Articles | Volume 22, issue 20
https://doi.org/10.5194/bg-22-5849-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5849-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Response and recovery of a Sphagnum peatland from long-term human-induced alkalinisation
Luke Oliver Andrews
CORRESPONDING AUTHOR
Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, Poland
present address: School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
Katarzyna Marcisz
Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, Poland
Piotr Kołaczek
Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, Poland
Leeli Amon
Department of Geology, Tallinn University of Technology, Tallinn, Estonia
Siim Veski
Department of Geology, Tallinn University of Technology, Tallinn, Estonia
Atko Heinsalu
Department of Geology, Tallinn University of Technology, Tallinn, Estonia
Normunds Stivrins
Department of Geology, Tallinn University of Technology, Tallinn, Estonia
Department of Geology, Faculty of Science and Technology, University of Latvia, Riga, Latvia
Faculty of Forest and Environmental Sciences, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
Mariusz Bąk
Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, Poland
Marco A. Aquino-Lopez
Department of Geography, University of Cambridge, Cambridge, UK
Anna Cwanek
Department of Mass Spectrometry, Institute of Nuclear Physics Polish Academy of Sciences, Krakòw, Poland
Edyta Łokas
Institute of Nuclear Physics, Polish Academy of Sciences, Warsaw, Poland
Monika Karpińska-Kołaczek
Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, Poland
Sambor Czerwiński
Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, Poland
Department of Geomorphology and Quaternary Geology, University of Gdańsk, Gdańsk, Poland
Michał Słowiński
Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
Mariusz Lamentowicz
Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, Poland
Related authors
Mariusz Bąk, Mariusz Lamentowicz, Piotr Kołaczek, Daria Wochal, Michał Jakubowicz, Luke Andrews, and Katarzyna Marcisz
Biogeosciences, 22, 3843–3866, https://doi.org/10.5194/bg-22-3843-2025, https://doi.org/10.5194/bg-22-3843-2025, 2025
Short summary
Short summary
We integrated palaeoecological and geochemical data to discern the impact of catastrophic events on the development of peatlands within pine monocultures. An approach that integrates these methods is not commonly employed but offers a more comprehensive understanding of past ecosystem transformations. We used multi-proxy research of the peat core and neodymium isotope record. We support the results of our analyses with the recognition of statistically significant critical transitions.
Tomasz Polkowski, Agnieszka Gruszczyńska, Bartosz Kotrys, Artur Górecki, Anna Hrynowiecka, Marcin Żarski, Mirosław Błaszkiewicz, Jerzy Nitychoruk, Monika Czajkowska, Stefan Lauterbach, and Michał Słowiński
Clim. Past, 21, 1779–1800, https://doi.org/10.5194/cp-21-1779-2025, https://doi.org/10.5194/cp-21-1779-2025, 2025
Short summary
Short summary
In our study, we investigate changes in environment and climate that occured during post-Holsteinian period in Krępa palaeolake (eastern Poland). To achieve this goal we reconstructed summer temperature at the time using Chironomidae larvae head capsules and pollen data. This is first research from Central Europe with both chironomids and pollen used to trace climate change through post-Holsteinian period. We hope to encourage scientific community to carry out further research in the region.
Agnieszka Halaś, Mariusz Lamentowicz, Milena Obremska, Dominika Łuców, and Michał Słowiński
Biogeosciences, 22, 4797–4822, https://doi.org/10.5194/bg-22-4797-2025, https://doi.org/10.5194/bg-22-4797-2025, 2025
Short summary
Short summary
Western Siberian peatlands regulate global climate, but their response to permafrost thaw remains poorly studied. Our study analyzed peat cores from a peat plateau and a lake edge to track changes over two centuries. We found that permafrost thawing, driven by rising temperatures, altered peatland hydrology, vegetation, and microbial life. These shifts may expand with further warming, affecting carbon storage and climate feedbacks. Our findings highlight early warning signs of ecosystem change.
Ewa Zin, Tomasz Związek, Marcin Klisz, Sandra Słowińska, Dominik Róg, Milena Obremska, Dominika Łuców, Jarosław Pietruczuk, Joachim Popek, Katarzyna Piotrowicz, Kamil Pilch, Krzysztof Szewczyk, Agnieszka Halaś, and Michał Słowiński
EGUsphere, https://doi.org/10.5194/egusphere-2025-3975, https://doi.org/10.5194/egusphere-2025-3975, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We used a multi-proxy approach combining peat, tree ring, climate, and historical records to reconstruct >2,300 years of peatland dynamics in a Central European region. Results show a human-induced shift from alder to pine forest due to land use change and acidification, stressing the importance of long-term records for peatland conservation.
Jade Skye, Joe R. Melton, Colin Goldblatt, Louis Saumier, Angela Gallego-Sala, Michelle Garneau, R. Scott Winton, Erick B. Bahati, Juan C. Benavides, Lee Fedorchuk, Gérard Imani, Carol Kagaba, Frank Kansiime, Mariusz Lamentowicz, Michel Mbasi, Daria Wochal, Sambor Czerwiński, Jacek Landowski, Joanna Landowska, Vincent Maire, Minna M. Väliranta, Matthew Warren, Lydia E. S. Cole, Marissa A. Davies, Erik A. Lilleskov, Jingjing Sun, and Yuwan Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-432, https://doi.org/10.5194/essd-2025-432, 2025
Preprint under review for ESSD
Short summary
Short summary
Peatlands are large stores of carbon but are vulnerable to human activities and climate change. Comprehensive peatland data are vital to understand these ecosystems, but existing datasets are fragmented and contain errors. To address this, we created Peat-DBase — a standardized global database of peat depth measurements with > 200,000 measurements worldwide, showing average depths of 144 cm. Peat-DBase avoids overlapping data compilation efforts while identifying critical observational gaps.
