Articles | Volume 22, issue 20
https://doi.org/10.5194/bg-22-5741-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5741-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using GNSS-based vegetation optical depth, tree sway motion, and eddy covariance to examine evaporation of canopy-intercepted rainfall in a subalpine forest
Department of Geography, University of Colorado, Boulder, CO, USA
NSF National Center for Atmospheric Research, Boulder, CO, USA
Vincent Humphrey
Federal Office of Meteorology and Climatology MeteoSwiss, Zurich Airport, Switzerland
Department of Geography, University of Zürich, Zurich, Switzerland
Ethan D. Gutmann
NSF National Center for Atmospheric Research, Boulder, CO, USA
Mark S. Raleigh
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
David R. Bowling
School of Biological Sciences, University of Utah, UT, USA
Peter D. Blanken
Department of Geography, University of Colorado, Boulder, CO, USA
Related authors
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Luna Bloin-Wibe, Robin Noyelle, Vincent Humphrey, Urs Beyerle, Reto Knutti, and Erich Fischer
Weather Clim. Dynam., 6, 1147–1177, https://doi.org/10.5194/wcd-6-1147-2025, https://doi.org/10.5194/wcd-6-1147-2025, 2025
Short summary
Short summary
Weather extremes have become more frequent due to climate change. It is therefore crucial to understand them, but since they are rarer than average weather, they are challenging to study. Ensemble Boosting (EB) is a tool that generates extreme climate model events efficiently, but without directly estimating their probability. Here, we present a method to recover these probabilities for a global climate model. EB can thus now be used to find extremes with meaningful statistical information.
Seppe Lampe, Lukas Gudmundsson, Basil Kraft, Stijn Hantson, Douglas Kelley, Vincent Humphrey, Bertrand Le Saux, Emilio Chuvieco, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2025-3550, https://doi.org/10.5194/egusphere-2025-3550, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We introduce BuRNN, a model which estimates monthly burned area based on satellite observations and climate, vegetation, and socio-economic data using machine learning. BuRNN outperforms existing process-based fire models. However, the model tends to underestimate burned area in parts of Africa and Australia. We identify the extent of bare ground, the presence of grasses, and fire weather conditions (long periods of warm and dry weather) as key regional drivers of fire activity in BuRNN.
Bareera N. Mirza, Eric E. Small, and Mark S. Raleigh
EGUsphere, https://doi.org/10.5194/egusphere-2025-978, https://doi.org/10.5194/egusphere-2025-978, 2025
Short summary
Short summary
Measuring snow depth in mountains is essential for water management, but current satellite methods have limitations. This study evaluates snow depth estimates from the Sentinel-1 radar satellite, revealing significant spatial errors, particularly during snowmelt. Combining it with other satellite data did not improve accuracy, emphasizing the need for improved techniques to advance global snow mapping for better water resource predictions
Mari R. Tye, Ming Ge, Jadwiga H. Richter, Ethan D. Gutmann, Allyson Rugg, Cindy L. Bruyère, Sue Ellen Haupt, Flavio Lehner, Rachel McCrary, Andrew J. Newman, and Andy Wood
Hydrol. Earth Syst. Sci., 29, 1117–1133, https://doi.org/10.5194/hess-29-1117-2025, https://doi.org/10.5194/hess-29-1117-2025, 2025
Short summary
Short summary
There is a perceived mismatch between the spatial scales on which global climate models can produce data and those needed for water management decisions. However, poor communication of specific metrics relevant to local decisions is also a problem. We assessed the credibility of a set of water management decision metrics in the Community Earth System Model v2 (CESM2). CESM2 shows potentially greater use of its output in long-range water management decisions.
Max Berkelhammer, Gerald F. M. Page, Frank Zurek, Christopher Still, Mariah S. Carbone, William Talavera, Laura Hildebrand, James Byron, Kyle Inthabandith, Angellica Kucinski, Melissa Carlson, Kelsey Foss, Wendy Brown, Rosemary W. H. Carroll, Austin Simonpietri, Marshall Worsham, Ian Breckheimer, Anna Ryken, Reed Maxwell, David Gochis, Mark S. Raleigh, Eric Small, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 29, 701–718, https://doi.org/10.5194/hess-29-701-2025, https://doi.org/10.5194/hess-29-701-2025, 2025
Short summary
Short summary
Warming in montane systems is affecting the snowmelt input amount. At the global scale, this will impact subalpine forests that rely on spring snowmelt to support their water demands. We use a network of sensors across a hillslope in the Upper Colorado Basin to show that the changing spring snowpack has a more pronounced impact on dense forest stands, while open stands show a higher reliance on summer rain and are less sensitive to significant changes in snow.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Jordan N. Herbert, Mark S. Raleigh, and Eric E. Small
The Cryosphere, 18, 3495–3512, https://doi.org/10.5194/tc-18-3495-2024, https://doi.org/10.5194/tc-18-3495-2024, 2024
Short summary
Short summary
Automated stations measure snow properties at a single point but are frequently used to validate data that represent much larger areas. We use lidar snow depth data to see how often the mean snow depth surrounding a snow station is within 10 cm of the snow station depth at different scales. We found snow stations overrepresent the area-mean snow depth in ~ 50 % of cases, but the direction of bias at a site is temporally consistent, suggesting a site could be calibrated to the surrounding area.
Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, Elias J. Deeb, Shad O'Neel, Daniel McGrath, Ryan W. Webb, Randall Bonnell, Mark S. Raleigh, Christopher Hiemstra, and Kelly Elder
The Cryosphere, 18, 3253–3276, https://doi.org/10.5194/tc-18-3253-2024, https://doi.org/10.5194/tc-18-3253-2024, 2024
Short summary
Short summary
Snow water equivalent (SWE) is a critical parameter for yearly water supply forecasting and can be calculated by multiplying the snow depth by the snow density. We combined high-spatial-resolution snow depth information with ground-based radar measurements to solve for snow density. Extrapolated density estimates over our study area resolved detailed patterns that agree with the known interactions of snow with wind, terrain, and vegetation and were utilized in the calculation of SWE.
Ross Mower, Ethan D. Gutmann, Glen E. Liston, Jessica Lundquist, and Soren Rasmussen
Geosci. Model Dev., 17, 4135–4154, https://doi.org/10.5194/gmd-17-4135-2024, https://doi.org/10.5194/gmd-17-4135-2024, 2024
Short summary
Short summary
Higher-resolution model simulations are better at capturing winter snowpack changes across space and time. However, increasing resolution also increases the computational requirements. This work provides an overview of changes made to a distributed snow-evolution modeling system (SnowModel) to allow it to leverage high-performance computing resources. Continental simulations that were previously estimated to take 120 d can now be performed in 5 h.
