Articles | Volume 22, issue 18
https://doi.org/10.5194/bg-22-5123-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5123-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrodynamic and primary production effects on seasonal DO variability in the Danube River
Department of Geography and Geosciences, Geozentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Anna-Neva Visser
Department of Geography and Geosciences, Geozentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Christina M. Schubert
Department of Geography and Geosciences, Geozentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Simon T. Wander
Department of Geography and Geosciences, Geozentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Johannes A. C. Barth
Department of Geography and Geosciences, Geozentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Related authors
Jan Maier, Nicole Burdanowitz, Gerhard Schmiedl, and Birgit Gaye
Clim. Past, 21, 279–297, https://doi.org/10.5194/cp-21-279-2025, https://doi.org/10.5194/cp-21-279-2025, 2025
Short summary
Short summary
We reconstruct sea surface temperatures (SSTs) of the past 43 kyr in the Gulf of Oman. We find SST variations of up to 7 °C with lower SSTs during Heinrich events (HEs), especially HE4, and higher SSTs during Dansgaard–Oeschger events. Our record shows no profound cooling during the Last Glacial Maximum but abrupt variations during the Holocene. We surmise that SST variations are influenced by the southwest (northeast) monsoon during warmer (colder) periods.
Aixala Gaillard, Robert van Geldern, Johannes Arthur Christopher Barth, and Christine Stumpp
Hydrol. Earth Syst. Sci., 29, 3853–3863, https://doi.org/10.5194/hess-29-3853-2025, https://doi.org/10.5194/hess-29-3853-2025, 2025
Short summary
Short summary
We produced a new interpolated map of stable isotopes in groundwater in southern Germany and compared it to local precipitation. Interestingly, discrepancies were found between two components of the hydrological cycle, highlighting different recharge patterns and evaporation processes in the northern and southern part of the study area. This research provides insights into understanding different groundwater recharge patterns on a large scale and eventually for groundwater management.
Jan Maier, Nicole Burdanowitz, Gerhard Schmiedl, and Birgit Gaye
Clim. Past, 21, 279–297, https://doi.org/10.5194/cp-21-279-2025, https://doi.org/10.5194/cp-21-279-2025, 2025
Short summary
Short summary
We reconstruct sea surface temperatures (SSTs) of the past 43 kyr in the Gulf of Oman. We find SST variations of up to 7 °C with lower SSTs during Heinrich events (HEs), especially HE4, and higher SSTs during Dansgaard–Oeschger events. Our record shows no profound cooling during the Last Glacial Maximum but abrupt variations during the Holocene. We surmise that SST variations are influenced by the southwest (northeast) monsoon during warmer (colder) periods.
Marlene Dordoni, Michael Seewald, Karsten Rinke, Kurt Friese, Robert van Geldern, Jakob Schmidmeier, and Johannes A. C. Barth
Biogeosciences, 19, 5343–5355, https://doi.org/10.5194/bg-19-5343-2022, https://doi.org/10.5194/bg-19-5343-2022, 2022
Short summary
Short summary
Organic matter (OM) turnover into dissolved inorganic carbon (DIC) was investigated by means of carbon isotope mass balances in Germany's largest water reservoir. This includes a metalimnetic oxygen minimum (MOM). Autochthonous particulate organic carbon (POC) was the main contributor to DIC, with rates that were highest for the MOM. Generally low turnover rates outline the environmental fragility of this water body in the case that OM loads increase due to storm events or land use changes.
Inga Köhler, Raul E. Martinez, David Piatka, Achim J. Herrmann, Arianna Gallo, Michelle M. Gehringer, and Johannes A. C. Barth
Biogeosciences, 18, 4535–4548, https://doi.org/10.5194/bg-18-4535-2021, https://doi.org/10.5194/bg-18-4535-2021, 2021
Short summary
Short summary
We investigated how high Fe(II) levels influence the O2 budget of a circum-neutral Fe(II)-rich spring and if a combined study of dissolved O (DO) and its isotopic composition can help assess this effect. We showed that dissolved Fe(II) can exert strong effects on the δ18ODO even though a constant supply of atmospheric O2 occurs. In the presence of photosynthesis, direct effects of Fe oxidation become masked. Critical Fe(II) concentrations indirectly control the DO by enhancing photosynthesis.