Mariusz Bąk, Mariusz Lamentowicz, Piotr Kołaczek, Daria Wochal, Michał Jakubowicz, Luke Andrews, and Katarzyna Marcisz
Biogeosciences, 22, 3843–3866, https://doi.org/10.5194/bg-22-3843-2025, https://doi.org/10.5194/bg-22-3843-2025, 2025
Short summary
Short summary
We integrated palaeoecological and geochemical data to discern the impact of catastrophic events on the development of peatlands within pine monocultures. An approach that integrates these methods is not commonly employed but offers a more comprehensive understanding of past ecosystem transformations. We used multi-proxy research of the peat core and neodymium isotope record. We support the results of our analyses with the recognition of statistically significant critical transitions.
Eliise Poolma, Katarzyna Marcisz, Leeli Amon, Patryk Fiutek, Piotr Kołaczek, Karolina Leszczyńska, Dmitri Mauquoy, Michał Słowiński, Siim Veski, Friederike Wagner-Cremer, and Mariusz Lamentowicz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2087, https://doi.org/10.5194/egusphere-2025-2087, 2025
Short summary
Short summary
We studied a peatland in northern Poland to see how climate and natural ecosystem changes shaped it over the past 11,500 years. By analysing preserved plants and microscopic life, we found clear shifts in wetness linked to climate and internal development. This longest complete peat record in the region shows how peatlands help us understand long-term environmental change and their future resilience to climate change.
Anna Cwanek, Agnieszka Burakowska, Ewa Nalichowska, Magdalena Długosz-Lisiecka, Marek Kubicki, Tomasz Wawrzyniak, Edyta Łokas, Michał Gryziński, and Kamil Brudecki
EGUsphere, https://doi.org/10.5194/egusphere-2025-1573, https://doi.org/10.5194/egusphere-2025-1573, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We looked at man-made radioactive substances in the Arctic lower atmosphere. We found that airborne plutonium is linked to environmental processes such as local resuspension, biomass burning and long-range transport from remote areas. However, the presence of americium and neptunium in the air could not be explained by natural mechanisms, suggesting a recent nuclear release. We used simulated trajectories to identify the most likely transport pathways from northern Eurasia.
Mariusz Bąk, Mariusz Lamentowicz, Piotr Kołaczek, Daria Wochal, Paweł Matulewski, Dominik Kopeć, Martyna Wietecha, Dominika Jaster, and Katarzyna Marcisz
Biogeosciences, 21, 5143–5172, https://doi.org/10.5194/bg-21-5143-2024, https://doi.org/10.5194/bg-21-5143-2024, 2024
Short summary
Short summary
The study combines palaeoecological, dendrochronological, remote sensing and historical data to detect the impact of forest management and climate change on peatlands. Due to these changes, the peatland studied in this paper and the pine monoculture surrounding it have become vulnerable to water deficits and various types of disturbance, such as fires and pest infestations. As a result of forest management, there has also been a complete change in the vegetation composition of the peatland.
Leeli Amon, Friederike Wagner-Cremer, Jüri Vassiljev, and Siim Veski
Clim. Past, 18, 2143–2153, https://doi.org/10.5194/cp-18-2143-2022, https://doi.org/10.5194/cp-18-2143-2022, 2022
Short summary
Short summary
The spring onset and growing season dynamics during the Late Glacial period in the Baltic region were reconstructed using the micro-phenology based on dwarf birch subfossil leaf cuticles. The comparison of pollen- and chironomid-inferred past temperature estimations with spring onset, growth degree day, and plant macrofossil data shows coherent patterns during the cooler Older Dryas and warmer Bølling–Allerød periods but more complicated climate dynamics during the Younger Dryas cold reversal.
Stephanie H. Arcusa, Nicholas P. McKay, Charlotte Wiman, Sela Patterson, Samuel E. Munoz, and Marco A. Aquino-López
Geochronology, 4, 409–433, https://doi.org/10.5194/gchron-4-409-2022, https://doi.org/10.5194/gchron-4-409-2022, 2022
Short summary
Short summary
Annually banded lake sediment can track environmental change with high resolution in locations where alternatives are not available. Yet, information about chronology is often affected by poor appearance. Traditional methods struggle with these records. To overcome this obstacle we demonstrate a Bayesian approach that combines information from radiocarbon dating and laminations on cores from Columbine Lake, Colorado, expanding possibilities for producing high-resolution records globally.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Vojtěch Abraham, Sheila Hicks, Helena Svobodová-Svitavská, Elissaveta Bozilova, Sampson Panajiotidis, Mariana Filipova-Marinova, Christin Eldegard Jensen, Spassimir Tonkov, Irena Agnieszka Pidek, Joanna Święta-Musznicka, Marcelina Zimny, Eliso Kvavadze, Anna Filbrandt-Czaja, Martina Hättestrand, Nurgül Karlıoğlu Kılıç, Jana Kosenko, Maria Nosova, Elena Severova, Olga Volkova, Margrét Hallsdóttir, Laimdota Kalniņa, Agnieszka M. Noryśkiewicz, Bożena Noryśkiewicz, Heather Pardoe, Areti Christodoulou, Tiiu Koff, Sonia L. Fontana, Teija Alenius, Elisabeth Isaksson, Heikki Seppä, Siim Veski, Anna Pędziszewska, Martin Weiser, and Thomas Giesecke
Biogeosciences, 18, 4511–4534, https://doi.org/10.5194/bg-18-4511-2021, https://doi.org/10.5194/bg-18-4511-2021, 2021
Short summary
Short summary
We present a continental dataset of pollen accumulation rates (PARs) collected by pollen traps. This absolute measure of pollen rain (grains cm−2 yr−1) has a positive relationship to current vegetation and latitude. Trap and fossil PARs have similar values within one region, so it opens up possibilities for using fossil PARs to reconstruct past changes in plant biomass and primary productivity. The dataset is available in the Neotoma Paleoecology Database.