Dylan Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev., 16, 5049–5068, https://doi.org/10.5194/gmd-16-5049-2023, https://doi.org/10.5194/gmd-16-5049-2023, 2023
Short summary
Short summary
The challenge of running geophysical models is often compounded by the question of where to obtain appropriate data to give as input to a model. Here we present the HICAR model, a simplified atmospheric model capable of running at spatial resolutions of hectometers for long time series or over large domains. This makes physically consistent atmospheric data available at the spatial and temporal scales needed for some terrestrial modeling applications, for example seasonal snow forecasting.
Anna L. Merrifield, Lukas Brunner, Ruth Lorenz, Vincent Humphrey, and Reto Knutti
Geosci. Model Dev., 16, 4715–4747, https://doi.org/10.5194/gmd-16-4715-2023, https://doi.org/10.5194/gmd-16-4715-2023, 2023
Short summary
Short summary
Using all Coupled Model Intercomparison Project (CMIP) models is unfeasible for many applications. We provide a subselection protocol that balances user needs for model independence, performance, and spread capturing CMIP’s projection uncertainty simultaneously. We show how sets of three to five models selected for European applications map to user priorities. An audit of model independence and its influence on equilibrium climate sensitivity uncertainty in CMIP is also presented.
Vincent Humphrey and Christian Frankenberg
Biogeosciences, 20, 1789–1811, https://doi.org/10.5194/bg-20-1789-2023, https://doi.org/10.5194/bg-20-1789-2023, 2023
Short summary
Short summary
Microwave satellites can be used to monitor how vegetation biomass changes over time or how droughts affect the world's forests. However, such satellite data are still difficult to validate and interpret because of a lack of comparable field observations. Here, we present a remote sensing technique that uses the Global Navigation Satellite System (GNSS) as a makeshift radar, making it possible to observe canopy transmissivity at any existing environmental research site in a cost-efficient way.
Timbo Stillinger, Karl Rittger, Mark S. Raleigh, Alex Michell, Robert E. Davis, and Edward H. Bair
The Cryosphere, 17, 567–590, https://doi.org/10.5194/tc-17-567-2023, https://doi.org/10.5194/tc-17-567-2023, 2023
Short summary
Short summary
Understanding global snow cover is critical for comprehending climate change and its impacts on the lives of billions of people. Satellites are the best way to monitor global snow cover, yet snow varies at a finer spatial resolution than most satellite images. We assessed subpixel snow mapping methods across a spectrum of conditions using airborne lidar. Spectral-unmixing methods outperformed older operational methods and are ready to to advance snow cover mapping at the global scale.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Esteban Alonso-González, Ethan Gutmann, Kristoffer Aalstad, Abbas Fayad, Marine Bouchet, and Simon Gascoin
Hydrol. Earth Syst. Sci., 25, 4455–4471, https://doi.org/10.5194/hess-25-4455-2021, https://doi.org/10.5194/hess-25-4455-2021, 2021
Short summary
Short summary
Snow water resources represent a key hydrological resource for the Mediterranean regions, where most of the precipitation falls during the winter months. This is the case for Lebanon, where snowpack represents 31 % of the spring flow. We have used models to generate snow information corrected by means of remote sensing snow cover retrievals. Our results highlight the high temporal variability in the snowpack in Lebanon and its sensitivity to further warming caused by its hypsography.
Johannes Horak, Marlis Hofer, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Geosci. Model Dev., 14, 1657–1680, https://doi.org/10.5194/gmd-14-1657-2021, https://doi.org/10.5194/gmd-14-1657-2021, 2021
Short summary
Short summary
This process-based evaluation of the atmospheric model ICAR is conducted to derive recommendations to increase the likelihood of its results being correct for the right reasons. We conclude that a different diagnosis of the atmospheric background state is necessary, as well as a model top at an elevation of at least 10 km. Alternative boundary conditions at the top were not found to be effective in reducing this model top elevation. The results have wide implications for future ICAR studies.
Rhae Sung Kim, Sujay Kumar, Carrie Vuyovich, Paul Houser, Jessica Lundquist, Lawrence Mudryk, Michael Durand, Ana Barros, Edward J. Kim, Barton A. Forman, Ethan D. Gutmann, Melissa L. Wrzesien, Camille Garnaud, Melody Sandells, Hans-Peter Marshall, Nicoleta Cristea, Justin M. Pflug, Jeremy Johnston, Yueqian Cao, David Mocko, and Shugong Wang
The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021, https://doi.org/10.5194/tc-15-771-2021, 2021
Short summary
Short summary
High SWE uncertainty is observed in mountainous and forested regions, highlighting the need for high-resolution snow observations in these regions. Substantial uncertainty in snow water storage in Tundra regions and the dominance of water storage in these regions points to the need for high-accuracy snow estimation. Finally, snow measurements during the melt season are most needed at high latitudes, whereas observations at near peak snow accumulations are most beneficial over the midlatitudes.