Cited articles
Acreman, M. and Dunbar, M. J.: Defining environmental river flow requirements – a review, Hydrol. Earth Syst. Sci., 8, 861–876, 2004.
Aramaki, T., Nagao, S., Nakamura, Y.-H., Uchida, M., and Shibata, Y.: The Effects of Rainfall on Carbon Isotopes of POC in the Teshio River, Northern Japan, Radiocarbon, 52, 808–814, 2010.
Aruga, Y.: Ecological Studies of Photosynthesis and Matter Production of Phytoplankton II. Photosynthesis of Algae in Relation to Light Intensity and Temperature, Tokyo, 78, 360–365, 1965.
Baertschi, P.: Absolute 18O content of standard mean ocean water, Earth Planet. Sc. Lett., 31, 341–344, 1976.
Barth, J. A. C., Tait, A., and Bolshaw, M.: Automated analyses of 18O 16O ratios in dissolved oxygen from 12-mL water samples, Limnol. Oceanogr. Method., 2, 35–41, https://doi.org/10.4319/lom.2004.2.35, 2004.
Belletti, B., Rinaldi, M., Buijse, A. D., Gurnell, A. M., and Mosselman, E.: A review of assessment methods for river hydromorphology, Environ. Earth Sci., 73, 2079–2100, https://doi.org/10.1007/s12665-014-3558-1, 2015.
Benson, B. B. and Krause, D.: The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere, Limnol. Oceanogr., 29, 620–632, https://doi.org/10.4319/lo.1984.29.3.0620, 1984.
Benson, B. B., Krause, D., and Peterson, M. A.: The Solubility and Isotopic Fractionation of Gases in Dilute Aqueous Solution, I. Oxygen, J. Solution Chem., 8, 655–690, 1979.
Borgwardt, F., Robinson, L., Trauner, D., Teixeira, H., Nogueira, A. J. A., Lillebø, A. I., Piet, G., Kuemmerlen, M., O'Higgins, T., McDonald, H., Arevalo-Torres, J., Barbosa, A. L., Iglesias-Campos, A., Hein, T., and Culhane, F.: Exploring variability in environmental impact risk from human activities across aquatic ecosystems, Sci. Total Environ., 652, 1396–1408, https://doi.org/10.1016/j.scitotenv.2018.10.339, 2019.
Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., and Smith, V. H.: Nonpoint pollution of surface waters with phosphorus and nitrogen, Ecol. Appl., 8, 559–568, https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2, 1998.
Collins, C. D. and Boylen, C. W.: Physiological responses of Anabeana Variabilis (Cyanophyceae) to instantaneous exposure to various combination of light intensity and temperature, J. Phycol., 18, 206–211, https://doi.org/10.1111/j.1529-8817.1982.tb03175.x, 1982.
Coplen, T. B.: Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results, Rapid Commun. Mass Sp., 25, 2538–2560, https://doi.org/10.1002/rcm.5129, 2011.
DeNicola, D. M.: Periphyton responses to temperature, in: Algal Ecology: Freshwater Benthic Ecosystems, edited by: Stevenson, R. J., Bothwell, M. L., and Lowe, R. L., Academic Press, San Diego, 149–181, ISBN 978-0-12-668450-6, 1996.
Dokulil, M. T.: Assessment of potamoplankton and primary productivity in the river Danube: A review, in: Proceedings 36th International Conference of IAD, Austrian Committee Danube Research/IAD, 1–5, 2006.
Dokulil, M. T.: Phytoplankton of the River Danube: Composition, Seasonality and Long-Term Dynamics, The Danube River Basin, 411–428, https://doi.org/10.1007/698_2014_293, 2015.
Dokulil, M. T. and Kaiblinger, C. M.: Phytoplankton, in: Joint danube survey 2, edited by: Liska, I., Wagner, F., and Slobodnik, J., Final Scientific report, ICPDR, http://www.icpdr.org/main/activities-projects/joint-danube-survey-2 (last access: 9 March 2025), 2008.
