Articles | Volume 22, issue 19
https://doi.org/10.5194/bg-22-5247-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5247-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extensive fire-driven degradation in 2024 marks worst Amazon forest disturbance in over 2 decades
Clément Bourgoin
CORRESPONDING AUTHOR
European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
René Beuchle
European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
Alfredo Branco
European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
João Carreiras
VASS Italy, Torino, 10100, Italy
Guido Ceccherini
Engineering Ingegneria Informatica S.p.A., Roma, 00144, Italy
Duarte Oom
European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
Jesus San-Miguel-Ayanz
European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
Fernando Sedano
European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
Related authors
Clément Bourgoin, Astrid Verhegghen, Silvia Carboni, Iban Ameztoy, Lucas Degreve, Steffen Fritz, Martin Herold, Nandika Tsendbazar, Myroslava Lesiv, Fréderic Achard, and René Colditz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-351, https://doi.org/10.5194/essd-2025-351, 2025
Preprint under review for ESSD
Short summary
Short summary
In the context of the EU Deforestation Regulation (EUDR), forest maps can support operators in the assessment of the risk of deforestation after year 2020. Here we present the Global Forest Cover map of year 2020, derived from the combination of most recent publicly available land cover and land use datasets. The map is a globally-consistent representation of the presence/absence of forests based on EUDR definitions, but its use is not mandatory, not exclusive and not legally binding.
Douglas I. Kelley, Chantelle Burton, Francesca Di Giuseppe, Matthew W. Jones, Maria L. F. Barbosa, Esther Brambleby, Joe R. McNorton, Zhongwei Liu, Anna S. I. Bradley, Katie Blackford, Eleanor Burke, Andrew Ciavarella, Enza Di Tomaso, Jonathan Eden, Igor José M. Ferreira, Lukas Fiedler, Andrew J. Hartley, Theodore R. Keeping, Seppe Lampe, Anna Lombardi, Guilherme Mataveli, Yuquan Qu, Patrícia S. Silva, Fiona R. Spuler, Carmen B. Steinmann, Miguel Ángel Torres-Vázquez, Renata Veiga, Dave van Wees, Jakob B. Wessel, Emily Wright, Bibiana Bilbao, Mathieu Bourbonnais, Gao Cong, Carlos M. Di Bella, Kebonye Dintwe, Victoria M. Donovan, Sarah Harris, Elena A. Kukavskaya, Brigitte N’Dri, Cristina Santín, Galia Selaya, Johan Sjöström, John Abatzoglou, Niels Andela, Rachel Carmenta, Emilio Chuvieco, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Meier, Mark Parrington, Mojtaba Sadegh, Jesus San-Miguel-Ayanz, Fernando Sedano, Marco Turco, Guido R. van der Werf, Sander Veraverbeke, Liana O. Anderson, Hamish Clarke, Paulo M. Fernandes, and Crystal A. Kolden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-483, https://doi.org/10.5194/essd-2025-483, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
The second State of Wildfires report examines extreme wildfire events from 2024 to early 2025. It analyses key regional events in Southern California, Northeast Amazonia, Pantanal-Chiquitano, and the Congo Basin, assessing their drivers, predictability, and attributing them to climate change and land use. Seasonal outlooks and decadal projections are provided. Climate change greatly increased the likelihood of these fires, and without strong mitigation, such events will become more frequent.
Clément Bourgoin, Astrid Verhegghen, Silvia Carboni, Iban Ameztoy, Lucas Degreve, Steffen Fritz, Martin Herold, Nandika Tsendbazar, Myroslava Lesiv, Fréderic Achard, and René Colditz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-351, https://doi.org/10.5194/essd-2025-351, 2025
Preprint under review for ESSD
Short summary
Short summary
In the context of the EU Deforestation Regulation (EUDR), forest maps can support operators in the assessment of the risk of deforestation after year 2020. Here we present the Global Forest Cover map of year 2020, derived from the combination of most recent publicly available land cover and land use datasets. The map is a globally-consistent representation of the presence/absence of forests based on EUDR definitions, but its use is not mandatory, not exclusive and not legally binding.
