Articles | Volume 22, issue 18
https://doi.org/10.5194/bg-22-5031-2025
https://doi.org/10.5194/bg-22-5031-2025
Research article
 | 
29 Sep 2025
Research article |  | 29 Sep 2025

Snow thermal conductivity controls future winter carbon emissions in shrub–tundra

Johnny Rutherford, Nick Rutter, Leanne Wake, and Alex J. Cannon

Related authors

Enhancing simulations of snowpack properties in land surface models with the Soil, Vegetation and Snow scheme v2.0 (SVS2)
Vincent Vionnet, Nicolas Romain Leroux, Vincent Fortin, Maria Abrahamowicz, Georgina Woolley, Giulia Mazzotti, Manon Gaillard, Matthieu Lafaysse, Alain Royer, Florent Domine, Nathalie Gauthier, Nick Rutter, Chris Derksen, and Stéphane Bélair
EGUsphere, https://doi.org/10.5194/egusphere-2025-3396,https://doi.org/10.5194/egusphere-2025-3396, 2025
Short summary
Benchmarking historical performance and future projections from a large-scale hydrologic model with a watershed hydrologic model
Rajesh R. Shrestha, Alex J. Cannon, Sydney Hoffman, Marie Whibley, and Aranildo Lima
Hydrol. Earth Syst. Sci., 29, 2881–2900, https://doi.org/10.5194/hess-29-2881-2025,https://doi.org/10.5194/hess-29-2881-2025, 2025
Short summary
Atmospheric Rivers as Triggers of Compound Flooding: Quantifying Extreme Joint Events in Western North America Under Climate Change
Andrew Vincent Grgas-Svirac, Mohammad Fereshtehpour, M. Reza Najafi, Alex J. Cannon, and Hamidreza Shirkhani
EGUsphere, https://doi.org/10.5194/egusphere-2025-2481,https://doi.org/10.5194/egusphere-2025-2481, 2025
Short summary
A Flexible Snow Model (FSM 2.1.1) including a forest canopy
Richard Essery, Giulia Mazzotti, Sarah Barr, Tobias Jonas, Tristan Quaife, and Nick Rutter
Geosci. Model Dev., 18, 3583–3605, https://doi.org/10.5194/gmd-18-3583-2025,https://doi.org/10.5194/gmd-18-3583-2025, 2025
Short summary
Simulating snow properties and Ku-band backscatter across the forest-tundra ecotone
Georgina J. Woolley, Nick Rutter, Leanne Wake, Vincent Vionnet, Chris Derksen, Julien Meloche, Benoit Montpetit, Nicolas R. Leroux, Richard Essery, Gabriel Hould Gosselin, and Philip Marsh
EGUsphere, https://doi.org/10.5194/egusphere-2025-1498,https://doi.org/10.5194/egusphere-2025-1498, 2025
Short summary

Cited articles

Aalto, J., Karjalainen, O., Hjort, J., and Luoto, M.: Statistical forecasting of current and future circum-Arctic ground temperatures and active layer thickness, Geophys. Res. Lett., 45, 4889–4898, 2018. 
AMAP: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, xiv + 269 pp, ISBN 978-82-7971-101-8, 2017. 
Andren, O. and Paustian, K.: Barley straw decomposition in the field: a comparison of models, Ecology, 68, 1190–1200, 1987. 
Arndt, K. A., Lipson, D. A., Hashemi, J., Oechel, W. C., and Zona, D.: Snow melt stimulates ecosystem respiration in Arctic ecosystems, Glob. Change Biol., 26, 5042–5051, 2020. 
Bigalke, S. and Walsh, J. E.: Future changes of snow in Alaska and the Arctic under stabilized global warming scenarios, Atmosphere, 13, 541, https://doi.org/10.3390/atmos13040541, 2022. 
Download
Short summary
The Arctic winter is vulnerable to climate warming, and ~1700 Gt of carbon stored in high-latitude permafrost ecosystems is at risk of degradation in the future due to enhanced microbial activity. Poorly represented cold season processes, such as the simulation of snow thermal conductivity in land surface models (LSMs), cause uncertainty in projected carbon emission simulations. Improved snow conductivity parameterization in CLM5.0 significantly increases predicted winter CO2 emissions to 2100.
Share
Altmetrics
Final-revised paper
Preprint