Dordoni, M., Seewald, M., Rinke, K., Schmidmeier, J., and Barth, J. A. C.: Novel evaluations of sources and sinks of dissolved oxygen via stable isotopes in lentic water bodies, Sci. Total Environ., 838, 156541, https://doi.org/10.1016/j.scitotenv.2022.156541, 2022.
Dordoni, M., Tittel, J., Rosenlöcher, Y., Rinke, K., and Barth, J. A. C.: Metabolic activity of Planktothrix rubescens and its consequences on oxygen dynamics in laboratory experiment: A stable isotope study, J. Phycol., 60, 642–653, https://doi.org/10.1111/jpy.13455, 2024.
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L. J., and Sullivan, C. A.: Freshwater biodiversity: Importance, threats, status and conservation challenges, Biol. Rev. Camb. Philos. Soc., 81, 163–182, https://doi.org/10.1017/S1464793105006950, 2006.
EEA (European Environment Agency): Water resources across Europe-confronting water stress: an updated assessment, EEA Report 12/2021, https://doi.org/10.2800/320975, 2021.
Eisenstadt, D., Barkan, E., Luz, B., and Kaplan, A.: Enrichment of oxygen heavy isotopes during photosynthesis in phytoplankton, Photosynth. Res., 103, 97–103, https://doi.org/10.1007/s11120-009-9518-z, 2010.
Fisher, R. A.: Statistical Methods for Research Workers, in: Breakthroughs in Statistics, Springer Series in Statistics, edited by: Kotz, S., and Johnson, N. L., Springer, New York, NY, https://doi.org/10.1007/978-1-4612-4380-9_6, 1992.
Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., Sheppard, L. J., Jenkins, A., Grizzetti, B., Galloway, J. N., Vitousek, P., Leach, A., Bouwman, A. F., Butterbach-Bahl, K., Dentener, F., Stevenson, D., Amann, M., and Voss, M.: The global nitrogen cycle in the Twentyfirst century, Philos. T. R. Soc. B, 368, 20130164, https://doi.org/10.1098/rstb.2013.0164, 2013.
Franklin, P. A.: Dissolved oxygen criteria for freshwater fish in New Zealand: A revised approach, N. Z. J. Mar. Freshwater Res., 48, 112–126, https://doi.org/10.1080/00288330.2013.827123, 2014.
Grizzetti, B., Pistocchi, A., Liquete, C., Udias, A., Bouraoui, F., and Van De Bund, W.: Human pressures and ecological status of European rivers, Sci. Rep., 7, 205, https://doi.org/10.1038/s41598-017-00324-3, 2017.
Guy, R. D., Fogel, M. L., and Berry, J. A.: Photosynthetic Fractionation of the Stable lsotopes of Oxygen and Carbon, Plant Physiol., 101, 37–47, 1993.
Habersack, H., Hein, T., Stanica, A., Liska, I., Mair, R., Jäger, E., Hauer, C., and Bradley, C.: Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective, Sci. Total Environ., 543, 828–845, https://doi.org/10.1016/j.scitotenv.2015.10.123, 2016.
Heddam, S.: Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: Case study of Klamath River at Miller Island Boat Ramp, OR, USA, Environ. Sci. Poll. Res., 21, 9212–9227, https://doi.org/10.1007/s11356-014-2842-7, 2014.
Hein, T., Baranyi, C., Heiler, G., Holarek, C., Riedler, P., and Schiemer, F.: Hydrology as a major factor determining plankton development in two floodplain segments and the River Danube, Austria, Large Rivers, 3, 439–452, 1999.
Honisch, M., Hellmeier, C., and Weiss, K.: Response of surface and subsurface water quality to land use changes, Geoderma, 105, 277–298, https://doi.org/10.1016/S0016-7061(01)00108-2, 2002.
Hua, A. K.: Land Use Land Cover Changes in Detection of Water Quality: A Study Based on Remote Sensing and Multivariate Statistics, J. Environ. Public. Health, 2017, 515130, https://doi.org/10.1155/2017/7515130, 2017.
ICPDR: Danube River Basin Hydrological Information System (DanubeHIS), https://www.danubehis.org, last access: 11 March 2025.
Joint, I., Rees, A. P., Malcolm, E., and Woodward, S.: Primary production and nutrient assimilation in the Iberian upwelling in August 1998, Prog. Oceanogr., 51, 303–320, 2001.