Cited articles
Allen, S. T., Aubrey, D. P., Bader, M. Y., Coenders-Gerrits, M., Friesen, J., Gutmann, E. D., Guillemette, F., Jiménez-Rodríguez, C., Keim, R. F., Klamerus-Iwan, A., Mendieta-Leiva, G., Porada, P., Qualls, R. G., Schilperoort, B., Stubbins, A., and Van Stan II, J. T.: Key questions on the evaporation and transport of intercepted precipitation, in: Precipitation Partitioning by Vegetation: A Global Synthesis, edited by: Van Stan II, J., Gutmann, E., and Friesen, J., Springer, 269–280, https://doi.org/10.1007/978-3-030-29702-2_16, 2020. a
Ammatelli, J. H., Gutmann, E. D., Bush, S. A., Barnard, H. R., Ciruzzi, D. M., Loheide, S. P., Raleigh, M. S., and Lundquist, J. D.: Measuring tree sway frequency with videos for ecohydrologic applications: Assessing the efficacy of Eulerian processing algorithms, Agr. Forest Meteorol., 373, 110751, https://doi.org/10.1016/j.agrformet.2025.110751, 2025. a
Anderson, S. P., Qinghua, G., and Parrish, E. G.: Snow-on and snow-off Lidar point cloud data and digital elevation models for study of topography, snow, ecosystems and environmental change at Boulder Creek Critical Zone Observatory, Colorado, Boulder Creek CZO, INSTAAR, University of Colorado at Boulder [data set], https://doi.org/10.5069/G93R0QR0, 2012. a
Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer Atmospheric Sciences, Dordrecht, The Netherlands, 438 pp., https://doi.org/10.1007/978-94-007-2351-1, 2012. a
Blanken, P.: Essentials of Water: Water in the Earth’s Physical and Biological Environments, Cambridge University Press, Cambridge, England, 327 pp., https://doi.org/10.1017/9781108988896, 2024. a
Blanken, P. D., Black, T. A., Yang, P. C., Neumann, H. H., Nesic, Z., Staebler, R., den Hartog, G., Novak, M. D., and Lee, X.: Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components, J. Geophys. Res.-Atmos., 102, 28915–28927, https://doi.org/10.1029/97JD00193, 1997. a
Blanken, P. D., Monson, R. K., Burns, S. P., Bowling, D. R., and Turnipseed, A. A.: AmeriFlux BASE US-NR1 Niwot Ridge Forest (LTER NWT1), Ver. 24-5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/1246088, 2025. a
Bonan, G.: Climate Change and Terrestrial Ecosystem Modeling, Cambridge University Press, Cambridge, England, 437 pp., https://doi.org/10.1017/9781107339217, 2019. a, b
Bonan, G. B., Patton, E. G., Finnigan, J. J., Baldocchi, D. D., and Harman, I. N.: Moving beyond the incorrect but useful paradigm: Reevaluating big-leaf and multilayer plant canopies to model biosphere-atmosphere fluxes – a review, Agr. Forest Meteorol., 306, 1–23, https://doi.org/10.1016/j.agrformet.2021.108435, 2021. a
Bosveld, F. C. and Bouten, W.: Evaluating a model of evaporation and transpiration with observations in a partially wet Douglas-fir forest, Bound.-Lay. Meteorol., 108, 365–396, 2003. a
Bowling, D. R., Logan, B. A., Hufkens, K., Aubrecht, D. M., Richardson, A. D., Burns, S. P., Anderegg, W. R. L., Blanken, P. D., and Eiriksson, D.: Limitations to winter and spring photosynthesis of a Rocky Mountain subalpine forest, Agr. Forest Meteorol., 252, 241–255, https://doi.org/10.1016/j.agrformet.2018.01.025, 2018. a, b
Brewer, C. A. and Smith, W. K.: Patterns of leaf surface wetness for montane and subalpine plants, Plant Cell Environ., 20, 1–11, https://doi.org/10.1046/j.1365-3040.1997.d01-15.x, 1997. a
Broxton, P. D., Harpold, A. A., Biederman, J. A., Troch, P. A., Molotch, N. P., and Brooks, P. D.: Quantifying the effects of vegetation structure on snow accumulation and ablation in mixed-conifer forests, Ecohydrology, 8, 1073–1094, https://doi.org/10.1002/eco.1565, 2015. a
Brutsaert, W.: Hydrology: An Introduction, Cambridge University Press, Cambridge, England, 2nd edn., 622 pp., https://doi.org/10.1017/9781316471562, 2023. a
Burba, G. G., McDermitt, D. K., Grelle, A., Anderson, D. J., and Xu, L.: Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers, Global Change Biol., 14, 1854–1876, https://doi.org/10.1111/j.1365-2486.2008.01606.x, 2008. a
Burns, S. P.: “The Influence of Warm-Season Precipitation on Water Cycling and the Surface Energy Budget within and just-above a Colorado Subalpine Forest in Mountainous Terrain: Measurements and Modeling”, PhD thesis, University of Colorado, Boulder, Colorado 80301, https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/ns064611h (last access: 10 October 2025), 2018. a, b
Burns, S. P., Sun, J., Lenschow, D. H., Oncley, S. P., Stephens, B. B., Yi, C., Anderson, D. E., Hu, J., and Monson, R. K.: Atmospheric stability effects on wind fields and scalar mixing within and just above a subalpine forest in sloping terrain, Bound.-Lay. Meteorol., 138, 231–262, https://doi.org/10.1007/s10546-010-9560-6, 2011. a
Burns, S. P., Molotch, N. P., Williams, M. W., Knowles, J. F., Seok, B., Monson, R. K., Turnipseed, A. A., and Blanken, P. D.: Snow temperature changes within a seasonal snowpack and their relationship to turbulent fluxes of sensible and latent heat, J. Hydrometeorol., 15, 117–142, https://doi.org/10.1175/JHM-D-13-026.1, 2014. a
Burns, S. P., Blanken, P. D., Turnipseed, A. A., Hu, J., and Monson, R. K.: The influence of warm-season precipitation on the diel cycle of the surface energy balance and carbon dioxide at a Colorado subalpine forest site, Biogeosciences, 12, 7349–7377, https://doi.org/10.5194/bg-12-7349-2015, 2015. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Burns, S. P., Swenson, S. C., Wieder, W. R., Lawrence, D. M., Bonan, G. B., Knowles, J. F., and Blanken, P. D.: A comparison of the diel cycle of modeled and measured latent heat flux during the warm season in a Colorado subalpine forest, J. Adv. Model Earth Sy., 10, 617–651, https://doi.org/10.1002/2017MS001248, 2018. a, b, c, d, e, f, g, h, i, j
