese, E.: The tempo of greening in the European Alps: Spatial variations on a common theme, Glob. Change Biol., 27, 5614–5628, https://doi.org/10.1111/gcb.15820, 2021.
Choler, P., Bayle, A., Fort, N., and Gascoin, S.: Waning snowfields have transformed into hotspots of greening within the alpine zone, Nat. Clim. Change, 15, 80–85, https://doi.org/10.1038/s41558-024-02177-x, 2024.
Cohen, W. B. and Goward, S.: Landsat's role in ecological applications of remote sensing, Bioscience, 54, 535–545, https://doi.org/10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2, 2004.
Cohen W. B., Spies T., and Fiorella M.: Estimating the age and structure of forests in a multi-ownership landscape of western Oregon, U.S.A. Int. J. Remote Sens., 16, 721–746, https://doi.org/10.1080/01431169508954436, 1995.
Compostella, C. and Caccianiga, M.: A comparison between different treeline types shows contrasting responses to climate fluctuations, Plant Biosyst., 151, 436–449, https://doi.org/10.1080/11263504.2016.1179695, 2017.
Copernicus Land Monitoring Service:Tree Cover Density 2018 - Present (raster 10m), Europe, yearly, Nov. 2024. European Environment Agency, [data set], https://doi.org/10.2909/e677441e-fb94-431c-b4f9-304f10e4dfd8, 2024.
Crist, E. P.: A TM Tasseled Cap equivalent transformation for reflectance factor data, Remote Sens. Environ., 17, 301–306, https://doi.org/10.1016/0034-4257(85)90102-6, 1985.
Crist, E. P. and Cicone, R. C.: A Physically-Based Transformation of Thematic Mapper Data - The TM Tasseled Cap, IEEE Transactions on Geoscience and Remote Sensing, 22, 256–263, 1984.
Csárdi G. and Chang W.: callr: Call R from R R package version 3.7.6, CRAN [code], https://CRAN.R-project.org/package=callr (last access: 28 February 2025), 2024.
Debussche, M., Lepart, J., and Dervieux, A.: Mediterranean landscape changes: Evidence from old postcards, Global Ecol. Biogeogr., 8, 3–15, https://doi.org/10.1046/j.1365-2699.1999.00316.x, 1999.
Diàz-Varela, R. A., Colombo, R., Meroni, M., Calvo-Iglesias, M., S., Buffoni, A., and Tagliaferri, A.: Spatio-temporal analysis of alpine ecotones: A spatial explicit model targeting altitudinal vegetation shifts, Ecol. Modell., 221, 621–633, https://doi.org/10.1016/j.ecolmodel.2009.11.010, 2010.
Dziomber, L., Gobet, E., Leunda, M., Gurtner, L., Vogel, H., Tournier, N., Damanik, A., Szidat, S., Tinner, W., and Schwörer, C.: 3 Palaeoecological multiproxy reconstruction captures long-term climatic and anthropogenic impacts on vegetation dynamics in the Rhaetian Alps, Rev. Palaeobot. Palyno., 321, 105020, https://doi.org/10.1016/J.REVPALBO.2023.105020, 2024.
EEA: Copernicus Land Monitoring Service – High Resolution Layer – Tree Cover & Forests, Product User Manual (PUM), https://land.copernicus.eu/en/technical-library/product-user-manual-tree-cover-and-forests-2018-2021, 2025.
FAO: Global Forest Resources Assessment (FRA),FAO forestry paper 140, Food and Agriculture Organization of the United Nations, Rome, 2000.
Fauquette, S., Suc, J.-P., Médail, F., Muller, S. D., Jiménez-Moreno, G., Bertini, A., Martinetto, E., Popescu, S. M., Zheng, Z., and de Beaulieu, J.-L.: The Alps: A Geological, Climatic and Human Perspective on Vegetation History and Modern Plant Diversity, Mountains, Climate and Biodiversity, https://amu.hal.science/hal-01888883 (last access: 28 February 2025), 2018.