Marco Girardello, Gonzalo Oton, Matteo Piccardo, Mark Pickering, Agata Elia, Guido Ceccherini, Mariano Garcia, Mirco Migliavacca, and Alessandro Cescatti
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-471, https://doi.org/10.5194/essd-2024-471, 2025
Preprint under review for ESSD
Short summary
Short summary
Our research addresses the significant challenge of assessing forest structural diversity over large spatial scales, which is crucial for understanding the relationship between canopy structure, biodiversity, and ecosystem functioning. The advent of spaceborne LiDAR sensors, such as GEDI, has revolutionised the ability to obtain high-quality information on forest structural parameters. Our contribution provides a novel, spatially-explicit dataset on eight forest structural diversity metrics.
Raphaël d'Andrimont, Momchil Yordanov, Fernando Sedano, Astrid Verhegghen, Peter Strobl, Savvas Zachariadis, Flavia Camilleri, Alessandra Palmieri, Beatrice Eiselt, Jose Miguel Rubio Iglesias, and Marijn van der Velde
Earth Syst. Sci. Data, 16, 5723–5735, https://doi.org/10.5194/essd-16-5723-2024, https://doi.org/10.5194/essd-16-5723-2024, 2024
Short summary
Short summary
The Land Use/Cover Area frame Survey (LUCAS) Copernicus 2022 is a large and systematic in situ field survey of 137 966 polygons over the European Union in 2022. The data contain 82 land cover classes and 40 land use classes.
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos
Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, https://doi.org/10.5194/essd-16-3601-2024, 2024
Short summary
Short summary
This inaugural State of Wildfires report catalogues extreme fires of the 2023–2024 fire season. For key events, we analyse their predictability and drivers and attribute them to climate change and land use. We provide a seasonal outlook and decadal projections. Key anomalies occurred in Canada, Greece, and western Amazonia, with other high-impact events catalogued worldwide. Climate change significantly increased the likelihood of extreme fires, and mitigation is required to lessen future risk.
A. Elia, M. Pickering, M. Girardello, G. Oton, G. Ceccherini, S. Capobianco, M. Piccardo, G. Forzieri, M. Migliavacca, and A. Cescatti
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W7-2023, 41–46, https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-41-2023, https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-41-2023, 2023
Carolina Gallo, Jonathan M. Eden, Bastien Dieppois, Igor Drobyshev, Peter Z. Fulé, Jesús San-Miguel-Ayanz, and Matthew Blackett
Geosci. Model Dev., 16, 3103–3122, https://doi.org/10.5194/gmd-16-3103-2023, https://doi.org/10.5194/gmd-16-3103-2023, 2023
Short summary
Short summary
This study conducts the first global evaluation of the latest generation of global climate models to simulate a set of fire weather indicators from the Canadian Fire Weather Index System. Models are shown to perform relatively strongly at the global scale, but they show substantial regional and seasonal differences. The results demonstrate the value of model evaluation and selection in producing reliable fire danger projections, ultimately to support decision-making and forest management.
Giacomo Grassi, Clemens Schwingshackl, Thomas Gasser, Richard A. Houghton, Stephen Sitch, Josep G. Canadell, Alessandro Cescatti, Philippe Ciais, Sandro Federici, Pierre Friedlingstein, Werner A. Kurz, Maria J. Sanz Sanchez, Raúl Abad Viñas, Ramdane Alkama, Selma Bultan, Guido Ceccherini, Stefanie Falk, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Anu Korosuo, Joana Melo, Matthew J. McGrath, Julia E. M. S. Nabel, Benjamin Poulter, Anna A. Romanovskaya, Simone Rossi, Hanqin Tian, Anthony P. Walker, Wenping Yuan, Xu Yue, and Julia Pongratz
Earth Syst. Sci. Data, 15, 1093–1114, https://doi.org/10.5194/essd-15-1093-2023, https://doi.org/10.5194/essd-15-1093-2023, 2023
Short summary
Short summary
Striking differences exist in estimates of land-use CO2 fluxes between the national greenhouse gas inventories and the IPCC assessment reports. These differences hamper an accurate assessment of the collective progress under the Paris Agreement. By implementing an approach that conceptually reconciles land-use CO2 flux from national inventories and the global models used by the IPCC, our study is an important step forward for increasing confidence in land-use CO2 flux estimates.