Michal Hájek, Borja Jiménez-Alfaro, Ondřej Hájek, Lisa Brancaleoni, Marco Cantonati, Michele Carbognani, Anita Dedić, Daniel Dítě, Renato Gerdol, Petra Hájková, Veronika Horsáková, Florian Jansen, Jasmina Kamberović, Jutta Kapfer, Tiina Hilkka Maria Kolari, Mariusz Lamentowicz, Predrag Lazarević, Ermin Mašić, Jesper Erenskjold Moeslund, Aaron Pérez-Haase, Tomáš Peterka, Alessandro Petraglia, Eulàlia Pladevall-Izard, Zuzana Plesková, Stefano Segadelli, Yuliya Semeniuk, Patrícia Singh, Anna Šímová, Eva Šmerdová, Teemu Tahvanainen, Marcello Tomaselli, Yuliya Vystavna, Claudia Biţă-Nicolae, and Michal Horsák
Earth Syst. Sci. Data, 13, 1089–1105, https://doi.org/10.5194/essd-13-1089-2021, https://doi.org/10.5194/essd-13-1089-2021, 2021
Short summary
Short summary
We developed an up-to-date European map of groundwater pH and Ca (the major determinants of diversity of wetlands) based on 7577 measurements. In comparison to the existing maps, we included much a larger data set from the regions rich in endangered wetland habitats, filled the apparent gaps in eastern and southeastern Europe, and applied geospatial modelling. The latitudinal and altitudinal gradients were rediscovered with much refined regional patterns, as is associated with bedrock variation.
Cited articles
Abril, G. A., Wannaz, E. D., Mateos, A. C., and Pignata, M. L.: Biomonitoring of airborne particulate matter emitted from a cement plant and comparison with dispersion modelling results, Atmos. Environ., 82, 154–163, https://doi.org/10.1016/j.atmosenv.2013.10.020, 2014.
Amesbury, M. J., Swindles, G. T., Bobrov, A., Charman, D. J., Holden, J., Lamentowicz, M., Mallon, G., Mazei, Y., Mitchell, E. A., Payne, R. J., and Roland, T. P.: Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology, Quat. Sci. Rev., 152, 132–151, https://doi.org/10.1016/j.quascirev.2016.09.024, 2016.
Andrews, L., Marcisz, K., Kolaczek, P., Amon, L., Veski, S., Heinsalu, A., Stivrins, N., Bąk, M., Aquino-López, M. A., Cwanek, A., Łokas, E., Karpińska-Kołaczek, M., Czerwiński, S., Słowiński, M., and Lamentowicz, M.: Response and recovery of a Sphagnum peatland affected by intensive alkaline dust pollution data files, figshare [data set], https://doi.org/10.6084/m9.figshare.28554173, 2025.
Apolinarska, K., Pleskot, K., Aunina, L., Marzec, M., Szczepaniak, M., Kabaciński, M., Kiełczewski, R., and Gałka, M.: Late Holocene changes in the water table at an alkaline fen in Central Latvia: Their impacts on CaCO3 deposition at the fen and relation to the hydroclimate patterns of the Eastern Baltic Region, Quat. Sci. Rev., 334, 108717, https://doi.org/10.1016/j.quascirev.2024.108717, 2024.
Appleby, P. G.: Dating Recent Sediments by 210Pb: Problems and Solutions. In 2nd NKS/EKO-1 Seminar, 7–24, Helsinki: STUK, 1998.
Aquino-Lopez, M. A., Blaauw, M., Christen, J. A., Sanderson, N. K.: Bayesian analysis of 210Pb dating. J. Agric. Biol. Environ. Stati., 23, 317–333, https://doi.org/10.1007/s13253-018-0328-7, 2018.
Aquino-López, M. A., Ruiz-Fernández, A. C., Blaauw, M., and Sanchez-Cabeza, J. A.: Comparing classical and Bayesian 210Pb dating models in human-impacted aquatic environments, Quat. Geochronol., 60, 101106, https://doi.org/10.1016/j.quageo.2020.101106, 2020.
Auber, A., Travers-Trolet, M., Villanueva, M. C., and Ernande, B.: A new application of principal response curves for summarizing abrupt and cyclic shifts of communities over space, Ecosphere, 8, e02023, https://doi.org/10.1002/ecs2.2023, 2017.
Avel, E. and Pensa, M.: Preparation of testate amoebae samples affects water table depth reconstructions in peatland palaeoecological studies, Estonian J. Earth Sci., 62, 113, https://doi.org/10.3176/earth.2013.09, 2013.