Fissore, V., Motta, R., Palik, B., and Mondino, E. B.: The role of spatial data and geomatic approaches in treeline mapping: A review of methods and limitations, Eur. J. Remote Sens., 48, 777–792, https://doi.org/10.5721/EuJRS20154843, 2015.
Flood, N.: Seasonal Composite Landsat TM/ETM+ Images Using the Medoid (a Multi-Dimensional Median), Remote Sensing, 5, 6481–6500, https://doi.org/10.3390/rs5126481, 2013.
Foster, D. R., Motzkin, G. and Slater, B.: Land-Use History as Long-Term Broad-Scale Disturbance: Regional Forest Dynamics in Central New England, Ecosystems 1, 96–119, https://doi.org/10.1007/s100219900008, 1998.
Gao, B.-C.: NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sens. Environ., 58, 257–266, https://doi.org/10.1016/S0034-4257(96)00067-3, 1996.
Garbarino, M., Morresi, D., Urbinati, C., Malandra, F., Motta, R., Sibona, E. M., Vitali, A, and Weisberg, P. J.: Contrasting land use legacy effects on forest landscape dynamics in the Italian Alps and the Apennines, Landscape Ecol., 35, 2679–2694, https://doi.org/10.1007/s10980-020-01013-9, 2020.
Garbarino, M., Morresi, D., Anselmetto, N., and Weisberg, P. J.: Treeline remote sensing: from tracking treeline shifts to multi-dimensional monitoring of ecotonal change, Remote Sensing in Ecology and Conservation, 9, 729–742, https://doi.org/10.1002/rse2.351, 2023.
García, M. J. L. and Caselles, V.: Mapping burns and natural reforestation using thematic mapper data, Geocarto Int., 6, 31–37, https://doi.org/10.1080/10106049109354290, 1991.
Gilles, A., Lavergne, S., and Carcaillet, C.: Unsuspected prevalence of Pinus cembra in the high-elevation sky islands of the western Alps, Plant Ecol., 224, 865–873, https://doi.org/10.1007/s11258-023-01341-1, 2023.
Gómez, C., White, J. C., and Wulder, M. A.: Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation, Remote Sens. Environ., 115, 1665–1679, https://doi.org/10.1016/j.rse.2011.02.025, 2011.
Gómez, C., White, J. C., and Wulder, M. A.: Optical remotely sensed time series data for land cover classification: A review, ISPRS J. Photogramm., 116, 55–72, https://doi.org/10.1016/J.ISPRSJPRS.2016.03.008, 2016.
Hansson, A., Dargusch, P., and Shulmeister, J.: A Review of Methods Used to Measure Treeline Migration and Their Application, Journal of Environmental Informatics Letters, 4, 1–10, https://doi.org/10.3808/jeil.202000037, 2020.
Hansson, A., Yang, W. H., Dargusch, P., and Shulmeister, J.: Investigation of the Relationship Between Treeline Migration and Changes in Temperature and Precipitation for the Northern Hemisphere and Sub-regions, Current Forestry Reports, 9, 72–100, https://doi.org/10.1007/s40725-023-00180-7, 2023.
Harsch, M. A. and Bader, M. Y.: Treeline form – a potential key to understanding treeline dynamics, Global Ecol. Biogeogr., 20, 582–596, https://doi.org/10.1111/j.1466-8238.2010.00622.x, 2011.
Hastie, T. J. and Tibshirani, R. J.: Generalized Additive Models, Chapman & Hall/CRC, ISBN 978-0-412-34390-2, 1990.
He, X., Jiang, X., Spracklen, D. v., Holden, J., Liang, E., Liu, H., Xu, C., Du, J., Zhu, K., Elsen, P. R., and Zeng, Z.: Global distribution and climatic controls of natural mountain treelines, Glob. Change Biol., 29, 7001–7011, https://doi.org/10.1111/gcb.16885, 2023.