Burns, S. P., Humphrey, V., Gutmann, E. D., Raleigh, M. S., Bowling, D. R., and Blanken, P. D.: Using GNSS-based vegetation optical depth, tree sway motion, and eddy-covariance to examine evaporation of canopy-intercepted rainfall in a subalpine forest, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2025-1755, 2025a. a
Burns, S. P., Humphrey, V., Raleigh, M. S., Bowling, D. R., Gutmann, E. D., and Blanken, P. D.: GNSS-based Vegetation Optical Depth, Tree Sway, and Evapotranspiration data from the Niwot Ridge Subalpine Forest (US-NR1) AmeriFlux site, ESS-DIVE [data set], https://doi.org/10.15485/2574352, 2025b. a
Calder, I. R.: Evaporation in the Uplands, John Wiley & Sons, Chichester, England, 148 pp., ISBN 0-471-92487-3, 1990. a
Calder, I. R.: Water use by forests, limits and controls, Tree Physiol., 18, 625–631, https://doi.org/10.1093/treephys/18.8-9.625, 1998. a
Campbell Scientific, Inc.: Product Manual: 237 Leaf Wetness Sensor, 19 pp., https://www.campbellsci.com/ (last access: 10 October 2025), 2021. a
Camps, A., Alonso-Arroyo, A., Park, H., Onrubia, R., Pascual, D., and Querol, J.: L-Band vegetation optical depth estimation using transmitted GNSS signals: Application to GNSS-reflectometry and positioning, Remote Sens.-Basel, 12, 2352, https://doi.org/10.3390/rs12152352, 2020. a
Carlyle-Moses, D. E., Lishman, C. E., and McKee, A. J.: A preliminary evaluation of throughfall sampling techniques in a mature coniferous forest, J. Forestry Res., 25, 407–413, https://doi.org/10.1007/s11676-014-0468-8, 2014. a
Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., and Zona, D.: Representativeness of eddy-covariance flux footprints for areas surrounding AmeriFlux sites, Agr. Forest Meteorol., 301–302, 108350, https://doi.org/10.1016/j.agrformet.2021.108350, 2021. a
Ciruzzi, D. M. and Loheide II, S. P.: Monitoring tree sway as an indicator of water stress, Geophys. Res. Lett., 46, 12021–12029, https://doi.org/10.1029/2019GL084122, 2019. a
Ciruzzi, D. M. and Loheide II, S. P.: Monitoring tree sway as an indicator of interception dynamics before, during, and following a storm, Geophys. Res. Lett., 48, e2021GL094980, https://doi.org/10.1029/2021GL094980, 2021. a, b, c
Coenders-Gerrits, M., Schilperoort, B., and Jiménez-Rodríguez, C.: Evaporative processes on vegetation: An inside look, in: Precipitation Partitioning by Vegetation: A Global Synthesis, edited by: Van Stan II, J., Gutmann, E., and Friesen, J., Springer Nature Switzerland, Cham, Switzerland, 35–48, https://doi.org/10.1007/978-3-030-29702-2_3, 2020. a
Crockford, R. H. and Richardson, D. P.: Partitioning of rainfall into throughfall, stemflow and interception: Effect of forest type, ground cover and climate, Hydrol. Process., 14, 2903–2920, 2000. a
Decagon Devices, Inc.: GS3 Water Content, EC, and Temperature Sensors, Operators Manual, 27 pp., https://envcoglobal.com/wp-content/uploads/2018/02/13822gs3web.pdf (last access: 10 October 2025), 2016. a
Dente, L., Guerriero, L., Santi, E., Zribi, M., Comite, D., and Pierdicca, N.: Polarimetric features of GNSS-R signal over land: A simulation study, IEEE T. Geosci. Remote, 62, 1–15, https://doi.org/10.1109/TGRS.2024.3409880, 2024. a
Diamond, H. J., Karl, T. R., Palecki, M. A., Baker, C. B., Bell, J. E., Leeper, R. D., Easterling, D. R., Lawrimore, J. H., Meyers, T. P., Helfert, M. R., Goodge, G., and Thorne, P. W.: U.S. Climate Reference Network after one decade of operations: Status and assessment, B. Am. Meteorol. Soc., 94, 485–498, https://doi.org/10.1175/BAMS-D-12-00170.1, 2013. a
El-Madany, T. S., Walk, J. B., Deventer, M. J., Degefie, D. T., Chang, S.-C., Juang, J.-Y., Griessbaum, F., and Klemm, O.: Canopy-atmosphere interactions under foggy condition—Size-resolved fog droplet fluxes and their implications, J. Geophys. Res.-Biogeo., 121, 796–808, https://doi.org/10.1002/2015JG003221, 2016. a
Fletcher, N. H.: The Chemical Physics of Ice, Cambridge University Press, Cambridge, England, 271 pp., https://doi.org/10.1017/CBO9780511735639, 1970. a
Frank, J. M. and Massman, W. J.: A new perspective on the open-path infrared gas analyzer self-heating correction, Agr. Forest Meteorol., 290, 107986, https://doi.org/10.1016/j.agrformet.2020.107986, 2020. a
Frappart, F., Wigneron, J.-P., Li, X., Liu, X., Al-Yaari, A., Fan, L., Wang, M., Moisy, C., Le Masson, E., Aoulad Lafkih, Z., Vallé, C., Ygorra, B., and Baghdadi, N.: Global monitoring of the vegetation dynamics from the Vegetation Optical Depth (VOD): A review, Remote Sens.-Basel, 12, https://doi.org/10.3390/rs12182915, 2020. a, b, c
Gao, S., Wang, X., and Wang, L.: Modeling temperature effect on dynamic modulus of elasticity of red pine (Pinus resinosa) in frozen and non-frozen states, Holzforschung, 69, 233–240, https://doi.org/10.1515/hf-2014-0048, 2015. a
Gash, J. H. C., Valente, F., and David, J. S.: Estimates and measurements of evaporation from wet, sparse pine forest in Portugal, Agr. Forest Meteorol., 94, 149–158, https://doi.org/10.1016/S0168-1923(99)00008-8, 1999. a
Gerhards, C. C.: Effect of moisture content and temperature on the mechanical properties of wood: An analysis of immediate effects, Wood and Fiber, 14, 4–36, 1982. a
Gerlein-Safdi, C.: Seeing dew deposition from satellites: Leveraging microwave remote sensing for the study of water dynamics in and on plants, New Phytol., 231, 5–7, https://doi.org/10.1111/nph.17418, 2021. a
Ghosh, A., Farhad, M. M., Boyd, D., and Kurum, M.: A UGV-based forest vegetation optical depth mapping using GNSS signals, IEEE J.-STARS, 17, 5093–5105, https://doi.org/10.1109/JSTARS.2024.3365798, 2024. a
Granucci, D., Rudnicki, M., Hiscox, A., Miller, D., and Su, H. B.: Quantifying the effects of freezing on tree sway frequencies, Agr. Forest Meteorol., 168, 10–14, https://doi.org/10.1016/j.agrformet.2012.07.016, 2013. a, b, c