Bacon, K. L., Baird, A. J., Blundell, A., Bourgault, M. A., Chapman, P. J., Dargie, G., Dooling, G. P., Gee, C., Holden, J., Kelly, T. J., and McKendrick-Smith, K. A.: Questioning ten common assumptions about peatlands, Mires and Peat, 19, 1–23, 2017.
Ball, D. F.: Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils, J. Soil Sci., 15, 84–92, 1964.
Barber, K. E., Battarbee, R. W., Brooks, S. J., Eglinton, G., Haworth, E. Y., Oldfield, F., Stevenson, A. C., Thompson, R., Appleby, P. G., Austin, W. E. N., and Cameron, N. G.: Proxy records of climate change in the UK over the last two millennia: documented change and sedimentary records from lakes and bogs, J. Geol. Soc., 156, 369–380, https://doi.org/10.1144/gsjgs.156.2.0369, 1999.
Barthelmes, A., de Klerk, P., Prager, A., Theuerkauf, M., Unterseher, M., and Joosten, H.: Expanding NPP analysis to eutrophic and forested sites: Significance of NPPs in a Holocene wood peat section (NE Germany), Rev. Palaeobot. Palynol., 186, 22–37, https://doi.org/10.1016/j.revpalbo.2012.07.007, 2012.
Beck, K. K., Fletcher, M. S., Gadd, P. S., Heijnis, H., Saunders, K. M., Simpson, G. L., and Zawadzki, A.: Variance and rate-of-change as early warning signals for a critical transition in an aquatic ecosystem state: a test case from Tasmania, Australia, J. Geophys. Res.-Biogeo., 123, 495–508, https://doi.org/10.1002/2017JG004135, 2018.
Berglund, B. E. and Ralska-Jasiewiczowa, M.: Pollen Analysis and Pollen Diagrams, in: Handbook of Holocene Palaeoecology and Palaeohydrology, edited by: Berglund, B. E., John Wiley and Sons Press, Chichester, 455–484, https://doi.org/10.1002/jqs.3390010111, 1986.
Beug, H. J.: Hans-Jürgen Beug, Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete, Germania: Anzeiger der Römisch-Germanischen Kommission des Deutschen Archäologischen Instituts, 699–702, 2009.
Bobbink, R., Hornung, M., and Roelofs, J. G.: The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation, J. Ecol., 86, 717–738, https://doi.org/10.1046/j.1365-2745.1998.8650717.x, 1998.
Boës, X., Rydberg, J., Martinez-Cortizas, A., Bindler, R., and Renberg, I.: Evaluation of conservative lithogenic elements (Ti, Zr, Al, and Rb) to study anthropogenic element enrichments in lake sediments, J. Paleolimnology, 46, 75–87, https://doi.org/10.1007/s10933-011-9515-z, 2011.
Bojnanský, V. and Fargašová, A.: Atlas of seeds and fruits of Central and East-European flora: the Carpathian Mountains region, Springer Science & Business Media, Springer, Dordrecht, the Netherlands, 2007, 1046 pp. ISBN 978-1-4020-5361-0 (HB), ISBN 978-1-4020-5362-7 (e-book), 2007.
Bossew, P.: Anthropogenic radionuclides in environmental samples from Fukushima Prefecture, Radiat. Emerg. Med., 2, 69–75, 2013.
Boyle, J. F.: Inorganic geochemical methods in palaeolimnology. Tracking environmental change using lake sediments: physical and geochemical methods, Springer Nature Link, 83–141, https://doi.org/10.1007/0-306-47670-3_5, 2001.
Bridgham, S. D., Pastor, J., Dewey, B., Weltzin, J. F., and Updegraff, K.: Rapid carbon response of peatlands to climate change, Ecology, 89, 3041–3048, https://doi.org/10.1890/08-0279.1, 2008.
Brown, A. and Pluskowski, A.: Detecting the environmental impact of the Baltic Crusades on a late-medieval (13th–15th century) frontier landscape: palynological analysis from Malbork Castle and hinterland, Northern Poland, J. Archaeol. Sci., 38, 1957–1966, https://doi.org/10.1016/j.jas.2011.04.010, 2011.
Burge, O. R., Richardson, S. J., Wood, J. R., and Wilmshurst, J. M.: A guide to assess distance from ecological baselines and change over time in palaeoecological records, The Holocene, 33, 905–917, https://doi.org/10.1177/09596836231169986, 2023.
Buttler, A., Bragazza, L., Laggoun-Défarge, F., Gogo, S., Toussaint, M. L., Lamentowicz, M., Chojnicki, B. H., Słowiński, M., Słowińska, S., Zielińska, M., and Reczuga, M.: Ericoid shrub encroachment shifts aboveground–belowground linkages in three peatlands across Europe and Western Siberia, Global Change Biology, 29, 6772–6793, https://doi.org/10.1111/gcb.16904, 2023.
Chambers, F. M., Beilman, D. W., and Yu, Z.: Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics, Mires and Peat, 7, 1–10, 2011.
Clymo, R. S., Turunen, J., and Tolonen, K.: Carbon accumulation in peatland, Oikos, 81, 368–388, https://doi.org/10.2307/3547057, 1998.
Cwanek, A., Łokas, E., Mitchell, E. A., Mazei, Y., Gaca, P., and Milton, J. A.: Temporal variability of Pu signatures in a 210Pb-dated Sphagnum peat profile from the Northern Ural, Russian Federation, Chemosphere, 281, 130962, https://doi.org/10.1016/j.chemosphere.2021.130962, 2021.