Hijmans, R.: terra: Spatial Data Analysis, R package version 1.7-55, CRAN [code], https://CRAN.R-project.org/package=terra (last access: 28 February 2025), 2023.
Holtmeier, F. K.: Mountain Timberlines, Adv. Global Change Res., 36, 1–4, https://doi.org/10.1007/978-1-4020-9705-8_1, 2009.
Holtmeier, F. K. and Broll, G.: Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales, Global Ecol. Biogeogr., 14, 395–410, https://doi.org/10.1111/j.1466-822X.2005.00168.x, 2005.
Holtmeier, F. K. and Broll, G.: Treeline research-from the roots of the past to present time. a review, Forests, 11, 38, https://doi.org/10.3390/f11010038, 2020.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195–213, https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Huete, A. R.: Vegetation Indices, Remote Sensing and Forest Monitoring, Geography Compass, 6, 513–532, https://doi.org/10.1111/j.1749-8198.2012.00507.x, 2012.
Isotta, F. A., Frei, C., Weilguni, V., Perčec Tadić, M., Lassègues, P., Rudolf, B., Pavan, V., Cacciamani, C., Antolini, G., Ratto, S. M., Munari, M., Micheletti, S., Bonati, V., Lussana, C., Ronchi, C., Panettieri, E., Marigo, G., and Vertačnik, G.: The climate of daily precipitation in the Alps: Development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data, Int. J. Climatol., 34, 1657–1675, https://doi.org/10.1002/joc.3794, 2014.
Kauth R. J. and G. S. Thomas: The Tasselled Cap – A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT, in: Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, University of West Lafayette, Indiana, 29 June 29–1 July, 1976.
Körner, C.: Alpine Ecosystems and the High-Elevation Treeline, Encyclopedia of Ecology, 138–144, https://doi.org/10.1016/B978-008045405-4.00314-1, 2008.
Körner, C.: Alpine Treelines, in: Functional Ecology of the Global High Elevation Tree Limits, Springer, https://doi.org/10.1007/978-3-0348-0396-0, 2012.
Körner, C. and Paulsen, J.: A world-wide study of high altitude treeline temperatures, J. Biogeogr., 31, 713–732, https://doi.org/10.1111/j.1365-2699.2003.01043.x, 2004.
Kumar, R., Nath, A. J., Nath, A., Sahu, N., and Pandey, R.: Landsat-based multi-decadal spatio-temporal assessment of the vegetation greening and browning trend in the Eastern Indian Himalayan Region, Remote Sensing Applications: Society and Environment, 25, 100695, https://doi.org/10.1016/j.rsase.2022.100695, 2022.
Lang, N., Jetz, W., Schindler, K., and Wegner, J. D.: A high-resolution canopy height model of the Earth, Nature Ecology and Evolution, 7, 1778–1789, https://doi.org/10.1038/s41559-023-02206-6, 2023.
Leonelli, G., Pelfini, M., and Di Cella, U.: Detecting climatic treelines in the Italian alps: The influence of geomorphological factors and human impacts, Phys. Geogr., 30, 338–352, https://doi.org/10.2747/0272-3646.30.4.338, 2009.
Lingua, E., Cherubini, P., Motta, R., and Nola, P.: Spatial structure along an altitudinal gradient in the Italian central Alps suggests competition and facilitation among coniferous species, J. Veg. Sci. 19, 425–436, 2008.
Malandra, F., Vitali, A., Urbinati, C., Weisberg, P. J., and Garbarino, M.: Patterns and drivers of forest landscape change in the Apennines range, Italy, Reg. Environ. Change, 19, 1973–1985, https://link.springer.com/article/10.1007/s10113-019-01531-6, 2019.
Malanson, G. P., Resler, L. M., Bader, M. Y., Holtmeier, F. K., Butler, D. R., Weiss, D. J., Daniels, L. D., and Fagre, D. B.: Mountain treelines: A roadmap for research orientation, Arct. Antarct. Alp. Res., 43, 167–177, https://doi.org/10.1657/1938-4246-43.2.167, 2011.