Grelle, A., Lundberg, A., Lindroth, A., Moren, A. S., and Cienciala, E.: Evaporation components of a boreal forest: Variations during the growing season, J. Hydrol., 197, 70–87, https://doi.org/10.1016/S0022-1694(96)03267-2, 1997. a
Gutmann, E. D.: Global modeling of precipitation partitioning by vegetation and their applications, in: Precipitation Partitioning by Vegetation: A Global Synthesis, edited by: Van Stan II, J., Gutmann, E., and Friesen, J., Springer, 105–120, https://doi.org/10.1007/978-3-030-29702-2_7, 2020. a
Gutmann, E. D., Van Stan II, J. T., Friesen, J., Aubrey, D. P., and Lundquist, J.: Observed compression of in situ tree stems during freezing, Agr. Forest Meteorol., 243, 19–24, https://doi.org/10.1016/j.agrformet.2017.05.004, 2017. a, b
Hacke, U. G., Lachenbruch, B., Pittermann, J., Mayr, S., Domec, J., and Schulte, P. J.: The hydraulic architecture of conifers, in: Functional and Ecological Xylem Anatomy, edited by: Hacke, U., Springer International Publishing, Cham, Switzerland, 39–75, https://doi.org/10.1007/978-3-319-15783-2_2, 2015. a, b
Hao, G. Y., Wheeler, J. K., Holbrook, N. M., and Goldstein, G.: Investigating xylem embolism formation, refilling and water storage in tree trunks using frequency domain reflectometry, J. Exp. Bot., 64, 2321–2332, https://doi.org/10.1093/jxb/ert090, 2013. a
Harvey, N., Burns, S. P., Musselman, K. N., Barnard, H., and Blanken, P. D.: Identifying canopy snow in subalpine forests: A comparative study of methods, Water Resour. Res., 61, e2023WR036996, https://doi.org/10.1029/2023WR036996, 2025. a
Hilhorst, M. A.: A pore water conductivity sensor, Soil Sci. Soc. Am. J., 64, 1922–1925, https://doi.org/10.2136/sssaj2000.6461922x, 2000. a
Holtzman, N. M., Anderegg, L. D. L., Kraatz, S., Mavrovic, A., Sonnentag, O., Pappas, C., Cosh, M. H., Langlois, A., Lakhankar, T., Tesser, D., Steiner, N., Colliander, A., Roy, A., and Konings, A. G.: L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand, Biogeosciences, 18, 739–753, https://doi.org/10.5194/bg-18-739-2021, 2021. a, b, c, d
Horton, R. E.: Rainfall interception, Mon. Weather Rev., 47, 603–623, https://doi.org/10.1175/1520-0493(1919)47<603:RI>2.0.CO;2, 1919. a
Hu, J., Moore, D. J. P., Riveros-Iregui, D. A., Burns, S. P., and Monson, R. K.: Modeling whole-tree carbon assimilation rate using observed transpiration rates and needle sugar carbon isotope ratios, New Phytol., 185, 1000–1015, https://doi.org/10.1111/j.1469-8137.2009.03154.x, 2010. a, b
Humphrey, V.: Python Toolkit for Deriving Vegetation Optical Depth (VOD) from Pairs of GNSS Receivers, Github repository [code], https://github.com/vincenthumphrey/gnssvod (last access: 14 August 2025), 2025.
Iida, S., Levia, D. F., Shimizu, A., Shimizu, T., Tamai, K., Nobuhiro, T., Kabeya, N., Noguchi, S., Sawano, S., and Araki, M.: Intrastorm scale rainfall interception dynamics in a mature coniferous forest stand, J. Hydrol., 548, 770–783, https://doi.org/10.1016/j.jhydrol.2017.03.009, 2017. a
Jackson, T. D., Sethi, S., Dellwik, E., Angelou, N., Bunce, A., van Emmerik, T., Duperat, M., Ruel, J.-C., Wellpott, A., Van Bloem, S., Achim, A., Kane, B., Ciruzzi, D. M., Loheide II, S. P., James, K., Burcham, D., Moore, J., Schindler, D., Kolbe, S., Wiegmann, K., Rudnicki, M., Lieffers, V. J., Selker, J., Gougherty, A. V., Newson, T., Koeser, A., Miesbauer, J., Samelson, R., Wagner, J., Ambrose, A. R., Detter, A., Rust, S., Coomes, D., and Gardiner, B.: The motion of trees in the wind: a data synthesis, Biogeosciences, 18, 4059–4072, https://doi.org/10.5194/bg-18-4059-2021, 2021. a, b
Jarvis, P. G.: Transpiration and assimilation of tree and agricultural crops: The `Omega factor', in: Attributes of Trees as Crop Plants, edited by Cannell, M. G. R. and Jackson, J. E., Institute of Terrestrial Ecology, Natural Environment Research Council, 460–480, ISBN 0-904282-83-X, https://nora.nerc.ac.uk/id/eprint/6694 (last access: 10 October 2025), 1985. a
Jarvis, P. G. and Stewart, J. B.: Evaporation of water from plantation forest., in: The Ecology of Even-Aged Forest Plantations, edited by: Ford, E. D., Malcolm, D. C., and Atterson, J., Institute of Terrestrial Ecology, 327–350, ISBN 0-904282-33-3, https://nora.nerc.ac.uk/id/eprint/6696 (last access: 10 October 2025), 1979. a
Jiang, P., Kidger, P., Bandai, T., Baldocchi, D., Liu, H., Xiao, Y., Zhang, Q., Wang, C. T., Steefel, C., and Chen, X.: JAX-CanVeg: A differentiable land surface model, Water Resour. Res., 61, e2024WR038116, https://doi.org/10.1029/2024WR038116, 2025. a
Klaassen, W.: Evaporation from rain-wetted forest in relation to canopy wetness, canopy cover, and net radiation, Water Resour. Res., 37, 3227–3236, https://doi.org/10.1029/2001WR000480, 2001. a, b
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015. a
Konings, A. G., Saatchi, S. S., Frankenberg, C., Keller, M., Leshyk, V., Anderegg, W. R. L., Humphrey, V., Matheny, A. M., Trugman, A., Sack, L., Agee, E., Barnes, M. L., Binks, O., Cawse-Nicholson, K., Christoffersen, B. O., Entekhabi, D., Gentine, P., Holtzman, N. M., Katul, G. G., Liu, Y. L., Longo, M., Martinez-Vilalta, J., McDowell, N., Meir, P., Mencuccini, M., Mrad, A., Novick, K. A., Oliveira, R. S., Siqueira, P., Steele-Dunne, S. C., Thompson, D. R., Wang, Y. J., Wehr, R., Wood, J. D., Xu, X. T., and Zuidema, P. A.: Detecting forest response to droughts with global observations of vegetation water content, Global Change Biol., 27, 6005–6024, https://doi.org/10.1111/gcb.15872, 2021. a
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of the Köppen-Geiger climate classification updated, Meteorol. Z., 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006. a
Landsberg, J. and Waring, R.: Water relations in tree physiology: Where to from here?, Tree Physiol., 37, 18–32, https://doi.org/10.1093/treephys/tpw102, 2017. a
