Articles | Volume 22, issue 18
https://doi.org/10.5194/bg-22-4627-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-4627-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Organic soils can be CO2 sinks in both drained and undrained hemiboreal peatland forests
Latvian State Forest Research Institute (Silava), Salaspils, 2169, Latvia
Raija Laiho
Natural Resources Institute Finland (Luke), P.O. Box 2, Helsinki 00791, Finland
Andis Lazdiņš
Latvian State Forest Research Institute (Silava), Salaspils, 2169, Latvia
Thomas Schindler
Department of Geography, University of Tartu, Tartu, 51014, Estonia
Kaido Soosaar
Department of Geography, University of Tartu, Tartu, 51014, Estonia
Jyrki Jauhiainen
Natural Resources Institute Finland (Luke), P.O. Box 2, Helsinki 00791, Finland
Arta Bārdule
Latvian State Forest Research Institute (Silava), Salaspils, 2169, Latvia
Muhammad Kamil-Sardar
Department of Geography, University of Tartu, Tartu, 51014, Estonia
Ieva Līcīte
Latvian State Forest Research Institute (Silava), Salaspils, 2169, Latvia
Valters Samariks
Latvian State Forest Research Institute (Silava), Salaspils, 2169, Latvia
Andreas Haberl
Michael Succow Foundation (partner in the Greifswald Mire Centre), 17489 Greifswald, Germany
Hanna Vahter
Department of Geography, University of Tartu, Tartu, 51014, Estonia
Dovilė Čiuldienė
Department of Silviculture and Ecology, Lithuanian Research Centre for Agriculture and Forestry, Kėdainiai distr., 58344, Lithuania
Jani Anttila
Natural Resources Institute Finland (Luke), P.O. Box 2, Helsinki 00791, Finland
Kęstutis Armolaitis
Department of Silviculture and Ecology, Lithuanian Research Centre for Agriculture and Forestry, Kėdainiai distr., 58344, Lithuania
Related authors
Arta Bārdule, Raija Laiho, Jyrki Jauhiainen, Kaido Soosaar, Andis Lazdiņš, Kęstutis Armolaitis, Aldis Butlers, Dovilė Čiuldienė, Andreas Haberl, Ain Kull, Milda Muraškienė, Ivika Ostonen, Gristin Rohula-Okunev, Muhammad Kamil-Sardar, Thomas Schindler, Hanna Vahter, Egidijus Vigricas, and Ieva Līcīte
Biogeosciences, 22, 4241–4259, https://doi.org/10.5194/bg-22-4241-2025, https://doi.org/10.5194/bg-22-4241-2025, 2025
Short summary
Short summary
Estimates of CO2 fluxes from drained nutrient-rich organic soils in croplands and grasslands in the hemiboreal region of Europe revealed that annual net CO2 fluxes were lower than the latest (2014) IPCC (Intergovernmental Panel on Climate Change ) emission factors provided for the whole temperate zone, including the hemiboreal region. The contribution of CO2 fluxes from shallow highly decomposed organic soils, former peatlands that no longer meet the IPCC criterion for organic soils, to total emissions can be high and should not be underestimated.
Aldis Butlers, Raija Laiho, Kaido Soosaar, Jyrki Jauhiainen, Thomas Schindler, Arta Bārdule, Muhammad Kamil-Sardar, Andreas Haberl, Valters Samariks, Hanna Vahter, Andis Lazdiņš, Dovilė Čiuldienė, Kęstutis Armolaitis, and Ieva Līcīte
EGUsphere, https://doi.org/10.5194/egusphere-2024-1397, https://doi.org/10.5194/egusphere-2024-1397, 2024
Preprint archived
Short summary
Short summary
A two-year study in Estonia, Latvia, and Lithuania evaluated forest organic soil carbon balance and the impact of drainage. CO2 emissions from soil did not significantly differ, showing a uniform methodology should be applied in national greenhouse gas inventories. Neither drained or undrained soils lost carbon during the study period. However, it was estimated that the negative impact of drainage on carbon sequestration in hemiboreal forest soils is 0.43±2.69 t C ha−1 year−1.
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Short summary
The study looked at published data on drained organic forest soils in boreal and temperate zones to revisit current Tier 1 default emission factors (EFs) provided by the IPCC Wetlands Supplement. We examined the possibilities of forming more site-type specific EFs and inspected the potential relevance of environmental variables for predicting annual soil greenhouse gas balances by statistical models. The results have important implications for EF revisions and national emission reporting.
Arta Bārdule, Raija Laiho, Jyrki Jauhiainen, Kaido Soosaar, Andis Lazdiņš, Kęstutis Armolaitis, Aldis Butlers, Dovilė Čiuldienė, Andreas Haberl, Ain Kull, Milda Muraškienė, Ivika Ostonen, Gristin Rohula-Okunev, Muhammad Kamil-Sardar, Thomas Schindler, Hanna Vahter, Egidijus Vigricas, and Ieva Līcīte
Biogeosciences, 22, 4241–4259, https://doi.org/10.5194/bg-22-4241-2025, https://doi.org/10.5194/bg-22-4241-2025, 2025
Short summary
Short summary
Estimates of CO2 fluxes from drained nutrient-rich organic soils in croplands and grasslands in the hemiboreal region of Europe revealed that annual net CO2 fluxes were lower than the latest (2014) IPCC (Intergovernmental Panel on Climate Change ) emission factors provided for the whole temperate zone, including the hemiboreal region. The contribution of CO2 fluxes from shallow highly decomposed organic soils, former peatlands that no longer meet the IPCC criterion for organic soils, to total emissions can be high and should not be underestimated.