Dean, W. E.: Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods, J. Sediment. Res., 44, 242–248, https://doi.org/10.1306/74d729d2-2b21-11d7-8648000102c1865d, 1974.
De'ath, G.: Principal curves: a new technique for indirect and direct gradient analysis, Ecology, 80, 2237–2253, https://doi.org/10.1890/0012-9658(1999)080[2237:PCANTF]2.0.CO;2, 1999.
Defrenne, C. E., Moore, J. A., Tucker, C. L., Lamit, L. J., Kane, E. S., Kolka, R. K., Chimner, R. A., Keller, J. K., and Lilleskov, E. A.: Peat loss collocates with a threshold in plant–mycorrhizal associations in drained peatlands encroached by trees, New Phytologist, 240, 412–425, https://doi.org/10.1111/nph.18954, 2023.
Dieleman, C. M., Branfireun, B. A., McLaughlin, J. W., and Lindo, Z.: Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability, Glob. Change Biol., 21, 388–395, https://doi.org/10.1111/gcb.12643, 2015.
EtoMesto: Online maps in real time – satellite and City: http://www.etomesto.com/map-mir/?y=59.444377&x=26.592107, last access: 10 August 2025.
Favre, E., Escarguel, G., Suc, J. P., Vidal, G., and Thévenod, L.: A contribution to deciphering the meaning of AP/NAP with respect to vegetation cover, Review of Palaeobot. and Palynol., 148, 13–35, https://doi.org/10.1016/j.revpalbo.2007.08.003, 2008.
Fiałkiewicz-Kozieł, B., De Vleeschouwer, F., Mattielli, N., Fagel, N., Palowski, B., Pazdur, A., and Smieja-Król, B.: Record of Anthropocene pollution sources of lead in disturbed peatlands from Southern Poland, Atmos. Environ., 179, 61–68, https://doi.org/10.1016/j.atmosenv.2018.02.002, 2018.
Finsinger, W. and Tinner, W.: Minimum count sums for charcoal concentration estimates in pollen slides: accuracy and potential errors, The Holocene, 15, 293–297, https://doi.org/10.3389/fevo.2018.00149, 2005.
Frolking, S., Roulet, N., and Fuglestvedt, J.: How northern peatlands influence the Earth's radiative budget: Sustained methane emission versus sustained carbon sequestration, J. Geophys. Res.-Biogeo., 111, https://doi.org/10.1029/2005JG000091, 2006.
Goh, T. K., Ho, W. H., Hyde, K. D., and Umali, T. E.: New records and species of Sporoschisma and Sporoschismopsis from submerged wood in the tropics, Mycological Research, 101, 1295–1307, https://doi.org/10.1017/S0953756297003973, 1997.
Gomes, H. I., Mayes, W. M., Rogerson, M., Stewart, D. I., and Burke, I. T.: Alkaline residues and the environment: a review of impacts, management practices and opportunities, J. Clean. Prod., 112, 3571–3582, https://doi.org/10.1016/j.jclepro.2015.09.111, 2016.
Gorham, E.: Northern peatlands: role in the carbon cycle and probable responses to climatic warming, Ecolog. Appl., 1, 182–195, https://doi.org/10.2307/1941811, 1991.
Graf, M. D., Rochefort, L., and Poulin, M.: Spontaneous revegetation of cutwaway peatlands of North America, Wetlands, 28, 28–39, https://doi.org/10.1672/06-136.1, 2008.
Grimm, E. C.: CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares, Comput. Geosci., 13, 13–35, https://doi.org/10.1016/0098-3004(87)90022-7, 1987.
Grosse-Brauckmann, G.: Über pflanzliche Makrofossilien mitteleuropäischer Torfe. I. Gewebereste krautiger Pflanzen und ihre Merkmale [On plant macrofossils in central European peat. I. Remnants of vascular plant tissues and their characteristics], Telma, 2, 19–55, 1972 (in German).
Grosse-Brauckmann, G.: Über pflanzliche Makrofossilien mitteleuropäischer Torfe. II. Weitere Reste (Früchte und Samen, Moose u.a.) und ihre Bestimmungsmöglichkeiten [On plant macrofossils in central European peat. II. Other remnants (e.g. fruits and seeds, mosses) and possibilities for their identification], Telma, 4, 51–117, 1974 (in German).
Gunnarsson, U., Malmer, N., and Rydin, H.: Dynamics or constancy in Sphagnum dominated mire ecosystems? A 40-year study, Ecography, 25, 685–704, https://doi.org/10.1034/j.1600-0587.2002.250605.x, 2002.
Hájek, M., Horsák, M., Hájková, P., and Dítě, D.: Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies, Perspect. Plant Ecol, Evol. Syst., 8, 97–114, https://doi.org/10.1016/j.ppees.2006.08.002, 2006.
Hájek, M., Hájková, P., Apostolova, I., Sopotlieva, D., Goia, I., and Dítě, D.: The vegetation of rich fens (Sphagno warnstorfii-Tomentypnion nitentis) at the southeastern margins of their European range, Veg. Class. and Surv. 2, 177–190, https://doi.org/10.3897/vcs/2021/69118, 2021.
Harenda, K. M., Lamentowicz, M., Samson, M., and Chojnicki, B. H.: The Role of Peatlands and Their Carbon Storage Function in the Context of Climate Change, in: Interdisciplinary Approaches for Sustainable Development Goals: Economic Growth, Social Inclusion and Environmental Protection, edited by: Zielinski, T., Sagan, I., and Surosz, W., Springer International Publishing, Cham, 169–187, https://doi.org/10.1007/978-3-319-71788-3_12, 2018.