Tomàs Artés, Marc Castellnou, Tracy Houston Durrant, and Jesús San-Miguel
Nat. Hazards Earth Syst. Sci., 22, 509–522, https://doi.org/10.5194/nhess-22-509-2022, https://doi.org/10.5194/nhess-22-509-2022, 2022
Short summary
Short summary
During the last 20 years extreme wildfires have challenged firefighting capabilities. Several fire danger indices are routinely used by firefighting services but are not suited to forecast convective extreme wildfire behaviour at the global scale. This article proposes a new fire danger index for deep moist convection, the extreme-fire behaviour index (EFBI), based on the analysis of the vertical profiles of the atmosphere above wildfires to use along with traditional fire danger indices.
Cited articles
Andela, N., Morton, D. C., Schroeder, W., Chen, Y., Brando, P. M., and Randerson, J. T.: Tracking and classifying Amazon fire events in near real time, Sci. Adv., 8, eabd2713, https://doi.org/10.1126/sciadv.abd2713, 2022.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001.
Barlow, J., Berenguer, E., Carmenta, R., and França, F.: Clarifying Amazonia's burning crisis, Glob. Change Biol. 26, 319–321, https://doi.org/10.1111/gcb.14872, 2020.
Beuchle, R., Achard, F., Bourgoin, C., Vancutsem, C., Eva, H., and Follador, M.: Deforestation and forest degradation in the Amazon – Status and trends up to year 2020, EUR 30727 EN, Publications Office of the European Union, Luxembourg, ISBN 978-92-76-38352-9, https://doi.org/10.2760/61682, 2021.
Birant, D. and Kut, A.: ST-DBSCAN: An algorithm for clustering spatial–temporal data, Data Knowl. Eng., 60, 208–221, https://doi.org/10.1016/j.datak.2006.01.013, 2007.
Bourgoin, C., Ceccherini, G., Girardello, M., Vancutsem, C., Avitabile, V., Beck, P. S. A., Beuchle, R., Blanc, L., Duveiller, G., Migliavacca, M., Vieilledent, G., Cescatti, A., and Achard, A.: Human degradation of tropical moist forests is greater than previously estimated, Nature, 631, 570–576, https://doi.org/10.1038/s41586-024-07629-0, 2024.
Cano-Crespo, A., Oliveira, P. J. C., Boit, A., Cardoso, M., and Thonicke, K.: Forest edge burning in the Brazilian Amazon promoted by escaping fires from managed pastures, J. Geophys. Res.-Biogeo., 120, 2095–2107, https://doi.org/10.1002/2015JG002914, 2015.
Condé, T. M., Higuchi, N., and Lima, A. J. N.: Illegal Selective Logging and Forest Fires in the Northern Brazilian Amazon, Forests, 10, 61, https://doi.org/10.3390/f10010061, 2019.
Eva, H. and Huber, O.: A Proposal for defining the geographical boundaries of Amazonia, EUR 21808 EN, Luxembourg, Office for Official Publications of the European Communities, JRC68635, ISBN 92-79-00012-8, https://publications.jrc.ec.europa.eu/repository/handle/JRC68635 (last access: 9 July 2025), 2005.
Flores, B. M., Montoya, E., Sakschewski, B., Nascimento, N., Staal, A., Betts, R. A., Levis, C., Lapola, D. M., Esquível-Muelbert, A., Jakovac, C., Nobre, C. A., Oliveira, R. S., Borma, L. S., Nian, D., Boers, N., Hecht, S. B., ter Steege, H., Arieira, J., Lucas, I. L., Berenguer, E., Marengo, J. A., Gatti, L. V., Mattos, C. R. C., and Hirota, M.: Critical transitions in the Amazon forest system, Nature 626, 555–564, https://doi.org/10.1038/s41586-023-06970-0, 2024.