Markku Koskinen, Jani Anttila, Valerie Vranová, Ladislav Holík, Kevin Roche, Michel Vorenhout, Mari Pihlatie, and Raija Laiho
Biogeosciences, 22, 3989–4012, https://doi.org/10.5194/bg-22-3989-2025, https://doi.org/10.5194/bg-22-3989-2025, 2025
Short summary
Short summary
Redox potential, indicative of the active pathways of organic matter decomposition, was monitored for 2 years in a boreal peatland with three drainage regimes. Contrary to expectations, the water table level and redox potential were not found to be correlated in a monotonic fashion; thus, the relationship between the water table level and redox conditions is not modellable using non-dynamic models.
Alisa Krasnova, Kaido Soosaar, Svyatoslav Rogozin, Dmitrii Krasnov, and Ülo Mander
EGUsphere, https://doi.org/10.5194/egusphere-2025-1280, https://doi.org/10.5194/egusphere-2025-1280, 2025
Short summary
Short summary
Riparian grey alder forests are important for carbon and water cycling, yet their response to climate extremes is understudied. Using ecosystem flux measurements, we found that a mature alder forest in Estonia remained a strong carbon sink, even during drought. In 2018, carbon uptake peaked due to increased spring productivity and reduced summer respiration, accompanied by enhanced water use efficiency. These results highlight the resilience of alder forests and their role in climate mitigation.
Laura Kuusemets, Ülo Mander, Jordi Escuer-Gatius, Alar Astover, Karin Kauer, Kaido Soosaar, and Mikk Espenberg
SOIL, 11, 1–15, https://doi.org/10.5194/soil-11-1-2025, https://doi.org/10.5194/soil-11-1-2025, 2025
Short summary
Short summary
We investigated relationships between mineral nitrogen (N) fertilisation rates and additional manure amendment with different crop types through an analysis of soil environmental characteristics and microbiomes, soil N2O and N2 emissions as well as biomass production. The results show that wheat grew well at a fertilisation rate of 80 kg N ha−1, and newly introduced sorghum showed good potential for cultivation in temperate climates.
Vilna Tyystjärvi, Tiina Markkanen, Leif Backman, Maarit Raivonen, Antti Leppänen, Xuefei Li, Paavo Ojanen, Kari Minkkinen, Roosa Hautala, Mikko Peltoniemi, Jani Anttila, Raija Laiho, Annalea Lohila, Raisa Mäkipää, and Tuula Aalto
Biogeosciences, 21, 5745–5771, https://doi.org/10.5194/bg-21-5745-2024, https://doi.org/10.5194/bg-21-5745-2024, 2024
Short summary
Short summary
Drainage of boreal peatlands strongly influences soil methane fluxes, with important implications for climatic impacts. Here we simulate methane fluxes in forestry-drained and restored peatlands during the 21st century. We found that restoration turned peatlands into a source of methane, but the magnitude varied regionally. In forests, changes in the water table level influenced methane fluxes, and in general, the sink was weaker under rotational forestry compared to continuous cover forestry.
Aldis Butlers, Raija Laiho, Kaido Soosaar, Jyrki Jauhiainen, Thomas Schindler, Arta Bārdule, Muhammad Kamil-Sardar, Andreas Haberl, Valters Samariks, Hanna Vahter, Andis Lazdiņš, Dovilė Čiuldienė, Kęstutis Armolaitis, and Ieva Līcīte
EGUsphere, https://doi.org/10.5194/egusphere-2024-1397, https://doi.org/10.5194/egusphere-2024-1397, 2024
Preprint archived
Short summary
Short summary
A two-year study in Estonia, Latvia, and Lithuania evaluated forest organic soil carbon balance and the impact of drainage. CO2 emissions from soil did not significantly differ, showing a uniform methodology should be applied in national greenhouse gas inventories. Neither drained or undrained soils lost carbon during the study period. However, it was estimated that the negative impact of drainage on carbon sequestration in hemiboreal forest soils is 0.43±2.69 t C ha−1 year−1.
Jaan Pärn, Mikk Espenberg, Kaido Soosaar, Kuno Kasak, Sandeep Thayamkottu, Thomas Schindler, Reti Ranniku, Kristina Sohar, Lizardo Fachín Malaverri, Lulie Melling, and Ülo Mander
EGUsphere, https://doi.org/10.5194/egusphere-2024-24, https://doi.org/10.5194/egusphere-2024-24, 2024
Preprint archived
Short summary
Short summary
Earth’s climate largely depends on greenhouse gas exchange in tropical peatland ecosystems. Its relationships with tropical peatland conditions are poorly understood. We analysed natural peat swamp forests and fens, moderately drained and dry peatlands under a wide variety of land uses. The tropical peat swamp forests were large greenhouse gas sinks while tropical peatlands under moderate and low soil moisture levels emitted carbon dioxide and nitrous oxide.
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Short summary
The study looked at published data on drained organic forest soils in boreal and temperate zones to revisit current Tier 1 default emission factors (EFs) provided by the IPCC Wetlands Supplement. We examined the possibilities of forming more site-type specific EFs and inspected the potential relevance of environmental variables for predicting annual soil greenhouse gas balances by statistical models. The results have important implications for EF revisions and national emission reporting.
