Articles | Volume 22, issue 20
https://doi.org/10.5194/bg-22-5741-2025
https://doi.org/10.5194/bg-22-5741-2025
Research article
 | 
21 Oct 2025
Research article |  | 21 Oct 2025

Using GNSS-based vegetation optical depth, tree sway motion, and eddy covariance to examine evaporation of canopy-intercepted rainfall in a subalpine forest

Sean P. Burns, Vincent Humphrey, Ethan D. Gutmann, Mark S. Raleigh, David R. Bowling, and Peter D. Blanken

Related authors

Resolving temperature limitation on spring productivity in an evergreen conifer forest using a model–data fusion framework
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022,https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary

Cited articles

Allen, S. T., Aubrey, D. P., Bader, M. Y., Coenders-Gerrits, M., Friesen, J., Gutmann, E. D., Guillemette, F., Jiménez-Rodríguez, C., Keim, R. F., Klamerus-Iwan, A., Mendieta-Leiva, G., Porada, P., Qualls, R. G., Schilperoort, B., Stubbins, A., and Van Stan II, J. T.: Key questions on the evaporation and transport of intercepted precipitation, in: Precipitation Partitioning by Vegetation: A Global Synthesis, edited by: Van Stan II, J., Gutmann, E., and Friesen, J., Springer, 269–280, https://doi.org/10.1007/978-3-030-29702-2_16, 2020. a
Ammatelli, J. H., Gutmann, E. D., Bush, S. A., Barnard, H. R., Ciruzzi, D. M., Loheide, S. P., Raleigh, M. S., and Lundquist, J. D.: Measuring tree sway frequency with videos for ecohydrologic applications: Assessing the efficacy of Eulerian processing algorithms, Agr. Forest Meteorol., 373, 110751, https://doi.org/10.1016/j.agrformet.2025.110751, 2025. a
Anderson, S. P., Qinghua, G., and Parrish, E. G.: Snow-on and snow-off Lidar point cloud data and digital elevation models for study of topography, snow, ecosystems and environmental change at Boulder Creek Critical Zone Observatory, Colorado, Boulder Creek CZO, INSTAAR, University of Colorado at Boulder [data set], https://doi.org/10.5069/G93R0QR0, 2012. a
Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer Atmospheric Sciences, Dordrecht, The Netherlands, 438 pp., https://doi.org/10.1007/978-94-007-2351-1, 2012. a
Blanken, P.: Essentials of Water: Water in the Earth’s Physical and Biological Environments, Cambridge University Press, Cambridge, England, 327 pp., https://doi.org/10.1017/9781108988896, 2024. a
Download
Short summary
We compared two techniques that are affected by the amount of liquid water in a forest canopy. One technique relies on remote sensing (a pair of GPSs) and the other uses tree motion generated by the wind. Though completely different, these two techniques show strikingly similar changes when rain falls on an evergreen forest. We combine these measurements with eddy covariance fluxes of water vapor to provide insight into the evaporation of canopy-intercepted precipitation.
Share
Altmetrics
Final-revised paper
Preprint