Hirota, M., Flores, B. M., Betts, R., Borma, L. S., Esquível-Muelbert, A., Jakovac, C., Lapola, D. M., Montoya, E., Oliveira R. S., and Sakschewski, B.: Chapter 24: Resilience of the Amazon Forest to Global Changes: Assessing the Risk of Tipping Points, https://doi.org/10.55161/QPYS9758, 2021.
IPCC: IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4, edited by: Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K., IGES, 2006, 11, ISBN 4-88788-032-4, 2006.
IPCC: Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 4, edited by: Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., and Federici, S., ISBN 978-4-88788-232-4, 2019.
Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D., Descloitres, J., Alleaume, S., Petitcolin, F., and Kaufman, Y.: The MODIS fire products, Remote Sens. Environ., 83, 244–262, https://doi.org/10.1016/S0034-4257(02)00076-7, 2002.
Kornhuber, K., Bartusek, S., Seager, R., Schellnhuber, H. J., and Ting, M.: Global emergence of regional heatwave hotspots outpaces climate model simulations, P. Natl. Acad. Sci. USA, 121, e2411258121, https://doi.org/10.1073/pnas.2411258121, 2024.
Lapola, D. M., Pinho, P., Barlow, J., Aragão, L. E. O. C., Berenguer, E., Carmenta, R., Liddy, H. M., Seixas, H., Silva, C. V. J., Silva-Junior, C. H. L., Alencar, A. A. C., Anderson, L. O., Armenteras, D., Brovkin, V., Calders, K., Chambers, J., Chini, L., Costa, M. H., Faria, B. L., Fearnside, P. M., Ferreira, J., Gatti, L., Gutierrez-Velez, V. H., Han, Z., Hibbard, K., Koven, C., Lawrence, P., Pongratz, J., Portela, B. T. T., Rounsevell, M., Ruane, A. C., Schaldach, R., da Silva, S. S., von Randow, C., and Walker, W. S.: The drivers and impacts of Amazon forest degradation, Science, 379, eabp8622, https://doi.org/10.1126/science.abp8622, 2023.
Lima, T. A., Beuchle, R., Griess, V. C., Verhegghen, A., and Vogt, P.: Spatial patterns of logging-related disturbance events: a multi-scale analysis on forest management units located in the Brazilian Amazon, Landscape Ecol., 35, 2083–2100, https://doi.org/10.1007/s10980-020-01080-y, 2020.
Matricardi, E. A. T., Skole, D. L., Pedlowski, M. A., and Chomentowski, W.: Assessment of forest disturbances by selective logging and forest fires in the Brazilian Amazon using Landsat data, Int. J. Remote Sens., 34, 1057–1086, https://doi.org/10.1080/01431161.2012.717182, 2012.
Marengo, J., Cunha, A., Espinoza, J., Fu, R., Schöngart, J., Jimenez, J., Costa, M., Ribeiro, J., Wongchuig, S., and Zhao, S.: The Drought of Amazonia in 2023–2024, Am. J. Clim. Change, 13, 567–597, https://doi.org/10.4236/ajcc.2024.133026, 2024.
Melo, J., Baker, T., Nemitz, D., Quegan, S., and Ziv, G.: Satellite-based global maps are rarely used in forest reference levels submitted to the UNFCCC, Environ. Res. Lett., 18, 034021, https://doi.org/10.1088/1748-9326/acba31, 2023.
Morton, D. C, DeFries, R. S., Nagol, J., Souza, C. M., Kasischke, E. S., Hurtt, G. C., and Dubayah, R.: Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data, Remote Sens. Environ., 115, 1706–1720, https://doi.org/10.1016/j.rse.2011.03.002, 2011.
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A.: Good practices for estimating area and assessing accuracy of land change, Remote Sens. Environ., 148, 42–57, https://doi.org/10.1016/j.rse.2014.02.015, 2014.