Heidelberg Materials Kunda AS: Heidelberg Materials Kunda AS, https://www.kunda.heidelbergmaterials.ee/et/tegevusandmed (last access: 24 February 2025), 2023.
Heinsalu, A. and Veski, S.: Palaeoecological evidence of agricultural activity and human impact on the environment at the ancient settlement centre of Keava, Estonia, Estonian Journal of Earth Sciences, 59, 80–89, https://doi.org/10.3176/earth.2010.1.06, 2010.
Hendon, D. and Charman, D. J.: The preparation of testate amoebae (Protozoa: Rhizopoda) samples from peat, The Holocene, 7, 199–205, https://doi.org/10.1177/095968369700700207, 1997.
Hendon, D., Charman, D. J., and Kent, M.: Palaeohydrological records derived from testate amoebae analysis from peatlands in northern England: within-site variability, between-site comparability and palaeoclimatic implications, The Holocene, 11, 127–148, https://doi.org/10.1191/095968301674575645, 2001.
Hölzer, A. and Hölzer, A.: Silicon and titanium in peat profiles as indicators of human impact, Holocene, 8, 685–696, https://doi.org/10.1191/095968398670694506, 1998.
Ivanov, Y. V., Kartashov, A. V., Ivanova, A. I., Ivanov, V. P., Marchenko, S. I., Nartov, D. I., and Kuznetsov, V. V.: Long-term impact of cement plant emissions on the elemental composition of both soils and pine stands and on the formation of Scots pine seeds, Environ. Pollut. 243, 1383–1393, https://doi.org/10.1016/j.envpol.2018.09.099, 2018.
Jääts, L., Konsa, M., Kihno, K., and Tomson, P.: Fire cultivation in Estonian cultural landscapes. The Space of Culture-the Place of Nature in Estonia and Beyond, Tartu University Press, Tartu, Estonia, 164–180, edited by: Peil, T., ISBN 978-9949-19-623-4, 2011.
Juggins, S.: Package “rioja”, https://cran.r-project.org/package=rioja, 2019.
Kaasik, M., Ploompuu, T., Ots, R., Meier, E., Ohvril, H., Okulov, O., Teral, H., Neiman, L., Russak, V., Kallis, A., and Post, P.: Growth acceleration of Pinus sylvestris in bog stands due to intensified nutrient input from the atmosphere, Oil Shale, 25, https://doi.org/10.3176/oil.2008.1.08, 2008.
Kang, H., Kwon, M. J., Kim, S., Lee, S., Jones, T. G., Johncock, A. C., Haraguchi, A., and Freeman, C.: Biologically driven DOC release from peatlands during recovery from acidification, Nature Communications, 9, 3807, https://doi.org/10.1038/s41467-018-06259-1, 2018.
Karofeld, E.: The effects of alkaline fly ash precipitation on the Sphagnum mosses in Niinsaare bog, NE Estonia, Suo, 47, 105–114, 1996.
Kask, R., Ots, K., Mandre, M., and Pikk, J.: Scots pine (Pinus sylvestris L.) wood properties in an alkaline air pollution environment, Trees, 22, 815–823, https://doi.org/10.1007/s00468-008-0242-7, 2008.
Katz, N. J., Katz, S. V., and Kipiani, M. G.: Atlas and keys of fruits and seeds occurring in the Quaternary deposits of the USSR, Publishing House Nauka, Moscow, 1965.
Katz, N. J., Katz, S. V., and Skobeyeva, E. I.: Atlas Rastitel'nyh Oostatkov v Torfje (Atlas of Plant Remains in Peats), Nedra, Moscow, 736 pp., 1977 (in Russian).
Keppler, F., Eiden, R., Niedan, V., Pracht, J., and Schöler, H. F.: Halocarbons produced by natural oxidation processes during degradation of organic matter, Nature, 403, 298–301, https://doi.org/10.1038/35002055, 2000.
Ketterer, M. E., Hafer, K. M., and Mietelski, J. W.: Resolving Chernobyl vs. global fallout contributions in soils from Poland using Plutonium atom ratios measured by inductively coupled plasma mass spectrometry, J. Env. Radioact., 73, 183–201, https://doi.org/10.1016/j.jenvrad.2003.09.001, 2004.
Klõšeiko, J., Ots, K., Kuznetsova, T., Pärn, H., and Mandre, M.: Short-term responses of soil chemistry, needle macronutrients and tree growth to clinker dust and fertiliser in a stand of Scots pine, Environ. Monit. Assess., 181, 83–99, https://doi.org/10.1007/s10661-010-1815-7, 2011.
Koff, T., Vandel, E., Marzecová, A., Avi, E., and Mikomägi, A.: Assessment of the effect of anthropogenic pollution on the ecology of small shallow lakes using the palaeolimnological approach, Estonian J. Earth Sci., 65, https://doi.org/10.3176/earth.2016.19, 2016.
Konings, W., Boyd, K., and Andersen, R.: Comparison of plant traits of sedges, shrubs and Sphagnum mosses between sites undergoing forest-to-bog restoration and near-natural open blanket bog: a pilot study, Mires and Peat, 23, 1–10, 2019.
Korhola, A., Tolonen, K., Turunen, J., and Jungner, H.: Estimating long-term carbon accumulation rates in boreal peatlands by radiocarbon dating, Radiocarbon, 37, 575–584, https://doi.org/10.1017/S0033822200031064, 1995.