Jurgens, B. C., McMahon, P. B., Chapelle, F. H., and Eberts, S. M.: An Excel workbook for identifying redox processes in ground water, 2009-1004, https://doi.org/10.3133/ofr20091004, 2009.
Kamjunke, N., Rode, M., Baborowski, M., Kunz, J. V., Zehner, J., Borchardt, D., and Weitere, M.: High irradiation and low discharge promote the dominant role of phytoplankton in riverine nutrient dynamics, Limnol. Oceanogr., 66, 2648–2660, https://doi.org/10.1002/lno.11778, 2021.
Killgore, K. J. and Hoover, J. J.: Effects of Hypoxia on Fish Assemblages in a Vegetated Waterbody, J. Aquat. Plant Manag., 39, 40–44, 2001.
Knox, M., Quay, P. D., and Wilbur, D.: Kinetic isotopic fractionation during air-water gas transfer of O2, N2, CH4, and H2, J. Geophys. Res., 97, 20335–20343, https://doi.org/10.1029/92jc00949, 1992.
Limburg, J., Vrettos, J. S., Liable-Sands, L. M., Rheingold, A. L., Crabtree, R. H., and Brudvig, G. W.: A functional model for OO bond formation by the O2-evolving complex in photosystem II, Science, 283, 1524–1527, 1999.
Liška, I., Wagner, F., Sengl, M., Deutsch, K., and Slobodník, J.: Joint Danube Survey 3: a comprehensive analysis of Danube water quality, ICPDR–International Commission for the Protection of the Danube River, Vienna, Austria, ISBN 978-3-200-03795-3, 2018.
Liška, I., Wagner, F., Sengl, M., Deutsch, K., Slobodník, J., and Paunovic, M.: Joint Danube survey 4 scientific report: A shared analysis of the Danube river, Vienna, International Commission for the Protection of the Danube River-ICPDR, ISBN 978-3-200-07450-7, 2021.
Literáthy, P., Koller-Kreiml, V., and Liška, I.: Final Report of the Joined Danube Survey. International Commission for the Protection of the Danube River–ICPDR, Vienna, Austria, 262 pp., 2002.
Mader, M., Schmidt, C., van Geldern, R., and Barth, J. A. C.: Dissolved oxygen in water and its stable isotope effects: A review, Chem. Geol., 473, 10–21, https://doi.org/10.1016/j.chemgeo.2017.10.003, 2017.
Maier, J., Visser, A.-N., Schubert, C. M., Wander, S. T., and Barth, J. A. C.: Seasonal Dataset of DO, δ18ODO and Biogeochemical Parameters in the Danube River (2023–2024), PANGEA [data set], https://doi.org/10.1594/PANGAEA.983395, 2025.
Mănoiu, V. M. and Crăciun, A. I.: Danube river water quality trends: A qualitative review based on the open access web of science database, Ecohydrol. Hydrobiol., 21, 613–628, https://doi.org/10.1016/j.ecohyd.2021.08.002, 2021.
North, R. P., North, R. L., Livingstone, D. M., Köster, O., and Kipfer, R.: Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: Consequences of a climate regime shift, Glob. Change Biol., 20, 811–823, https://doi.org/10.1111/gcb.12371, 2014.
Nyenje, P. M., Foppen, J. W., Uhlenbrook, S., Kulabako, R., and Muwanga, A.: Eutrophication and nutrient release in urban areas of sub-Saharan Africa – A review, Sci. Total Environ., 408, 447–455, https://doi.org/10.1016/j.scitotenv.2009.10.020, 2010.
Odum, H. T.: Primary Production in Flowing Waters, Limnol. Oceanogr., 1, 102–117, https://doi.org/10.4319/lo.1956.1.2.0102, 1956.
Parker, S. R., Gammons, C. H., Poulson, S. R., DeGrandpre, M. D., Weyer, C. L., Smith, M. G., Babcock, J. N., and Oba, Y.: Diel behavior of stable isotopes of dissolved oxygen and dissolved inorganic carbon in rivers over a range of trophic conditions, and in a mesocosm experiment, Chem. Geol., 269, 22–32, https://doi.org/10.1016/j.chemgeo.2009.06.016, 2010.