Jukka Alm, Antti Wall, Jukka-Pekka Myllykangas, Paavo Ojanen, Juha Heikkinen, Helena M. Henttonen, Raija Laiho, Kari Minkkinen, Tarja Tuomainen, and Juha Mikola
Biogeosciences, 20, 3827–3855, https://doi.org/10.5194/bg-20-3827-2023, https://doi.org/10.5194/bg-20-3827-2023, 2023
Short summary
Short summary
In Finland peatlands cover one-third of land area. For half of those, with 4.3 Mha being drained for forestry, Finland reports sinks and sources of greenhouse gases in forest lands on organic soils following its UNFCCC commitment. We describe a new method for compiling soil CO2 balance that follows changes in tree volume, tree harvests and temperature. An increasing trend of emissions from 1.4 to 7.9 Mt CO2 was calculated for drained peatland forest soils in Finland for 1990–2021.
Jaan Pärn, Kaido Soosaar, Thomas Schindler, Katerina Machacova, Waldemar Alegría Muñoz, Lizardo Fachín, José Luis Jibaja Aspajo, Robinson I. Negron-Juarez, Martin Maddison, Jhon Rengifo, Danika Journeth Garay Dinis, Adriana Gabriela Arista Oversluijs, Manuel Calixto Ávila Fucos, Rafael Chávez Vásquez, Ronal Huaje Wampuch, Edgar Peas García, Kristina Sohar, Segundo Cordova Horna, Tedi Pacheco Gómez, Jose David Urquiza Muñoz, Rodil Tello Espinoza, and Ülo Mander
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-46, https://doi.org/10.5194/bg-2021-46, 2021
Manuscript not accepted for further review
Short summary
Short summary
Despite alarming forecasts for the Amazonian peat swamp forests, greenhouse gas emissions from the different peat environments have rarely been compared. We measured CO2, CH4 and N2O emissions from the soil in 3 sites around Iquitos, Peru: a pristine swamp forest, a young forest and a slash-and-burn manioc field. We saw a devastating effect on global climate from a slight water-table drawdown in the peat swamp forests, while the manioc field emitted moderate amounts of the greenhouse gases.
Cited articles
Ahti, T., Hämet-Ahti, L., and Jalas, J.: Vegetation zones and their sections in northwestern Europe, Ann. Bot. Fenn., 5, 169–211, 1968.
Alm, J., Wall, A., Myllykangas, J.-P., Ojanen, P., Heikkinen, J., Henttonen, H. M., Laiho, R., Minkkinen, K., Tuomainen, T., and Mikola, J.: A new method for estimating carbon dioxide emissions from drained peatland forest soils for the greenhouse gas inventory of Finland, Biogeosciences, 20, 3827–3855, https://doi.org/10.5194/bg-20-3827-2023, 2023.
Ball, B. C.: Soil structure and greenhouse gas emissions: A synthesis of 20 years of experimentation, Eur. J. Soil Sci., 64, 357–373, https://doi.org/10.1111/ejss.12013, 2013.
Bārdule, A., Gerra-Inohosa, L., Kļaviņš, I., Kļaviņa, Z., Bitenieks, K., Butlers, A., Lazdiņš, A., and Lībiete, Z.: Variation in the Mercury Concentrations and Greenhouse Gas Emissions of Pristine and Managed Hemiboreal Peatlands, Land, 11, 1414, https://doi.org/10.3390/land11091414, 2022.
Basiliko, N., Blodau, C., Roehm, C., Bengtson, P., and Moore, T. R.: Regulation of decomposition and methane dynamics across natural, commercially mined, and restored northern peatlands, Ecosystems, 10, 1148–1165, https://doi.org/10.1007/s10021-007-9083-2, 2007.
Beaulne, J., Garneau, M., Magnan, G., and Boucher, É.: Peat deposits store more carbon than trees in forested peatlands of the boreal biome, Sci. Rep., 11, 1–11, https://doi.org/10.1038/s41598-021-82004-x, 2021.
Berger, T. W., Inselsbacher, E., and Zechmeister-Boltenstern, S.: Carbon dioxide emissions of soils under pure and mixed stands of beech and spruce, affected by decomposing foliage litter mixtures, Soil Biol. Biochem., 42, 986–997, https://doi.org/10.1016/j.soilbio.2010.02.020, 2010.
Bhuiyan, R., Minkkinen, K., Helmisaari, H. S., Ojanen, P., Penttilä, T., and Laiho, R.: Estimating fine-root production by tree species and understorey functional groups in two contrasting peatland forests, Plant Soil, 412, 299–316, https://doi.org/10.1007/s11104-016-3070-3, 2017.
Bjarnadottir, B., Sungur, G. A., Sigurdsson, B. D., Kjartansson, B. T., Oskarsson, H., Oddsdottir, E. S., Gunnarsdottir, G. E., and Black, A.: Carbon and water balance of an afforested shallow drained peatland in Iceland, For. Ecol. Manage., 482, 118861, https://doi.org/10.1016/j.foreco.2020.118861, 2021.
Bond-Lamberty, B. and Thomson, A.: A global database of soil respiration data, Biogeosciences, 7, 1915–1926, https://doi.org/10.5194/bg-7-1915-2010, 2010.
Bond-Lamberty, B., Wang, C., and Gower, S. T.: A global relationship between the heterotrophic and autotrophic components of soil respiration?, Glob. Chang. Biol., 10, 1756–1766, https://doi.org/10.1111/j.1365-2486.2004.00816.x, 2004.
Box, G. E. P. and Cox, D. R.: An Analysis of Transformations, J. R. Stat. Soc. Ser. B, 26, 211–243, https://doi.org/10.1111/j.2517-6161.1964.tb00553.x, 1964.