McCune, B.: Improved estimates of incident radiation and heat load using non-parametric regression against topographic variables, J. Veg. Sci. 18, 751–754, 2007.
McManus, K. M., Morton, D. C., Masek, J. G., Wang, D., Sexton, J. O., Nagol, J. R., Ropars, P., and Boudreau, S.: Satellite-based evidence for shrub and graminoid tundra expansion in northern Quebec from 1986 to 2010, Glob. Change Biol., 18, 2313–2323, https://doi.org/10.1111/j.1365-2486.2012.02708.x, 2012.
Morales-Molino, C., Leunda, M., Morellón, M., Gardoki, J., Ezquerra, F. J., Muñoz Sobrino, C., Rubiales, J. M., and Tinner, W.: Millennial land use explains modern high-elevation vegetation in the submediterranean mountains of Southern Europe, J. Biogeogr., 49, 1779–1792, https://doi.org/10.1111/jbi.14472, 2022.
Morley, P. J., Donoghue, D. N. M., Chen, J. C., and Jump, A. S.: Integrating remote sensing and demography for more efficient and effective assessment of changing mountain forest distribution, Ecol. Inform., 43, 106–115, https://doi.org/10.1016/j.ecoinf.2017.12.002, 2018.
Morley, P. J., Donoghue, D. N. M., Chen, J. C., and Jump, A. S.: Quantifying structural diversity to better estimate change at mountain forest margins, Remote Sens. Environ., 223, 291–306, https://doi.org/10.1016/J.RSE.2019.01.027, 2019.
Morresi, D., Vitali, A., Urbinati, C., and Garbarino, M.: Forest spectral recovery and regeneration dynamics in stand-replacing wildfires of central Apennines derived from Landsat time series, Remote Sensing, 11, 308, https://doi.org/10.3390/rs11030308, 2019.
Motta, R., Morales, M., and Nola, P.: Human land-use, forest dynamics and tree growth at the treeline in the Western Italian Alps, Ann. For. Sci., 63, 739–747m https://doi.org/10.1051/forest:2006055, 2006.
Neeti, N. and Eastman, J. R.: A Contextual Mann-Kendall Approach for the Assessment of Trend Significance in Image Time Series, T. GIS, 15, 599–611, https://doi.org/10.1111/j.1467-9671.2011.01280.x, 2011.
Nguyen, T. A., Rußwurm, M., Lenczner, G., and Tuia, D.: Multi-temporal forest monitoring in the Swiss Alps with knowledge-guided deep learning, Remote Sens. Environ., 305, 114109, https://doi.org/10.1016/j.rse.2024.114109, 2024
Obojes, N., Buscarini, S., Meurer, A. K., Tasser, E., Oberhuber, W., Mayr, S., and Tappeiner, U.: Tree growth at the limits: the response of multiple conifers to opposing climatic constraints along an elevational gradient in the Alps, Frontiers in Forests and Global Change, 7, https://doi.org/10.3389/ffgc.2024.1332941, 2024.
Pecher, C., Tasser, E., and Tappeiner, U.: Definition of the potential treeline in the European Alps and its benefit for sustainability monitoring, Ecol. Indic., 11, 438–447, https://doi.org/10.1016/j.ecolind.2010.06.015, 2011.
Pesaresi, S., Biondi, E., and Casavecchia, S.: Bioclimates of italy, J. Maps [data set], 13, 955–960, https://doi.org/10.1080/17445647.2017.1413017, 2017.
Piermattei, A., Garbarino, M., and Urbinati, C.: Structural attributes, tree-ring growth and climate sensitivity of Pinus nigra Arn. at high altitude: common patterns of a possible treeline shift in the central Apennines (Italy), Dendrochronologia, 32, 210–219, https://doi.org/10.1016/J.DENDRO.2014.05.002, 2014.
