Articles | Volume 22, issue 19
https://doi.org/10.5194/bg-22-5349-2025
https://doi.org/10.5194/bg-22-5349-2025
Research article
 | 
08 Oct 2025
Research article |  | 08 Oct 2025

Optimization of the World Ocean Model of Biogeochemistry and Trophic dynamics (WOMBAT) using surrogate machine learning methods

Pearse J. Buchanan, P. Jyoteeshkumar Reddy, Richard J. Matear, Matthew A. Chamberlain, Tyler Rohr, Dougal Squire, and Elizabeth H. Shadwick

Related authors

Relative enrichment of ammonium and its impacts on open-ocean phytoplankton community composition under a high-emissions scenario
Pearse J. Buchanan, Juan J. Pierella Karlusich, Robyn E. Tuerena, Roxana Shafiee, E. Malcolm S. Woodward, Chris Bowler, and Alessandro Tagliabue
Biogeosciences, 22, 4865–4883, https://doi.org/10.5194/bg-22-4865-2025,https://doi.org/10.5194/bg-22-4865-2025, 2025
Short summary

Cited articles

Anderson, S. I., Barton, A. D., Clayton, S., Dutkiewicz, S., and Rynearson, T. A.: Marine phytoplankton functional types exhibit diverse responses to thermal change, Nat. Commun., 12, 6413, https://doi.org/10.1038/s41467-021-26651-8, 2021a. 
Anderson, T. R., Hessen, D. O., and Mayor, D. J.: Is the growth of marine copepods limited by food quantity or quality?, Limnol. Oceanogr. Lett., 6, 127–133, https://doi.org/10.1002/lol2.10184, 2021b. 
Ardyna, M. and Arrigo, K. R.: Phytoplankton dynamics in a changing Arctic Ocean, Nat. Clim. Chang., 10, 892–903, https://doi.org/10.1038/s41558-020-0905-y, 2020. 
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. 
Bach, L. T., Boxhammer, T., Larsen, A., Hildebrandt, N., Schulz, K. G., and Riebesell, U.: Influence of plankton community structure on the sinking velocity of marine aggregates, Global Biogeochem. Cycles, 30, 1145–1165, https://doi.org/10.1002/2016GB005372, 2016. 
Download
Short summary
We calibrate a new version of the World Ocean Model of Biogeochemistry and Trophic dynamics (WOMBAT-lite) using a surrogate machine learning approach. A Gaussian process surrogate trained on 512 simulations emulated tens of thousands, enabling global sensitivity analysis and Bayesian optimization of 26 parameters. We constrain 13 key parameters, improving fit to 8 datasets (chlorophyll a, air–sea CO₂ fluxes, nutrient limitation), and provide an optimal set for community use.
Share
Altmetrics
Final-revised paper
Preprint