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val Martin, M., and Zeng, X.: The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty, J. Adv. Model Earth Sy., 11, 4245–4287, https://doi.org/10.1029/2018MS001583, 2019. a
Levia, D. F., Nanko, K., Amasaki, H., Giambelluca, T. W., Hotta, N., Iida, S., Mudd, R. G., Nullet, M. A., Sakai, N., Shinohara, Y., Sun, X. C., Suzuki, M., Tanaka, N., Tantasirin, C., and Yamada, K.: Throughfall partitioning by trees, Hydrol. Process., 33, 1698–1708, https://doi.org/10.1002/hyp.13432, 2019. a
Li, M., Li, C., Blackman, B. R., and Eduardo, S.: Mimicking nature to control bio-material surface wetting and adhesion, Int. Mater. Rev., 67, 658–681, https://doi.org/10.1080/09506608.2021.1995112, 2022. a
Li, W., Guo, Q., Jakubowski, M. K., and Kelly, M.: A new method for segmenting individual trees from the lidar point cloud, Photogramm. Eng. Rem. S., 78, 75–84, https://doi.org/10.14358/PERS.78.1.75, 2012. a
Liu, Y. Y., de Jeu, R. A. M., McCabe, M. F., Evans, J. P., and van Dijk, A. I. J. M.: Global long-term passive microwave satellite-based retrievals of vegetation optical depth, Geophys. Res. Lett., 38, https://doi.org/10.1029/2011GL048684, 2011. a
Lundquist, J. D., Dickerson-Lange, S., Gutmann, E., Jonas, T., Lumbrazo, C., and Reynolds, D.: Snow interception modelling: Isolated observations have led to many land surface models lacking appropriate temperature sensitivities, Hydrol. Process., 35, e14274, https://doi.org/10.1002/hyp.14274, 2021. a
Luo, Z. D., Deng, Z. J., Singha, K., Zhang, X. P., Liu, N., Zhou, Y. F., He, X. G., and Guan, H. D.: Temporal and spatial variation in water content within living tree stems determined by electrical resistivity tomography, Agr. Forest Meteorol., 291, 108058,https://doi.org/10.1016/j.agrformet.2020.108058, 2020. a
Martin, T. A., Hinckley, T. M., Meinzer, F. C., and Sprugel, D. G.: Boundary layer conductance, leaf temperature and transpiration of Abies amabilis branches, Tree Physiol., 19, 435–443, https://doi.org/10.1093/treephys/19.7.435, 1999. a
Massman, W. J.: The derivation and validation of a new model for the interception of rainfall by forests, Agr. Meteorol., 28, 261–286, https://doi.org/10.1016/0002-1571(83)90031-6, 1983. a, b, c
McNaughton, K. G. and Black, T. A.: Study of evapotranspiration from a Douglas fir forest using energy-balance approach, Water Resour. Res., 9, 1579–1590, https://doi.org/10.1029/WR009i006p01579, 1973. a
McNaughton, K. G. and Jarvis, P. G.: Predicting effects of vegetation changes on transpiration and evaporation, in: Water Deficits and Plant Growth, Volume VII: Additional woody crop plants, edited by: Kozlowski, T. T., Academic Press, 1–47, https://doi.org/10.1016/B978-0-12-424157-2.50007-0, 1983. a, b, c
METER Group, Inc.: METER GS3 Manual, 25 pp., https://metergroup.com/support/downloads-page/meter-environment-archive/ (last access: 10 October 2025), 2019 a
Miralles, D. G., Brutsaert, W., Dolman, A. J., and Gash, J. H.: On the use of the term ”Evapotranspiration”, Water Resour. Res., 56, e2020WR028055, https://doi.org/10.1029/2020WR028055, 2020. a, b
Moene, A. F. and van Dam, J. C.: Transport in the Atmosphere-Vegetation-Soil Continuum, Cambridge University Press, New York, 458 pp., https://doi.org/10.1017/CBO9781139043137, 2014. a
Molotch, N. P., Blanken, P. D., Williams, M. W., Turnipseed, A. A., Monson, R. K., and Margulis, S. A.: Estimating sublimation of intercepted and sub-canopy snow using eddy covariance systems, Hydrol. Process., 21, 1567–1575, https://doi.org/10.1002/hyp.6719, 2007. a, b
Momen, M., Wood, J. D., Novick, K. A., Pangle, R., Pockman, W. T., McDowell, N. G., and Konings, A. G.: Interacting effects of leaf water potential and biomass on vegetation optical depth, J. Geophys. Res.-Biogeo., 122, 3031–3046, https://doi.org/10.1002/2017JG004145, 2017. a
Monson, R. K., Turnipseed, A. A., Sparks, J. P., Harley, P. C., Scott-Denton, L. E., Sparks, K., and Huxman, T. E.: Carbon sequestration in a high-elevation, subalpine forest, Global Change Biol., 8, 459–478, 2002. a
Monson, R. K., Prater, M. R., Hu, J., Burns, S. P., Sparks, J. P., Sparks, K. L., and Scott-Denton, L. E.: Tree species effects on ecosystem water-use efficiency in a high-elevation, subalpine forest, Oecologia, 162, 491–504, https://doi.org/10.1007/s00442-009-1465-z, 2010. a
Monteith, J. L.: Evaporation and Environment, in: The State and Movement of Water in Living Organisms: 19th Symposium of the Society for Experimental Biology, edited by: Fogg, G. E., Academic Press, New York, 205–234, https://repository.rothamsted.ac.uk/item/8v5v7/evaporation-and-environment (last access: 14 October 2025), 1965. a
Moore, J. R. and Maguire, D. A.: Natural sway frequencies and damping ratios of trees: Concepts, review and synthesis of previous studies, Trees-Struct. Funct., 18, 195–203, https://doi.org/10.1007/s00468-003-0295-6, 2004. a
Muzylo, A., Llorens, P., Valente, F., Keizer, J. J., Domingo, F., and Gash, J. H. C.: A review of rainfall interception modelling, J. Hydrol., 370, 191–206, https://doi.org/10.1016/j.jhydrol.2009.02.058, 2009. a
Oberleitner, F., Hartmann, H., Hasibeder, R., Huang, J. B., Losso, A., Mayr, S., Oberhuber, W., Wieser, G., and Bahn, M.: Amplifying effects of recurrent drought on the dynamics of tree growth and water use in a subalpine forest, Plant Cell Environ., 45, 2617–2635, https://doi.org/10.1111/pce.14369, 2022. a, b
Ogaja, C. A.: Appendix 2: Why GPS Carriers Are in the L-Band, in: Applied GPS for Engineers and Project Managers, American Society of Civil Engineers, Reston, Virginia, USA, 165–167, https://doi.org/10.1061/9780784411506, 2011. a