Rorato, A. C, Escada, M. I. S., Camara, G., Picoli, M. C. A., and Verstegen, J. A.: Environmental vulnerability assessment of Brazilian Amazon Indigenous Lands, Environ. Sci. Pol., 129, 19–36, https://doi.org/10.1016/j.envsci.2021.12.005, 2022.
San-Miguel, J., Durrant, T., Suarez-Moreno, M., Oom, D., Branco, A., Libertà, G., De Rigo, D., Ferrari, D., Roglia, E., Scionti, N., Maianti, P., Boca, R., Broglia, M., Callisaya, F., Cerezo, R., Monasterios, G., Santos, L. Q., Claure, A., Nobrega De Oliveira, L., Senra De Oliveira, M., Terra, G., Morita, J. P., Marcon Silva, M., Setzer, A., Morelli, F., Libonati, R., Bernini, H., Lobos Stephani, P. A., Saavedra Salinas, J. A., Brull Badia, J., Garzon Cadena, N., Arenas Aguirre, M. A., Avila, K., Solano, L., Lancheros, S., Puerto Prieto, J. C., Jader Ocampo, J., Vargas Hernandez, M., Gonzalo Murcia, U., Arias, J., Rodriguez Leon, A., Moreno, L. M., Diana, S., Pazmiño, J., Cobos, S., Segura, D., Herrera, X., Sarango, C., Quispillo, M., Arrega Diaz, C., Cruz, E., Salgado, T., Toffoletti, M., Pereira Gavilan, R., Alarco Basaldua, G. E., Zarella Pequeño Saco, T., Epiquien Rivera, J. L., Canales Campos, W. L., Liza Contreras, R. A., Ricalde Bellido, C., Zubieta Barragan, R., Saavedra Estrada, R. M., Sono Alba, S., Ramirez Arroyo, R., Diaz Escobal, E., Albornoz Yañez, M., Casaretto Gamonal, M., Rosas, G., Quispe, N., Gonzales Figueroa, J., Cueva Melgar, E. L., Salinas, C., Ocampo, I., Ruffino, M., Riaño, R., Rico, S., and Escudero, P.: Forest Fire Information and Management Systems in Latin America and the Caribbean, European Union Publications Office, Luxembourg, JRC134498, https://doi.org/10.2760/454551, 2023.
Santoro, M. and Cartus, O.: ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the years 2010, 2015, 2016, 2017, 2018, 2019, 2020 and 2021, v5.01, NERC EDS Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/bf535053562141c6bb7ad831f5998d77, 2024.
Schroeder, W., Oliva, P., Giglio, L., and Csiszar, I. A.: The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment, Remote Sens. Environ., 143, 85–96, https://doi.org/10.1016/j.rse.2013.12.008, 2014.
Vancutsem, C., Achard, F., Pekel, J. F., Vieilledent, G., Carboni, S., Simonetti, D., Gallego, J., Aragão, L. E. O. C., and Nasi, R.: Long-Term (1990–2019) Monitoring of Forest Cover Changes in the Humid Tropics, Sci. Adv., 7, eabe1603, https://doi.org/10.1126/sciadv.abe1603, 2021.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
Co-editor-in-chief
This paper reports the alarming increase in wildfires in the Amazon rainforest during the severe 2023/2024 drought leading to an increase in large-scale forest degradation. It is highly relevant as the fire-driven forest degradation impacted also intact forests and released large amounts of carbon dioxide to the atmosphere pushing the Amazon rainforest closer to a potential tipping point.
This paper reports the alarming increase in wildfires in the Amazon rainforest during the severe...
Short summary
The Amazon forest faces increasing wildfires due to extreme drought and human activity. In 2024, disturbances surged by 152 %, hitting a 20-year high. Forest degradation from fires grew by over 400 %, exceeding that from deforestation. Brazil and Bolivia were hit hardest. These fires released huge amounts of CO2, 7 times more than in recent years, pushing the Amazon towards a dangerous tipping point. Urgent action is needed to prevent irreversible harm.
The Amazon forest faces increasing wildfires due to extreme drought and human activity. In 2024,...
Altmetrics
Final-revised paper
Preprint