Piatka, D. R., Wild, R., Hartmann, J., Kaule, R., Kaule, L., Gilfedder, B., Peiffer, S., Geist, J., Beierkuhnlein, C., and Barth, J. A. C.: Transfer and transformations of oxygen in rivers as catchment reflectors of continental landscapes: A review, https://doi.org/10.1016/j.earscirev.2021.103729, 2021.
Poff, N. L. and Zimmerman, J. K. H.: Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows, Freshw. Biol., 55, 194–205, https://doi.org/10.1111/j.1365-2427.2009.02272.x, 2010.
Qing, X., Yutong, Z., and Shenggao, L.: Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China, Ecotoxicol. Environ. Saf., 120, 377–385, https://doi.org/10.1016/j.ecoenv.2015.06.019, 2015.
Quay, P. D., Wilbur, D. 0, Richey, J. E., Devol, A. H., Benner, R., and Forsberg, B. R.: The 18O : 16O of dissolved oxygen in rivers and lakes in the Amazon Basin: Determining the ratio of respiration to photosynthesis rates in freshwaters, Limnol. Oceanogr., 40, 718–729, 1995.
R Core Team: R: A Language and Environment for Statistical Computing, https://www.r-project.org/ (last access: 18 June 2025), 2023.
Reddy, S. K. K., Gupta, H., Badimela, U., Reddy, D. V., Kurakalva, R. M., and Kumar, D.: Export of particulate organic carbon by the mountainous tropical rivers of Western Ghats, India, Variations and controls, Sci. Total Environ., 751, 142115, https://doi.org/10.1016/j.scitotenv.2020.142115, 2021.
Rettich, T. R., Battino, R., and Wilhelm, E.: Solubility of gases in liquids, 22. High-precision determination of Henry's law constants of oxygen in liquid water from T = 274 K to T = 328 Ka, J. Chem. Thermodynam., 32, 1145–1156, https://doi.org/10.1006/jcht.1999.0581, 2000.
Riedler P. and Schagerl M.: Pelagic primary production and related parameters in the River Danube near Vienna (Austria), Archiv für Hydrobiologie, Supplementbände, 115, 139–151, 1998.
Rosecrans, C. Z., Nolan, B. T., and Gronberg, J. A. M.: Prediction and visualization of redox conditions in the groundwater of Central Valley, California, J. Hydrol., 546, 341–356, https://doi.org/10.1016/j.jhydrol.2017.01.014, 2017.
Russ, M. E., Ostrom, N. E., Gandhi, H., Ostrom, P. H., and Urban, N. R.: Temporal and spatial variations in R : P ratios in Lake Superior, an oligotrophic freshwater environment, J. Geophys. Res.-Ocean., 109, C10S12, https://doi.org/10.1029/2003JC001890, 2004.
Seitzinger, S., Harrison, J. A., Böhlke, J. K., Bouwman, A. F., Lowrance, R., Peterson, B., Tobias, C., and Van Drecht, G.: Denitrification across landscapes and waterscapes: A synthesis, Ecol. Appl., 16, 2064–2090, https://doi.org/10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2, 2006.
Sommerwerk, N., Hein, T., Schneider-Jacoby, M., Baumgartner, C., Ostojić, A., Siber, R., Bloesch, J., Paunović, M., and Tockner, K.: The Danube River Basin, in: Rivers of Europe, Elsevier, 59–112, https://doi.org/10.1016/B978-0-12-369449-2.00003-5, 2009.
Stevens, C. L. R., Schultz, D., Van Baalen, C., and Parker, P. L.: Oxygen Isotope Fractionation during Photosynthesis in a Blue-Green and a Green Algal, Plant Physiol., 56, 126–129, 1975.
Stumm, W. and Morgan, J. J.: Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd Edn., Wiley-Interscience, New York, 455–464, 1995.
Suthar, S., Nema, A. K., Chabukdhara, M., and Gupta, S. K.: Assessment of metals in water and sediments of Hindon River, India: Impact of industrial and urban discharges, J. Hazard. Mater, 171, 1088–1095, https://doi.org/10.1016/j.jhazmat.2009.06.109, 2009.