Brock, O., Kooijman, A., Nierop, K. G. J., Muys, B., Vancampenhout, K., and Jansen, B.: Disentangling the effects of parent material and litter input chemistry on molecular soil organic matter composition in converted forests in Western Europe, Org. Geochem., 134, 66–76, 2019.
Bušs, K.: Forest Ecology and Typology, Zinātne, Rīga, Latvija, 64 pp., https://dom.lndb.lv/data/obj/419599 (last access: 9 September 2025), 1981.
Butlers, A.: Appendix: Organic soil carbon balance in drained and undrained hemiboreal forests, Zenodo [data set], https://doi.org/10.5281/zenodo.14968843, 2025.
Butlers, A., Lazdiņš, A., Kalēja, S., and Bārdule, A.: Carbon Budget of Undrained and Drained Nutrient-Rich Organic Forest Soil, Forests, 13, 1790, https://doi.org/10.3390/f13111790, 2022.
Butlers, A., Lazdiņš, A., Kalēja, S., Purviņa, D., Spalva, G., Saule, G., and Bārdule, A.: CH4 and N2O Emissions of Undrained and Drained Nutrient-Rich Organic Forest Soil, Forests, 14, https://doi.org/10.3390/f14071390, 2023.
Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., and Federici, S.: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Switzerland, ISBN 978-4-88788-232-4, 2019.
Chin, M. Y., Lau, S. Y. L., Midot, F., Jee, M. S., Lo, M. L., Sangok, F. E., and Melling, L.: Root exclusion methods for partitioning of soil respiration: Review and methodological considerations, Pedosphere, 33, 683–699, https://doi.org/10.1016/j.pedsph.2023.01.015, 2023.
Comstedt, D., Boström, B., and Ekblad, A.: Autotrophic and heterotrophic soil respiration in a Norway spruce forest: Estimating the root decomposition and soil moisture effects in a trenching experiment, Biogeochemistry, 104, 121–132, https://doi.org/10.1007/s10533-010-9491-9, 2011.
Cools, N. and De Vos, B.: Sampling and analysis of soil, Manual Part X, in: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, 208, ISBN 978-3-86576-162-0, 2010.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, https://doi.org/10.1038/nature04514, 2006.
Dawud, S. M., Raulund-Rasmussen, K., Domisch, T., Finér, L., Jaroszewicz, B., and Vesterdal, L.: Is Tree Species Diversity or Species Identity the More Important Driver of Soil Carbon Stocks, C N Ratio, and pH?, Ecosystems, 19, 645–660, https://doi.org/10.1007/s10021-016-9958-1, 2016.
Denmead, O. T.: Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere, Plant Soil, 309, 5–24, https://doi.org/10.1007/s11104-008-9599-z, 2008.
Díaz-Pinés, E., Schindlbacher, A., Pfever, M., Jandl, R., Zechmeister-Boltenstern, S., and Rubio, A.: Root trenching: A useful tool to estimate autotrophic soil respiration? A case study in an austrian mountain forest, Eur. J. For. Res., 129, 101–109, https://doi.org/10.1007/s10342-008-0250-6, 2010.
Dubra, S., Samariks, V., Līcīte, I., Butlers, A., Purviņa, D., Lupiķis, A., and Jansons, Ā.: Effects of Drainage on Carbon Stock in Hemiboreal Forests: Insights from a 54-Year Study, Sustainability, 15, 16622, https://doi.org/10.3390/su152416622, 2023.
Eggleston, H., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K. (Eds.): 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, IGES, Japan, ISBN 4-88788-032-4, 2006.
Epron, D.: Separating autotrophic and heterotrophic components of soil respiration: Lessons learned from trenching and related root-exclusion experiments, Soil Carbon Dyn. An Integr. Methodol., 157–168, https://doi.org/10.1017/CBO9780511711794.009, 2010.
Estonian Environment Agency. Climate normals: https://www.ilmateenistus.ee/kliima/kliimanormid/sademed/?lang=en, last access: 25 April 2024.
European Environment Agency: Annual European Union greenhouse gas inventory 1990–2021 and inventory report 2023, Copenhagen, EEA/PUBL/2023/044, 2023.
Fuss, R. and Hueppi, R.: Greenhouse Gas Flux Calculation from Chamber Measurements: R Package, https://git-dmz.thuenen.de/fuss/gasfluxes (last access: 14 October 2024), 2024.
Glenn, S., Heyes, A., and Moore, T.: Carbon dioxide and methane fluxes from drained peat soils, Southern Quebec, Global Biogeochem. Cycles, 7, 247–257, 1993.
Hanson, P. J., Edwards, N. T., Garten, C. T., and Andrews, J. A.: Separating root and soil microbial contributions to soil respiration: A review of methods and observations, Biogeochemistry, 48, 115–146, https://doi.org/10.1023/A:1006244819642, 2000.
Hargreaves, K. J., Milne, R., and Cannell, M. G. R.: Carbon balance of afforested peatland in Scotland, Forestry, 76, 299–317, https://doi.org/10.1093/forestry/76.3.299, 2003.
Hermans, R., McKenzie, R., Andersen, R., Teh, Y. A., Cowie, N., and Subke, J.-A.: Net soil carbon balance in afforested peatlands and separating autotrophic and heterotrophic soil CO2 effluxes, Biogeosciences, 19, 313–327, https://doi.org/10.5194/bg-19-313-2022, 2022.
Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Fukuda, M., Troxler, T., and Jamsranjav, B.: 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, IPCC, Switzerland, ISBN 978-92-9169-139-5, 2013.