Kuhry, P.: Transgression of a raised bog across a coversand ridge originally covered with an oak–lime forest: palaeoecological study of a middle holocene local vegetational succession in the Amtsven (Northwest Germany), Rev. Palaeobot. Palynol., 44, 303–353, https://doi.org/10.1016/0034-6667(85)90023-5, 1985.
Kuhry, P.: The palaeoecology of a treed bog in western boreal Canada: a study based on microfossils, macrofossils and physico-chemical properties, Rev. Palaeobot. Palynol, 96, 183–224, https://doi.org/10.1016/S0034-6667(96)00018-8, 1997.
Lamentowicz, M., Gałka, M., Marcisz, K., Słowiński, M., Kajukało-Drygalska, K., Dayras, M. D., and Jassey, V. E.: Unveiling tipping points in long-term ecological records from Sphagnum-dominated peatlands, Biol. Lett., 15, 20190043, https://doi.org/10.1098/rsbl.2019.0043, 2019.
Lee-Taylor, J. M. and Holland, E. A.: Litter decomposition as a potential natural source of methyl bromide, J. Geophys. Res.-Atmos., 105, 8857–8864, https://doi.org/10.1029/1999JD901112, 2000.
Lehmann, N., Lantuit, H., Böttcher, M. E., Hartmann, J., Eulenburg, A., and Thomas, H.: Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway, Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, 2023.
Leifeld, J. and Menichetti, L.: The underappreciated potential of peatlands in global climate change mitigation strategies, Nat. Commun., 9, 1071, https://doi.org/10.1038/s41467-018-03406-6, 2018.
Levy, P., van Dijk, N., Gray, A., Sutton, M., Jones, M., Leeson, S., Dise, N., Leith, I., and Sheppard, L.: Response of a peat bog vegetation community to long-term experimental addition of nitrogen, J. Ecol., 107, 1167–1186, https://doi.org/10.1111/1365-2745.13107, 2019.
Liblik, V., Rätsep, A., and Kundel, H.: Pollution sources and spreading of sulphur dioxide in the North-Eastern Estonia, Water, Air, and Soil Pollut., 85, 1903–1908, https://doi.org/10.1007/BF01186112, 1995.
Liiv, S. and Kaasik, M.: Trace metals in mosses in the Estonian oil shale processing region, J. Atmos. Chemistry, 49, 563–578, https://doi.org/10.1007/s10874-004-1266-z, 2004.
Limpens, J., Berendse, F., and Klees, H.: N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation, New Phytologist, 157, 339–347, https://doi.org/10.1046/j.1469-8137.2003.00667.x, 2003.
Liu, B., Heinemeyer, A., Marchant, R., and Mills, R. T.: Exploring optimal sampling strategy of testate amoebae as hydrological bioindicators in UK upland peatlands, J. Env. Manag., 370, 122959, https://doi.org/10.1016/j.jenvman.2024.122959, 2024.
Loisel, J. and Bunsen, M.: Abrupt fen-bog transition across southern Patagonia: Timing, causes, and impacts on carbon sequestration, Front. Ecol. Evol., 8, 273, https://doi.org/10.3389/fevo.2020.00273, 2020.
Longman, J., Veres, D., and Wennrich, V.: Utilisation of XRF core scanning on peat and other highly organic sediments, Quat. Int., 514, 85–96, https://doi.org/10.1016/j.quaint.2018.10.015, 2019.
Łuców, D., Küttim, M., Słowiński, M., Kołaczek, P., Karpińska-Kołaczek, M., Küttim, L., Salme, M., and Lamentowicz, M.: Searching for an ecological baseline: Long-term ecology of a post-extraction restored bog in Northern Estonia, Quat. Int., 607, 65–78, https://doi.org/10.1016/j.quaint.2021.08.017, 2022.
Maa-ja Rummiamet: https://xgis.maaamet.ee/xgis2/page/app/ajalooline, last access: 10 August 2025.
Madeja, J. and Latowski, D.: Too old AMS radiocarbon dates obtained from moss remains from Lake Kwiecko bottom sediments (N Poland), Geochronometria: Journal on Methods & Applications of Absolute Chronology, 32, https://doi.org/10.2478/v10003-008-0029-2, 2008.
Maimer, N., Horton, D. G., and Vitt, D. H.: Element concentrations in mosses and surface waters of western Canadian mires relative to precipitation chemistry and hydrology, Ecography, 15, 114–128, https://doi.org/10.1111/j.1600-0587.1992.tb00015.x, 1992.
Mandre, M. and Korsjukov, R.: The quality of stemwood of Pinus sylvestris in an alkalised environment, Water, air, and soil pollution, 182, 163–172, https://doi.org/10.1007/s11270-006-9329-1, 2007.
Mandre, M. and Ots, K.: Growth and biomass partitioning of 6-year-old spruces under alkaline dust impact. Water, Air, and Soil Poll., 114, 13–25, https://doi.org/10.1023/A:1005048921852, 1999.
Marcisz, K., Jassey, V. E., Kosakyan, A., Krashevska, V., Lahr, D. J., Lara, E., Lamentowicz, Ł., Lamentowicz, M., Macumber, A., Mazei, Y., and Mitchell, E. A.: Testate amoeba functional traits and their use in paleoecology, Front. Ecol. Evol., 8, 575966, https://doi.org/10.3389/fevo.2020.575966, 2020.
Mauquoy, D. and van Geel, B.: Mire and peat macros, Encyclopedia Quaternary Science, 3, 2315–2336, 2007.