Piermattei, A., Lingua, E., Urbinati, C., and Garbarino, M.: Pinus nigra anthropogenic treelines in the central Apennines show common pattern of tree recruitment, Eur. J. For. Res., 135, 1119–1130, https://doi.org/10.1007/s10342-016-0999-y, 2016.
Piper, F. I., Viñegla, B., Linares, J. C., Camarero, J. J., Cavieres, L. A., and Fajardo, A.: Mediterranean and temperate treelines are controlled by different environmental drivers, J. Ecol., 104, 691–702, https://doi.org/10.1111/1365-2745.12555, 2016.
Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M. C., Kommareddy, A., Pickens, A., Turubanova, S., Tang, H., Silva, C. E., Armston, J., Dubayah, R., Blair, J. B., and Hofton, M.: Mapping global forest canopy height through integration of GEDI and Landsat data, Remote Sens. Environ., 253, 112165, https://doi.org/10.1016/j.rse.2020.112165, 2021.
Powell, S. L., Cohen, W. B., Healey, S. P., Kennedy, R. E., Moisen, G. G., Pierce, K. B., and Ohmann, J. L.: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches, Remote Sens. Environ., 114, 1053–1068, https://doi.org/10.1016/j.rse.2009.12.018, 2010.
Rajala, T.: ConMK: Contextual Mann-Kendall. R package version 0.8-1, https://github.com/geoporttishare/ConMK, last access: 28 February 2025, 2024.
Rivas-Martínez, S.: Bases para una nueva clasificacion, Folia Botanica Madritensis, 10, 1–23, 1993.
Rumpf, S. B., Gravey, M., Brönnimann, O., Luoto, M., Cianfrani, C., Mariethoz, G., and Guisan, A.: From white to green: Snow cover loss and increased vegetation productivity in the European Alps, Science, 376, 1119–1122, https://doi.org/10.1126/science.abn6697, 2022.
Schroeder, T. A., Wulder, M. A., Healey, S. P., and Moisen, G. G.: Mapping wildfire and clearcut harvest disturbances in boreal forests with Landsat time series data, Remote Sens. Environ., 115, 1421–1433, https://doi.org/10.1016/J.RSE.2011.01.022, 2011.
Schultz, M., Clevers, J. G. P. W., Carter, S., Verbesselt, J., Avitabile, V., Quang, H. V., and Herold, M.: Performance of vegetation indices from Landsat time series in deforestation monitoring, Int. J. Appl. Earth Obs., 52, 318–327, https://doi.org/10.1016/j.jag.2016.06.020, 2016.
Snethlage, M. A., Geschke, J., Spehn, E. M., Ranipeta, A., Yoccoz, N. G., Körner, C., Jetz, W., Fischer, M., and Urbach, D.: A hierarchical inventory of the world's mountains for global comparative mountain science, Scientific Data [data set], 9, 149, https://doi.org/10.1038/s41597-022-01256-y, 2022a.
Snethlage, M. A., Geschke, J., Spehn, E. M., Ranipeta, A., Yoccoz, N. G., Körner, C., Jetz, W., Fischer, M., and Urbach, D.: GMBA Mountain Inventory v2, Nature Scientific Data [data set], https://doi.org/10.48601/earthenv-t9k2-1407, 2022b.
Tarquini, S., Isola, I., Favalli, M., Battistini, A., and Dotta, G.: TINITALY, a digital elevation model of Italy with a 10 meters cell size (Version 1.1), Istituto Nazionale di Geofisica e Vulcanologia (INGV) [data set], https://doi.org/10.13127/tinitaly/1.1, 2023.
Tian, L., Fu, W., Tao, Y., Li, M., and Wang, L.: Dynamics of the alpine timberline and its response to climate change in the Hengduan mountains over the period 1985–2015, Ecol. Indic., 135, 108589, https://doi.org/10.1016/j.ecolind.2022.108589, 2022.