Hommeltenberg, J., Schmid, H. P., Drösler, M., and Werle, P.: Can a bog drained for forestry be a stronger carbon sink than a natural bog forest?, Biogeosciences, 11, 3477–3493, https://doi.org/10.5194/bg-11-3477-2014, 2014.
Hutchinson, G. L. and Livingston, G. P.: Use of chamber systems to measure trace gas fluxes, ASA Spec. Publ., https://doi.org/10.2134/asaspecpub55.c4, 1993.
Janssens, I. A., Lankreijer, H., Matteucci, G., Kowalski, A. S., Buchmann, N., Epron, D., Pilegaard, K., Kutsch, W., Longdoz, B., Grünwald, T., Montagnani, L., Dore, S., Rebmann, C., Moors, E. J., Grelle, A., Rannik, Ü., Morgenstern, K., Oltchev, S., Clement, R., Guomundsson, J., Minerbi, S., Berbigier, P., Ibrom, A., Moncrieff, J., Aubinet, M., Bernhofer, C., Jensen, N. O., Vesala, T., Granier, A., Schulze, E. D., Lindroth, A., Dolman, A. J., Jarvis, P. G., Ceulemans, R., and Valentini, R.: Productivity overshadows temperature in determining soil and ecosystem respiration across European forests, Glob. Chang. Biol., 7, 269–278, https://doi.org/10.1046/j.1365-2486.2001.00412.x, 2001.
Jauhiainen, J.: Report on current situation – applied emission factors and projections of greenhouse gas emissions from organic soils, Salaspils, 65 pp., https://doi.org/10.13140/RG.2.2.35701.93927, 2019.
Jauhiainen, J., Alm, J., Bjarnadottir, B., Callesen, I., Christiansen, J. R., Clarke, N., Dalsgaard, L., He, H., Jordan, S., Kazanavičiūtė, V., Klemedtsson, L., Lauren, A., Lazdins, A., Lehtonen, A., Lohila, A., Lupikis, A., Mander, Ü., Minkkinen, K., Kasimir, Å., Olsson, M., Ojanen, P., Óskarsson, H., Sigurdsson, B. D., Søgaard, G., Soosaar, K., Vesterdal, L., and Laiho, R.: Reviews and syntheses: Greenhouse gas exchange data from drained organic forest soils – a review of current approaches and recommendations for future research, Biogeosciences, 16, 4687–4703, https://doi.org/10.5194/bg-16-4687-2019, 2019.
Jauhiainen, J., Heikkinen, J., Clarke, N., He, H., Dalsgaard, L., Minkkinen, K., Ojanen, P., Vesterdal, L., Alm, J., Butlers, A., Callesen, I., Jordan, S., Lohila, A., Mander, Ü., Óskarsson, H., Sigurdsson, B. D., Søgaard, G., Soosaar, K., Kasimir, Å., Bjarnadottir, B., Lazdins, A., and Laiho, R.: Reviews and syntheses: Greenhouse gas emissions from drained organic forest soils – synthesizing data for site-specific emission factors for boreal and cool temperate regions, Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, 2023.
Jayasekara, C., Leigh, C., Shimeta, J., Silvester, E., and Grover, S. P. P.: Effects of substrate quality, temperature, and water content on the decomposition of Sphagnum peat, Catena, 254, 108907, https://doi.org/10.1016/j.catena.2025.108907, 2025.
Jian, J., Vargas, R., Anderson-Teixeira, K. J., Stell, E., Herrmann, V., Horn, M., Kholod, N., Manzon, J., Marchesi, R., Paredes, D., and Bond-Lamberty., B. P.: A Global Database of Soil Respiration Data, Version 5.0, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1827, 2021.
Jovani-Sancho, A. J., Cummins, T., and Byrne, K. A.: Soil respiration partitioning in afforested temperate peatlands, Biogeochemistry, 141, 1–21, https://doi.org/10.1007/s10533-018-0496-0, 2018.
Khomik, M., Altaf Arain, M., Liaw, K. L., and McCaughey, J. H.: Debut of a flexible model for simulating soil respiration-soil temperature relationship: Gamma model, J. Geophys. Res. Biogeosciences, 114, 1–11, https://doi.org/10.1029/2008JG000851, 2009.
Konstantinavičiūtė, I., Byčenkienė, S., Kavšinė, A., Juška, R., Žiukelytė, I., Lenkaitis, R., Karlonienė, D., Politika, L., Mačiulskas, M., Armolaitis, K., Ozarinskienė, M., Matelytė, D., Merkelienė, J., Kairienė, E., and Šulinskas, K.: Greenhouse Gas Emissions in Lithuania, 1990–2021, Lithuania's national inventory report, 2023.
Korkiakoski, M., Ojanen, P., Tuovinen, J. P., Minkkinen, K., Nevalainen, O., Penttilä, T., Aurela, M., Laurila, T., and Lohila, A.: Partial cutting of a boreal nutrient-rich peatland forest causes radically less short-term on-site CO2 emissions than clear-cutting, Agric. For. Meteorol., 332, https://doi.org/10.1016/j.agrformet.2023.109361, 2023.
Krasnova, A., Kukumägi, M., Mander, Ü., Torga, R., Krasnov, D., Noe, S. M., Ostonen, I., Püttsepp, Ü., Killian, H., Uri, V., Lõhmus, K., Sõber, J., and Soosaar, K.: Carbon exchange in a hemiboreal mixed forest in relation to tree species composition, Agric. For. Meteorol., 275, 11–23, https://doi.org/10.1016/J.AGRFORMET.2019.05.007, 2019.
