Elliott, G. P.: Influences of 20th-century warming at the upper tree line contingent on local-scale interactions: evidence from a latitudinal gradient in the Rocky Mountains, USA, Global Ecol. Biogeogr. 20, 46–57,
https://doi.org/10.1111/j.1466-8238.2010.00588.x, 2011.
a
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The shuttle radar topography mission, Rev. Geophys., 45,
https://doi.org/10.1029/2005RG000183, 2007.
a
Feuillet, T., Birre, D., Milian, J., Godard, V., Clauzel, C., and Serrano-Notivoli, R.: Spatial dynamics of alpine tree lines under global warming: what explains the mismatch between tree densification and elevational upward shifts at the tree line ecotone, J. Aircraft, 47, 1056–1068,
https://doi.org/10.1111/jbi.13779, 2020.
a
Flanders Marine Institute: Maritime Boundaries Geodatabase: Maritime Boundaries and Exclusive Economic Zones (200NM), version 11, [data set],
https://doi.org/10.14284/386, 2012.
a
Garbarino, M., Morresi, D., Anselmetto, N., and Weisberg, P. J.: Treeline remote sensing: from tracking treeline shifts to multi-dimensional monitoring of ecotonal change, Remote Sensing in Ecology and Conservation, 9, 729–742,
https://doi.org/10.1002/rse2.351, 2023.
a,
b
Grace, J., Berninger, F., and Nagy, L.: Impacts of climate change on the tree line, Ann. Bot.-London, 90, 537–544,
https://doi.org/10.1093/aob/mcf222, 2002.
a
Grafius, D., Malanson, G., and DJ, W.: Secondary controls of alpine treeline elevations in the western USA, Phys. Geogr., 33, 146–164,
https://doi.org/10.2747/0272-3646.33.2.146, 2012.
a
Hansson, A., Shulmeister, J., Dargusch, P., and Hill, G.: A review of factors controlling Southern Hemisphere treelines and the implications of climate change on future treeline dynamics, Agr. Forest Meteorol., 332, 109375,
https://doi.org/10.1016/j.agrformet.2023.109375, 2023.
a,
b
Harsch, M. A., Hulme, P. E., McGlone, M. S., and Duncan, R. P.: Are treelines advancing? A global meta-analysis of treeline response to climate warming, Ecol. Lett., 12, 1040–1049,
https://doi.org/10.1111/j.1461-0248.2009.01355.x, 2009.
a
He, X., Jiang, X., Spracklen, D. V., Holden, J., Liang, E., Liu, H., Xu, C., Du, J., Zhu, K., Elsen, P. R., and Zeng, Z.: Global distribution and climatic controls of natural mountain treelines, Glob. Change Biol., 29, 7001–7011,
https://doi.org/10.1111/gcb.16885, 2023.
a,
b
Holtmeier, F.-K. and Broll, G.: Sensitivity and response of Northern Hemisphere altitudinal and polar treelines to environmental change at landscape and local scales, Global Ecol. Biogeogr. 14, 395–410,
https://doi.org/10.1111/j.1466-822X.2005.00168.x, 2005.
a,
b
Irl, S. D. H., Anthelme, F., Harter, D. E. V., Jentsch, A., Lotter, E., Steinbauer, M. J., and Beierkuhnlein, C.: Patterns of island treeline elevation–a global perspective, Ecography, 39, 427–436,
https://doi.org/10.1111/ecog.01266, 2016.
a
Jiménez-García, D., Li, X., Lira-Noriega, A., and Peterson, A. T.: Upward shifts in elevational limits of forest and grassland for Mexican volcanoes over three decades, Biotropica, 53, 798–807,
https://doi.org/10.1111/btp.12942, 2021.
a,
b,
c
Kienle, D., Irl, S., and Beierkuhnlein, C.: Mass elevation effect and continentality have a stronger impact on global treelines than spatial isolation, Global Ecol. Biogeogr. 32, 1087–1097,
https://doi.org/10.1111/geb.13689, 2023.
a,
b
Kullman, L.: Tree-limits and montane forests in the Swedish Scandes: sensitive biomonitors of climate change and variability, AMBIO: A Journal of the Human Environment, 27, 312–321,
http://www.jstor.org/stable/4314741 (last access: 9 October 2025), 1998. a
LaMarche, V. C., Graybill, D. A., Fritts, H. C., and Rose, M. R.: Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation, Science, 225, 1019–1021,
https://doi.org/10.1126/science.225.4666.1019, 1984.
a
Lu, X., Liang, E., Wang, Y., Babst, F., and Camarero, J. J.: Mountain treelines climb slowly despite rapid climate warming, Global Ecol. Biogeogr. 30, 305–315,
https://doi.org/10.1111/geb.13214, 2021.
a,
b,
c
Maizlish, A.: The Ultra-Prominences Page – peaklist.org,
http://www.peaklist.org/ultras.html, (last access: 31 January 2025), 2007. a
Peterson, A. T., Osorio, J., Qiao, H., and Escobar, L. E.: Zika virus, elevation, and transmission risk, PLoS Currents, 8, ecurrents.outbreaks.a832cf06c4bf89fb2e15cb29d374f9de,
https://doi.org/10.1371/currents.outbreaks.a832cf06c4bf89fb2e1 5cb29d374f9de, 2016.
a
Peterson, A. T., Berthiaume, K., Klett, M., and Munroe, J. S.: Linking repeat photography and remote sensing to assess treeline rise with climate warming: Mount of the Holy Cross, Colorado, Arct. Antarct. Alp. Res., 54, 478–487,
https://doi.org/10.1080/15230430.2022.2121245, 2022.
a,
b,
c
Rousset, F. and Ferdy, J.-B.: Testing environmental and genetic effects in the presence of spatial autocorrelation, Ecography, 37, 781–790,
https://doi.org/10.1111/ecog.00566, 2014.
a
Rupp, T. S. and Starfield, A. M.: Modeling the influence of topographic barriers on treeline advance at the forest-tundra ecotone in northwestern Alaska, Climatic Change, 48, 399–416,
https://doi.org/10.1023/A:1010738502596, 2001.
a
Shi, H., Zhou, Q., He, R., Zhang, Q., and Dang, H.: Climate warming will widen the lagging gap of global treeline shift relative to densification, Agr. Forest Meteorol., 318, 108917,
https://doi.org/10.1016/j.agrformet.2022.108917, 2022.
a,
b,
c
Singh, C. P., Panigrahy, S., Thaplyal, A., Kimothi, M., Soni, P., and Parihar, J.: Monitoring the alpine treeline shift in parts of the Indian Himalayas using remote sensing, Current Science, 102, 559–562,
http://www.jstor.org/stable/24084105 (last access: 9 October 2025), 2012. a
USGS: Landsat 5 TM Annual NDVI Composite [deprecated], Earth Engine Data Catalog [data set],
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT5_L1T_ANNUAL_NDVI, (last access: 31 January 2025), 2017. a
Vogelmann, J. E., Gallant, A. L., Shi, H., and Zhu, Z.: Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data, Remote Sens. Environ., 185, 258–270,
https://doi.org/10.1016/j.rse.2016.02.060, 2016.
a
Zhao, F., Zhang, B. P., Zhang, S., Qi, W. W., He, W. H., Wang, J., and Yao, Y. H.: Contribution of mass elevation effect to the altitudinal distribution of global treelines, J. Mt. Sci., 12, 289–297,
https://doi.org/10.1007/s11629-014-3223-x, 2015.
a,
b,
c