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S., Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E., Lamarque, J.-F., Lawrence, P. J., Leung, L. R., Lipscomb, W. Muszala, S. P., Ricciuto, D. M., Sacks, W. J., Sun, Y., Tang, J., and Yang, Z.-L.: Technical description of version 4.5 of the Community Land Model (CLM), Tech. Rep. NCAR/TN-503+STR, NCAR Technical Note, 420 pp., https://doi.org/10.5065/D6RR1W7M, 2013. a, b, c
Owe, M., de Jeu, R., and Walker, J.: A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index, IEEE T. Geosci. Remote, 39, 1643–1654, https://doi.org/10.1109/36.942542, 2001. a
Page, T., Chappell, N. A., Beven, K. J., Hankin, B., and Kretzschmar, A.: Assessing the significance of wet-canopy evaporation from forests during extreme rainfall events for flood mitigation in mountainous regions of the United Kingdom, Hydrol. Process., 34, 4740–4754, https://doi.org/10.1002/hyp.13895, 2020. a
Paul-Limoges, E., Wolf, S., Schneider, F. D., Longo, M., Moorcroft, P., Gharun, M., and Damm, A.: Partitioning evapotranspiration with concurrent eddy covariance measurements in a mixed forest, Agr. Forest Meteorol., 280, 107786, https://doi.org/10.1016/j.agrformet.2019.107786, 2020. a
Paulus, S. J., Orth, R., Lee, S.-C., Hildebrandt, A., Jung, M., Nelson, J. A., El-Madany, T. S., Carrara, A., Moreno, G., Mauder, M., Groh, J., Graf, A., Reichstein, M., and Migliavacca, M.: Interpretability of negative latent heat fluxes from eddy covariance measurements in dry conditions, Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, 2024. a
Pearce, A. J., Rowe, L. K., and Stewart, J. B.: Nighttime, wet canopy evaporation rates and the water-balance of an evergreen mixed forest, Water Resour. Res., 16, 955–959, https://doi.org/10.1029/WR016i005p00955, 1980. a, b, c
Penman, H. L.: Natural evaporation from open water, bare soil and grass, P. Roy. Soc. Lond. A.-Math Phy., 193, 120–145, https://doi.org/10.1098/rspa.1948.0037, 1948. a
Pflug, S., Voortman, B. R., Cornelissen, J. H. C., and Witte, J.-P. M.: The effect of plant size and branch traits on rainfall interception of 10 temperate tree species, Ecohydrology, 14, e2349, https://doi.org/10.1002/eco.2349, 2021. a
Raleigh, M.: Multi-year measurements of tree motion from an accelerometer on a fir tree near Niwot Ridge, Colorado, Zenodo [data set], https://doi.org/10.5281/zenodo.5149307, 2021. a
Raleigh, M. S., Gutmann, E. D., Van Stan, J. T., Burns, S. P., Blanken, P. D., and Small, E. E.: Challenges and capabilities in estimating snow mass intercepted in conifer canopies with tree sway monitoring, Water Resour. Res., 58, e2021WR030972, https://doi.org/10.1029/2021WR030972, 2022. a, b, c, d, e, f, g, h, i
Raleigh M. S.: Code to Process Tree Sway Frequency from Accelerometer Data, Github repository [code], https://github.com/truewind/accelerometer_tree_sway/ (last access: 14 August 2025), 2025.
Ranjbar, S., Zahn, E., Losos, D., Hoffman, S., Shrestha, O., Bou-Zeid, E., and Stoy, P. C.: Partitioning ecosystem water fluxes into transpiration, surface evaporation, and canopy-intercepted evaporation using knowledge-guided machine learning at NEON sites, ESS Open Archive, https://doi.org/10.22541/essoar.175201387.73220253/v1, 2025. a
Reverter, B. R., Sánchez-Cañete, E. P., Resco, V., Serrano-Ortiz, P., Oyonarte, C., and Kowalski, A. S.: Analyzing the major drivers of NEE in a Mediterranean alpine shrubland, Biogeosciences, 7, 2601–2611, https://doi.org/10.5194/bg-7-2601-2010, 2010. a
Rodriguez-Alvarez, N., Bosch-Lluis, X., Camps, A., Ramos-Perez, I., Valencia, E., Park, H., and Vall-llossera, M.: Vegetation water content estimation using GNSS measurements, IEEE Geosci. Remote S., 9, 282–286, https://doi.org/10.1109/LGRS.2011.2166242, 2012. a
Rutter, A., Kershaw, K., Robins, P., and Morton, A.: A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine, Agr. Meteorol., 9, 367–384, https://doi.org/10.1016/0002-1571(71)90034-3, 1971. a, b
Schellekens, J., Scatena, F. N., Bruijnzeel, L. A., and Wickel, A. J.: Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico, J. Hydrol., 225, 168–184, https://doi.org/10.1016/S0022-1694(99)00157-2, 1999. a
Schwank, M., Kontu, A., Mialon, A., Naderpour, R., Houtz, D., Lemmetyinen, J., Rautiainen, K., Li, Q. H., Richaume, P., Kerr, Y., and Mätzler, C.: Temperature effects on L-band vegetation optical depth of a boreal forest, Remote Sens. Environ., 263, 112542, https://doi.org/10.1016/j.rse.2021.112542, 2021. a, b
Selker, J. S., Lane, J. W., Rupp, D. E., Hut, R., Abou Najm, M. R., Stewart, R. D., Van De Giesen, N., and Selker, F.: The answer is blowing in the wind: Using wind induced resonance of trees to measure time varying canopy mass, including interception, in: AGU Fall Meeting Abstracts, San Francisco, CA, American Geophysical Union, Abstract #H11G–1155, 2011. a
Septentrio: PolaRx5 – PolaRx5e User Manual, Version 2.2, 91 pp., https://www.septentrio.com/en/products/gnss-receivers/gnss-reference-receivers/polarx-5 (last access: 10 October 2025), 2001. a
Sheil, D.: Atmospheric water and an uncertain future: The new biology of the global water cycle, For. Ecosyst., 5, 19, https://doi.org/10.1186/s40663-018-0138-y, 2018. a
Shuttleworth, W. J.: Evaporation models in hydrology, in: Land Surface Evaporation: Measurement and Parameterization, edited by: Schmugge, T. J. and André, J.-C., Springer, New York, NY, 93–120, https://doi.org/10.1007/978-1-4612-3032-8_5, 1991. a
Stoy, P. C., El-Madany, T. S., Fisher, J. B., Gentine, P., Gerken, T., Good, S. P., Klosterhalfen, A., Liu, S., Miralles, D. G., Perez-Priego, O., Rigden, A. J., Skaggs, T. H., Wohlfahrt, G., Anderson, R. G., Coenders-Gerrits, A. M. J., Jung, M., Maes, W. H., Mammarella, I., Mauder, M., Migliavacca, M., Nelson, J. A., Poyatos, R., Reichstein, M., Scott, R. L., and Wolf, S.: Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities, Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, 2019. a