Tolan, J., Yang, H. I., Nosarzewski, B., Couairon, G., Vo, H. V., Brandt, J., Spore, J., Majumdar, S., Haziza, D., Vamaraju, J., Moutakanni, T., Bojanowski, P., Johns, T., White, B., Tiecke, T., and Couprie, C.: Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar, Remote Sens. Environ., 300, 113888, https://doi.org/10.1016/j.rse.2023.113888, 2024.
Tucker, C. J.: Red and Photographic Infrared Linear Combinations for Monitoring Vegetation, Remote Sens. Environ., 8, 127–150, https://doi.org/10.1016/0034-4257(79)90013-0, 1979.
Vacchiano, G., Garbarino, M., Lingua, E., and Motta, R.: Forest dynamics and disturbance regimes in the Italian Apennines, Forest Ecol. Manag., 388, 57–66, https://doi.org/10.1016/j.foreco.2016.10.033, 2017.
Vitali, A., Camarero, J. J., Garbarino, M., Piermattei, A., and Urbinati, C.: Deconstructing human-shaped treelines: Microsite topography and distance to seed source control Pinus nigra colonization of treeless areas in the Italian Apennines, Forest Ecol. Manag., 406, 37–45, https://doi.org/10.1016/j.foreco.2017.10.004, 2017.
Vitali, A., Urbinati, C., Weisberg, P. J., Urza, A. K., and Garbarino, M.: Effects of natural and anthropogenic drivers on land-cover change and treeline dynamics in the Apennines (Italy), J. Veg. Sci., 29, 189–199, https://doi.org/10.1111/jvs.12598, 2018.
Wang, X. L. and Swail, V. R.: Changes of extreme Wave Heights in northern Hemisphere Oceans and related atmospheric circulation regimes, J. Climate, 14, 2204–2221, https://doi.org/10.1175/1520-0442(2001)014<2204:COEWHI>2.0.CO;2, 2001.
Wei, C., Karger, D. N., and Wilson, A. M.: Spatial detection of alpine treeline ecotones in the Western United States, Remote Sens. Environ., 240, 111672, https://doi.org/10.1016/j.rse.2020.111672, 2020.
Wickham, H., François, R., Henry, L., Müller, K., Vaughan, D.: _dplyr: A Grammar of Data Manipulation, R package version 1.1.4, CRAN [code], https://CRAN.R-project.org/package=dplyr (last access: 28 February 2025), 2023.
Wilcoxon F.: Individual comparisons by ranking methods, Biometrics, 1, 80–83, https://doi.org/10.2307/3001968, 1945.
Wood, S. N.: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models, J. R. Stat. Soc. B, 73, 3–36, https://doi.org/10.1111/j.1467-9868.2010.00749.x, 2011.
Zhou, M., Li, D., Liao, K., and Lu, D.: Integration of Landsat time-series vegetation indices improves consistency of change detection, Int. J. Digit. Earth, 16, 1276–1299, https://doi.org/10.1080/17538947.2023.2200040, 2023.
Zhu, Z.: Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications, ISPRS J. Photogramm., 130, 370–384, https://doi.org/10.1016/J.ISPRSJPRS.2017.06.013, 2017.
Zou, F., Tu, C., Liu, D., Yang, C., Wang, W., and Zhang, Z.: Alpine Treeline Dynamics and the Special Exposure Effect in the Hengduan Mountains, Front. Plant Sci., 13, https://doi.org/10.3389/fpls.2022.861231, 2022.
Short summary
We propose a method for the automated detection of the uppermost forest lines with the aim of supporting their monitoring through a replicable mapping that can be adopted in different geographical contexts and at different scales of analysis according to the available datasets. We adopted a trend analysis of Landsat-based wetness and greenness index time series of the last 40 years, detecting an increase in forest cover along the forest line ecotone in both the Italian Alps and the Apennines.
We propose a method for the automated detection of the uppermost forest lines with the aim of...
Altmetrics
Final-revised paper
Preprint