Kutzbach, L., Schneider, J., Sachs, T., Giebels, M., Nykänen, H., Shurpali, N. J., Martikainen, P. J., Alm, J., and Wilmking, M.: CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression, Biogeosciences, 4, 1005–1025, https://doi.org/10.5194/bg-4-1005-2007, 2007.
Laiho, R. and Laine, J.: Post-drainage nutrient stores in peat, in: Biomass production and element fluxes in forested peatland ecosystems, edited by: Hånell, B., Swedish University of Agricultural Sciences, Umeå, 81–91, ISBN 91-576-4458-6, 1990.
Laiho, R. and Pearson, M.: Surface peat and its dynamics following drainage – do they facilitate estimation of carbon losses with the C/ash method?, Mires and Peat, 17, 1–19, 2016.
Laiho, R., Bhuiyan, R., Straková, P., Mäkiranta, P., Badorek, T., and Penttilä, T.: Modified ingrowth core method plus infrared calibration models for estimating fine root production in peatlands, Plant Soil, 385, 311–327, https://doi.org/10.1007/s11104-014-2225-3, 2014.
Laine, J., Laiho, R., Minkkinen, K., and Vasander, H.: Forestry and Boreal Peatlands, in: Boreal Peatland Ecosystems, Ecological Studies, vol. 188, edited by: Wieder, R. K. and Vitt, D. H., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-31913-9_15, 2006.
Latvian Environment, Geology and Meteorology Centre. Climate normals: https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__ENV__GP__GPL/GPL010m, last access: 25 April 2024.
Lazdiņš, A., Lupiķis, A., Polmanis, K., Bārdule, A., Butlers, A., and Kalēja, S.: Carbon stock changes of drained nutrient-rich organic forest soils in Latvia, Silva Fenn., 58, 1–21, https://doi.org/10.14214/sf.22017, 2024.
Liaw, K. L., Khomik, M., and Arain, M. A.: Explaining the Shortcomings of Log-Transforming the Dependent Variable in Regression Models and Recommending a Better Alternative: Evidence From Soil CO2 Emission Studies, J. Geophys. Res. Biogeosciences, 126, https://doi.org/10.1029/2021JG006238, 2021.
Līcīte, I., Lupiķis, A., Peters, J., Butlers, A., Armolaitis, K., Soosaar, K., Laiho, R., Čiuldienė, D., and Jauhiainen, J.: Report on the identified climate change mitigation targeted management practices on organic soils, Salaspils, 119 pp., https://doi.org/10.13140/RG.2.2.11374.97608, 2019.
Lithuanian Hydrometeorological Service. Climate normals: https://www.meteo.lt/en/climate/lithuanian-climate/standard-climate-normals/, last access: 25 April 2024.
Lukkala, O. J.: Soiden turvekerroksen painuminen ojituksen vaikutuksesta [The subsidence of the peat layer of bogs due to drainage], Commun. Inst. For. Fenn., 37, 1–67, http://urn.fi/URN:NBN:fi-metla-201207171069 (last access: 5 February 2025), 1949.
Madsen, R. L., Asplund, J., Nybakken, L., Biong, R., and Kj, O. J.: Harvesting history affects soil respiration and litterfall but not overall carbon balance in boreal Norway spruce forests, Forest Ecology and Management, 578, 122485, https://doi.org/10.1016/j.foreco.2024.122485, 2025.
Magnusson, B., Näykki, T., Hovind, H., Krysell, M., and Sahlin, E.: Handbook for Calculation of Measurement Uncertainty in Environmental Laboratories, Nordtest Report TR 537, 4th edn., 51, 2017.
Marinos, R. E. and Bernhardt, E. S.: Soil carbon losses due to higher pH offset vegetation gains due to calcium enrichment in an acid mitigation experiment, Ecology, 99, 2363–2373, https://doi.org/10.1002/ecy.2478, 2018.
Ministry of the Environment of Republic of Estonia: Greenhouse Gas Emissions in Estonia 1990–2019, National Inventory Report Submission to the UNFCCC Secretariat, 1990–2021, https://kliimaministeerium.ee/sites/default/files/documents/2023-03/NIR_EST_1990-2021_15.03.2023.pdf (last acces: 15 October 2024), 2021.
Minkkinen, K., Laine, J., Shurpali, N. J., Mäkiranta, P., Alm, J., and Penttilä, T.: Heterotrophic soil respiration in forestry-drained peatlands, Boreal Environ. Res., 12, 115–126, 2007.
Minkkinen, K., Ojanen, P., Penttilä, T., Aurela, M., Laurila, T., Tuovinen, J.-P., and Lohila, A.: Persistent carbon sink at a boreal drained bog forest, Biogeosciences, 15, 3603–3624, https://doi.org/10.5194/bg-15-3603-2018, 2018.
Moore, T. R., Trofymow, J. A., Taylor, B., Prescott, C., Camiré, C., Duschene, L., Fyles, J., Kozak, L., Kranabetter, M., Morrison, I., Siltanen, M., Smith, S., Titus, B., Visser, S., Wein, R., and Zoltai, S.: Litter decomposition rates in Canadian forests, Glob. Chang. Biol., 5, 75–82, 1999.
Moulin, A. P., Glenn, A., Tenuta, M., Lobb, D. A., Dunmola, A. S., and Yapa, P.: Alternative transformations of nitrous oxide soil flux data to normal distributions, Can. J. Soil Sci., 94, 105–108, https://doi.org/10.4141/CJSS2013-008, 2014.