Sutton, M., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., Van Grinsven, H., and Grizzetti, B.: The European Nitrogen Assessment: Sources, Effects and Policy Perspectives, Cambridge University Press, ISBN 978-1-107-00612-6, 2011.
Tobias, C. R., Böhlke, J. K., and Harvey, J. W.: The oxygen-18 isotope approach for measuring aquatic metabolism in high-productivity waters, Limnol. Oceanogr., 52, 1439–1453, https://doi.org/10.4319/lo.2007.52.4.1439, 2007.
Uehlinger, U., König, C., and Reichert, P.: Variability of photosynthesis-irradiance curves and ecosystem respiration in a small river, Freshw. Biol., 44, 493–507, https://doi.org/10.1046/j.1365-2427.2000.00602.x, 2000.
van Geldern, R. and Barth, J. A. C.: Optimization of instrument setup and post-run corrections for oxygen and hydrogen stable isotope measurements of water by isotope ratio infrared spectroscopy (IRIS), Limnol. Oceanogr. Method., 10, 1024–1036, https://doi.org/10.4319/lom.2012.10.1024, 2012.
Vautier, C., Abhervé, R., Labasque, T., Laverman, A. M., Guillou, A., Chatton, E., Dupont, P., Aquilina, L., and de Dreuzy, J. R.: Mapping gas exchanges in headwater streams with membrane inlet mass spectrometry, J. Hydrol., 581, 124398, https://doi.org/10.1016/j.jhydrol.2019.124398, 2020.
Vörösmarty, C. J., Pahl-Wostl, C., Bunn, S. E., and Lawford, R.: Global water, the anthropocene and the transformation of a science, Curr. Opin. Environ. Sustain., 5, 539–550, https://doi.org/10.1016/j.cosust.2013.10.005, 2013.
Wachs, B.: Zustand und Qualität der Donau, Verantwortung für einen europäischen Strom, Schriftenreihe des Bundesamtes für Wasserwirtschaft “4”, 28–51, 1997.
Wassenaar, L. I.: Dissolved oxygen status of Lake Winnipeg: Spatio-temporal and isotopic (δ18O-O2) patterns, J. Great Lakes Res., 38, 123–134, https://doi.org/10.1016/j.jglr.2010.12.011, 2012.
Wassenaar, L. I. and Koehler, G.: An on-line technique for the determination of the δ18O and δ17O of gaseous and dissolved oxygen, Anal. Chem., 71, 4965–4968, https://doi.org/10.1021/ac9903961, 1999.
Wassenaar, L. I., Venkiteswaran, J. J., Schiff, S. L., and Koehler, G.: Aquatic community metabolism response to municipal effluent inputs in rivers quantified using diel δ18O values of dissolved oxygen, Can. J. Fish. Aquat. Sci., 67, 1232–1246, https://doi.org/10.1139/F10-057, 2010.
Weitere, M. and Arndt, H.: Top-down effects on pelagic heterotrophic nanoflagellates (HNF) in a large river (River Rhine): Do losses to the benthos play a role?, Freshw. Biol., 47, 1437–1450, https://doi.org/10.1046/j.1365-2427.2002.00875.x, 2002.
Wetzel, R. G.: Limnology: Lake ad River Ecosystems, 3rd Edn., Academic Press, San Diego, California, ISBN-13 978-0-12-744760-5, 2011.
Xia, Y., Ti, C., She, D., and Yan, X.: Linking river nutrient concentrations to land use and rainfall in a paddy agriculture–urban area gradient watershed in southeast China, Sci. Total Environ., 566, 1094–1105, https://doi.org/10.1016/j.scitotenv.2016.05.134, 2016.
Short summary
We present the first large-scale assessment of the dissolved oxygen (DO) budget and δ18ODO across the Danube to distinguish DO sources and sinks, key for biogeochemical cycles. Two highly productive areas in the warm season showed large deviations (+12.1 ‰) from atmospheric equilibrium (+24.6 ‰ ± 0.4 ‰), unusual for large rivers. Critically low DO in the Sava (0.16 mmol/L) and lower Danube (0.2 mmol/L) in late summer resulted from intensified respiration.
We present the first large-scale assessment of the dissolved oxygen (DO) budget and δ18ODO...
Altmetrics
Final-revised paper
Preprint