Stoy, P. C., Blakely, B., Shveytser, V., Hoffman, S., Ranjbar, S., Losos, D., Desai, A. R., Bou-Zeid, E., and Zahn, E.: Estimating intercepted evaporation at site to continental scales: Progress in our understanding of a challenging water flux, in: 36th Conference on Agricultural and Forest Meteorology and 7th Conference on Biogeosciences, American Meteorological Society, Denver, Colorado, 12–16 May 2025, paper J8.3, https://ams.confex.com/ams/2025Summit/meetingapp.cgi/Paper/460285 (last access: 15 August 2025), 2025. a
Sutitarnnontr, P., Hu, E., Tuller, M., and Jones, S. B.: Physical and thermal characteristics of dairy cattle manure, J. Environ. Qual., 43, 2115–2129, https://doi.org/10.2134/jeq2014.05.0212, 2014. a
Thomas, C. K., Martin, J. G., Law, B. E., and Davis, K.: Toward biologically meaningful net carbon exchange estimates for tall, dense canopies: Multi-level eddy covariance observations and canopy coupling regimes in a mature Douglas-fir forest in Oregon, Agr. Forest Meteorol., 173, 14–27, https://doi.org/10.1016/j.agrformet.2013.01.001, 2013. a
Turnipseed, A. A., Anderson, D. E., Burns, S., Blanken, P. D., and Monson, R. K.: Airflows and turbulent flux measurements in mountainous terrain. Part 2: mesoscale effects, Agr. Forest Meteorol., 125, 187–205, https://doi.org/10.1016/j.agrformet.2004.04.007, 2004. a
Tyree, M. T. and Ewers, F. W.: The hydraulic architecture of trees and other woody-plants, New Phytol., 119, 345–360, https://doi.org/10.1111/j.1469-8137.1991.tb00035.x, 1991. a
van der Tol, C., Gash, J. H. C., Grant, S. J., McNeil, D. D., and Robinson, M.: Average wet canopy evaporation for a Sitka spruce forest derived using the eddy correlation-energy balance technique, J. Hydrol., 276, 12–19, https://doi.org/10.1016/S0022-1694(03)00024-6, 2003. a
van Dijk, A. I. J. M., Gash, J. H., van Gorsel, E., Blanken, P. D., Cescatti, A., Emmel, C., Gielen, B., Harman, I. N., Kiely, G., Merbold, L., Montagnani, L., Moors, E., Sottocornola, M., Varlagin, A., Williams, C. A., and Wohlfahrt, G.: Rainfall interception and the coupled surface water and energy balance, Agr. Forest Meteorol., 214, 402–415, https://doi.org/10.1016/j.agrformet.2015.09.006, 2015. a, b, c, d
Van Emmerik, T., Steele-Dunne, S., Hut, R., Gentine, P., Guerin, M., Oliveira, R. S., Wagner, J., Selker, J., and Van de Giesen, N.: Measuring Tree Properties and Responses Using Low-Cost Accelerometers, Sensors, 17, 1098, https://doi.org/10.3390/s17051098, 2017. a
van Emmerik, T., Steele-Dunne, S., Guerin, M., Gentine, P., Oliveira, R., Hut, R., Selker, J., Wagner, J., and van de Giesen, N.: Tree sway time series of 7 Amazon tree species (July 2015–May 2016), Front. Earth Sci., 6, 221, https://doi.org/10.3389/feart.2018.00221, 2018. a
Van Stan II, J. T., Gutmann, E. D., Lewis, E. S., and Gay, T. E.: Modeling rainfall interception loss for an Epiphyte-Laden Quercus virginiana forest using reformulated static- and variable-storage gash analytical models, J. Hydrometeorol., 17, 1985–1997, https://doi.org/10.1175/JHM-D-16-0046.1, 2016. a
Van Stan II, J. T., Gutmann, E., and Friesen, J.: Precipitation Partitioning by Vegetation, Springer Nature Switzerland, Cham, Switzerland, 281 pp., https://doi.org/10.1007/978-3-030-29702-2, 2020. a
Wan, Y., Cui, P., Xu, J., and Yu, H.: Directional water-collecting behavior of pine needle surface, Mater. Lett., 255, 126561, https://doi.org/10.1016/j.matlet.2019.126561, 2019. a
Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D., and Wullschleger, S. D.: A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance, Agr. Forest Meteorol., 106, 153–168, https://doi.org/10.1016/S0168-1923(00)00199-4, 2001. a
Wolf, S., Paul-Limoges, E., Sayler, D., and Kirchner, J. W.: Dynamics of evapotranspiration from concurrent above- and below-canopy flux measurements in a montane Sierra Nevada forest, Agr. Forest Meteorol., 346, 109864, https://doi.org/10.1016/j.agrformet.2023.109864, 2024. a, b, c
Xiao, Q. and McPherson, E. G.: Surface water storage capacity of twenty tree species in Davis, California, J. Environ. Qual., 45, 188–198, https://doi.org/10.2134/jeq2015.02.0092, 2016. a
Xu, X., Konings, A. G., Longo, M., Feldman, A., Xu, L., Saatchi, S., Wu, D., Wu, J., and Moorcroft, P.: Leaf surface water, not plant water stress, drives diurnal variation in tropical forest canopy water content, New Phytol., 231, 122–136, https://doi.org/10.1111/nph.17254, 2021. a
Yao, Y., Humphrey, V., Konings, A. G., Wang, Y., Yin, Y., Holtzman, N., Wood, J. D., Bar-On, Y., and Frankenberg, C.: Investigating diurnal and seasonal cycles of vegetation optical depth retrieved from GNSS signals in a broadleaf forest, Geophys. Res. Lett., 51, e2023GL107121, https://doi.org/10.1029/2023GL107121, 2024. a, b, c
Zardi, D. and Whiteman, C. D.: Diurnal Mountain Wind Systems, in: Mountain Weather Research and Forecasting, edited by: Chow, F. K., De Wekker, S. F. J., and Snyder, B. J., Springer Atmospheric Sciences, Springer, Dordrecht, the Netherlands, Springer Netherlands, 35–119, https://doi.org/10.1007/978-94-007-4098-3_2, 2013. a
Zweifel, R. and Häsler, R.: Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius, Tree Physiol., 21, 561–569, https://doi.org/10.1093/treephys/21.9.561, 2001. a
Short summary
We compared two techniques that are affected by the amount of liquid water in a forest canopy. One technique relies on remote sensing (a pair of GPSs) and the other uses tree motion generated by the wind. Though completely different, these two techniques show strikingly similar changes when rain falls on an evergreen forest. We combine these measurements with eddy covariance fluxes of water vapor to provide insight into the evaporation of canopy-intercepted precipitation.
We compared two techniques that are affected by the amount of liquid water in a forest canopy....
Altmetrics
Final-revised paper
Preprint