Munir, T. M., Khadka, B., Xu, B., and Strack, M.: Partitioning forest-floor respiration into source based emissions in a boreal forested bog: Responses to experimental drought, Forests, 8, 1–17, https://doi.org/10.3390/f8030075, 2017.
Nakano, T., Sawamoto, T., Morishita, T., Inoue, G., and Hatano, R.: A comparison of regression methods for estimating soil-atmosphere diffusion gas fluxes by a closed-chamber technique, Soil Biol. Biochem., 36, 107–113, https://doi.org/10.1016/j.soilbio.2003.07.005, 2004.
Ngao, J., Longdoz, B., Granier, A., and Epron, D.: Estimation of autotrophic and heterotrophic components of soil respiration by trenching is sensitive to corrections for root decomposition and changes in soil water content, Plant Soil, 301, 99–110, https://doi.org/10.1007/s11104-007-9425-z, 2007.
Nichols, J. E. and Peteet, D. M.: Rapid expansion of northern peatlands and doubled estimate of carbon storage, Nat. Geosci., 12, 917–921, https://doi.org/10.1038/s41561-019-0454-z, 2019.
Nomura, K., Yamasaki, Y., Takada, A., Sago, Y., Yasutake, D., and Kitano, M.: A new method of evaluating gas fluxes in a closed chamber system with theoretical consideration for dynamic characteristics of a concentration sensor, Environ. Control Biol., 57, 53–59, https://doi.org/10.2525/ecb.57.53, 2019.
Novara, A., Armstrong, A., Gristina, L., Semple, K. T., and Quinton, J. N.: Effects of soil compaction, rain exposure and their interaction on soil carbon dioxide emission, Earth Surf. Process. Landforms, 37, 994–999, https://doi.org/10.1002/esp.3224, 2012.
Ohlson, M.: Growth and nutrient characteristics in bog and fen populations of Scots pine (Pinus sylvestris), Plant and Soil, 172, 235–245, 1995.
Ojanen, P., Minkkinen, K., Alm, J., and Penttilä, T.: Soil-atmosphere CO2, CH4 and N2O fluxes in boreal forestry-drained peatlands, For. Ecol. Manage., 260, 411–421, https://doi.org/10.1016/j.foreco.2010.04.036, 2010.
Ojanen, P., Minkkinen, K., and Penttilä, T.: The current greenhouse gas impact of forestry-drained boreal peatlands, Forest Ecology and Management, 289, 201–208, https://doi.org/10.1016/j.foreco.2012.10.008, 2013
Pribyl, D. W.: A critical review of the conventional SOC to SOM conversion factor, Geoderma, 156, 75–83, https://doi.org/10.1016/j.geoderma.2010.02.003, 2010.
Qiu, C., Ciais, P., Zhu, D., Guenet, B., Peng, S., Petrescu, A. M. R., Lauerwald, R., Makowski, D., Gallego-Sala, A. V., Charman, D. J., and Brewer, S. C.: Large historical carbon emissions from cultivated northern peatlands, Sci. Adv., 7, 1–10, https://doi.org/10.1126/sciadv.abf1332, 2021.
Reich, P. B., Oleksyn, J., Modrzynski, J., Mrozinski, P., Hobbie, S. E., Eissenstat, D. M., Chorover, J., Chadwick, O. A., Hale, C. M., and Tjoelker, M. G.: Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species, Ecology Letters, 8, 811–818, https://doi.org/10.1111/j.1461-0248.2005.00779.x, 2005.
Ryhti, K., Kulmala, L., Pumpanen, J., Isotalo, J., Pihlatie, M., Helmisaari, H. S., Leppälammi-Kujansuu, J., Kieloaho, A. J., Bäck, J., and Heinonsalo, J.: Partitioning of forest floor CO2 emissions reveals the belowground interactions between different plant groups in a Scots pine stand in southern Finland, Agric. For. Meteorol., 297, https://doi.org/10.1016/j.agrformet.2020.108266, 2021.
Savage, K. E., Davidson, E. A., Abramoff, R. Z., Finzi, A. C., and Giasson, M. A.: Partitioning soil respiration: quantifying the artifacts of the trenching method, Biogeochemistry, 140, 53–63, https://doi.org/10.1007/s10533-018-0472-8, 2018.
Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R., and Kapos, V.: Global soil carbon: Understanding and managing the largest terrestrial carbon pool, Carbon Manag., 5, 81–91, https://doi.org/10.4155/cmt.13.77, 2014.
Shahbaz, M., Bengtson, P., Mertes, J. R., Kulessa, B., and Kljun, N.: Spatial heterogeneity of soil carbon exchanges and their drivers in a boreal forest, Sci. Total Environ., 831, 154876, https://doi.org/10.1016/j.scitotenv.2022.154876, 2022.
Silva, J. P., Lasso, A., Lubberding, H. J., Peña, M. R., and Gijzen, H. J.: Biases in greenhouse gases static chambers measurements in stabilization ponds: Comparison of flux estimation using linear and non-linear models, Atmos. Environ., 109, 130–138, https://doi.org/10.1016/j.atmosenv.2015.02.068, 2015.
Skrebele, A., Treija, S., Lupkina, L., Cakars, I., Siņics, L., Lazdāne-Mihalko, J., Puļķe, A., Štelce, V., Klāvs, G., Gračkova, L., Bārdule, A., Butlers, A., Līcīte, I., Lazdiņš, A., Bērziņa, L., Gancone, A., and Dansone, B.: Greenhouse Gas Emissions in Latvia 1990–2021, Latvia`s National Inventory Report, Riga, https://videscentrs.lvgmc.lv/files/Klimats/SEG_emisiju_un_ETS_monitorings/Zinojums_par_klimatu/SEG_zinojums/2023/LV_NIR_15042023.pdf (last access: 15 October 2024), 2023.
Straková, P., Anttila, J., Spetz, P., Kitunen, V., Tapanila, T., and Laiho, R.: Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level, Plant. Soil., 335, 501–520, https://doi.org/10.1007/s11104-010-0447-6, 2010.
Straková, P., Penttilä, T., Laine, J., and Laiho, R.: Disentangling direct and indirect effects of water table drawdown on above- and belowground plant litter decomposition: Consequences for accumulation of organic matter in boreal peatlands, Glob. Chang. Biol., 18, 322–335, https://doi.org/10.1111/j.1365-2486.2011.02503.x, 2012.
Subke, J. A., Inglima, I., and Cotrufo, M. F.: Trends and methodological impacts in soil CO2 efflux partitioning: A metaanalytical review, Glob. Chang. Biol., 12, 921–943, https://doi.org/10.1111/j.1365-2486.2006.01117.x, 2006.
Vanguelova, E. I., Crow, P., Benham, S., Pitman, R., Forster, J., Eaton, E. L., and Morison, J. I. L.: Impact of Sitka spruce (Picea sitchensis (Bong.) Carr.) afforestation on the carbon stocks of peaty gley soils- A chronosequence study in the north of England, Forestry, 92, 242–252, https://doi.org/10.1093/forestry/cpz013, 2019.
Vigricas, E., Čiuldienė, D., Armolaitis, K., Valujeva, K., Laiho, R., Jauhiainen, J., Schindler, T., Bārdule, A., Lazdiņš, A., Butlers, A., Kazanavičiūtė, V., Belova, O., Kamil-Sardar, M., and Soosaar, K.: Total Soil CO2 Efflux from Drained Terric Histosols, Plants, 13, https://doi.org/10.3390/plants13010139, 2024.
Von Arnold, K., Nilsson, M., Hånell, B., Weslien, P., and Klemedtsson, L.: Fluxes of CO2, CH4 and N2O from drained organic soils in deciduous forests, Soil Biol. Biochem., 37, 1059–1071, https://doi.org/10.1016/J.SOILBIO.2004.11.004, 2005.
Warlo, H., von Wilpert, K., Lang, F., and Schack-Kirchner, H.: Black alder (Alnus glutinosa (L.) Gaertn.) on compacted skid trails: A trade-off between greenhouse gas fluxes and soil structure recovery?, Forests, 10, https://doi.org/10.3390/f10090726, 2019.
Westman, C. J. and Laiho, R.: Nutrient dynamics of drained peatland forests, Biogeochemistry, 63, 269–298, https://doi.org/10.1023/A:1023348806857, 2003.
Wutzler, T., Perez-Priego, O., Morris, K., El-Madany, T. S., and Migliavacca, M.: Soil CO2 efflux errors are lognormally distributed – implications and guidance, Geosci. Instrum. Method. Data Syst., 9, 239–254, https://doi.org/10.5194/gi-9-239-2020, 2020.
Yamulki, S., Anderson, R., Peace, A., and Morison, J. I. L.: Soil CO2 CH4 and N2O fluxes from an afforested lowland raised peatbog in Scotland: implications for drainage and restoration, Biogeosciences, 10, 1051–1065, https://doi.org/10.5194/bg-10-1051-2013, 2013.
Yu, Z. C.: Northern peatland carbon stocks and dynamics: a review, Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, 2012.
Yueqian, M.: Analysis and modelling of soil CO2 emissions within temperate coniferous and deciduous forests, McMaster University, 133 pp., http://hdl.handle.net/11375/26010 (last access: 14 October 2024), 2020.
Zālītis, P.: Mežs un ūdens, Latvijas Valsts mežzinātnes institūts “Silava,” Salaspils, 356 pp., ISBN 978-9934-8016-6-2, 2012.
Zhang, X., Wang, Y., Wang, J., Yu, M., Zhang, R., Mi, Y., Xu, J., Jiang, R., and Gao, J.: Elevation Influences Belowground Biomass Proportion in Forests by Affecting Climatic Factors, Soil Nutrients and Key Leaf Traits, Plants, 13, https://doi.org/10.3390/plants13050674, 2024.
Zhou, W., Han, G., Liu, M., and Li, X.: Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand, PeerJ, 2019, https://doi.org/10.7717/peerj.7880, 2019.
Zoltai, S. C. and Martikainen, P. J.: Estimated extent of forested peatlands and their role in the global carbon cycle, For. Ecosyst. For. Manag. Glob. Carbon Cycle, I, 47–58, https://doi.org/10.1007/978-3-642-61111-7_5, 1996.
Co-editor-in-chief
This study challenges the assumption that drained organic soils always lose carbon, showing that flawed methods and inconsistent emission factors may lead to overestimated emissions. These findings are relevant for climate policy and national reporting.
This study challenges the assumption that drained organic soils always lose carbon, showing that...
Short summary
A 2-year study assessed the soil carbon dioxide (CO2) balance of drained and undrained hemiboreal peatland forests across Estonia, Latvia, and Lithuania. The study sites included a wide variety of nutrient-rich organic soils, ranging from those near the threshold of organic soil definition to deep peat soils. The soils varied in pH, nutrient levels, and C : N ratio, which contributed to the observed behavior of the soils, demonstrating CO2 sink and source dynamics under both drained and undrained conditions.
A 2-year study assessed the soil carbon dioxide (CO2) balance of drained and undrained...
Altmetrics
Final-revised paper
Preprint