Mauquoy, D., Hughes, P. D. M., and van Geel, B.: A protocol for plant macrofossil analysis of peat deposits, Mires and Peat, 7, 1–5, 2010.
Mazei, Y. and Tsyganov, A.: Freshwater testate amoebae, KMK Scientific press SBN: 5-87317-336-2, 2006 (in Russian).
Miola, A: Tools for Non-Pollen Palynomorphs (NPPs) analysis: A list of Quaternary NPP types and reference literature in English language (1972–2011), Rev. Palaeobot. Palynol., 186, 142–161, https://doi.org/10.1016/j.revpalbo.2012.06.010, 2012.
Moore, P. D., Webb, J. A., and Collinson, M. E.: Pollen Analysis, Blackwell Scientific Publications, Oxford, ISBN 0-632-02176-4, 1991.
Mróz, T., Łokas, E., Kocurek, J., and Gąsiorek, M.: Atmospheric fallout radionuclides in peatland from Southern Poland, J. Envi. Radioact., 175, 25–33 https://doi.org/10.1016/j.jenvrad.2017.04.012, 2017.
Munson, S. M., Reed, S. C., Peñuelas, J., McDowell, N. G., and Sala, O. E.: Ecosystem thresholds, tipping points, and critical transitions, New Phytologist, 218, 1315–1317, 2018.
Niinemets, E. and Saarse, L.: Holocene vegetation and land-use dynamics of south-eastern Estonia, Quat Int., 207, 104–116, https://doi.org/10.1016/j.quaint.2008.11.015, 2009.
Nilsson, M., Klarqvist, M., Bohlin, E., and Possnert, G.: Variation in 14C age of macrofossils and different fractions of minute peat samples dated by AMS, Holocene, 11, 579–586, https://doi.org/10.1191/095968301680223521, 2001.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Wagner, H., and Oksanen, M. J.: Package `vegan', Community ecology package, version, 2, 1–295, 2019.
Orme, L. C., Davies, S. J., and Duller, G. A. T.: Reconstructed centennial variability of late Holocene storminess from Cors Fochno, Wales, UK, J. Quat. Sci., 30, 478–488, https://doi.org/10.1002/jqs.2792, 2015.
Órpez, R., Martínez, M.E., Hodaifa, G., El Yousfi, F., Jbari, N., and Sánchez, S.: Growth of the microalga Botryococcus braunii in secondarily treated sewage, Desalination, 246, 625–630, https://doi.org/10.1016/j.desal.2008.07.016, 2009.
Orru, M. and Orru, H.: Sustainable Use of Estonian Peat Reserves and Environmental Challenges., 57, 87–93, https://doi.org/10.3176/earth.2008.2.04, 2008.
Osborne, C., Gilbert-Parkes, S., Spiers, G., Lamit, L. J., Lilleskov, E. A., Basiliko, N., Watmough, S., Andersen, R., Artz, R. E., Benscoter, B. W., Bragazza, L., Bräuer, S. L., Carson, M. A., Chen, X., Chimner, R. A., Clarkson, B. R., Enriquez, A. S., Grover, S. P., Harris, L. I., Hazard, C., Hribljan, J., Juutinen, S., Kane, E. S., Knorr, K.-H., Kolka, R., Laine, A. M., Larmola, T., McCalley, C. K., McLaughlin, J., Moore, T. R., Mykytczuk, N., Normand, A. E., Olefeldt, D., Rich, V., Roulet, N., Rupp, D. L., Rutherford, J., Schadt, C. W., Sonnentag, O., Tedersoo, L., Trettin, C. C., Tuittila, E.-S., Turetsky, M., Urbanová, Z., Varner, R. K., Waldrop, M. P., Wang, M., Wang, Z., Wiedermann, M. M., Williams, S. T., Yavitt, J. B., and Yu, Z.-G.: Global Patterns of Metal and Other Element Enrichment in Bog and Fen Peatlands, Arch. Environ. Contam. Toxicol., 86, 125–139, https://doi.org/10.1007/s00244-024-01051-3, 2024.
Osterkamp, T. E., Viereck, L., Shur, Y., Jorgenson, M. T., Racine, C., Doyle, A., and Boone, R. D.: Observations of thermokarst and its impact on boreal forests in Alaska, USA, Arctic, Antarctic, and Alpine Res., 32, 303–315, https://doi.org/10.1080/15230430.2000.12003368, 2000.
Ots, K. and Mandre, M.: Monitoring of heavy metals uptake and allocation in Pinus sylvestris organs in alkalised soil, Env. Monit. and Assess., 184, 4105–4117, https://doi.org/10.1007/s10661-011-2247-8, 2012.
Ots, K. and Reisner, V.: Scots pine (Pinus sylvestris L.) and its habitat in Muraka bog under the influence of wastes from the Narva power plants (North-East Estonia), Proc. Estonian Acad. Sci. Biol. Ecol, 55, 137–148, 2006.
Ots, K., Indriksons, A., Varnagiryte-Kabasinskiene, I., Mandre, M., Kuznetsova, T., Klõšeiko, J., Tilk, M., Kõresaar, K., Lukjanova, A., and Kikamägi, K.: Changes in the canopies of Pinus sylvestris and Picea abies under alkaline dust impact in the industrial region of Northeast Estonia, For. Ecol. Manage., 262, 82–87, https://doi.org/10.1016/j.foreco.2010.07.031, 2011.
Paal, J. and Degtjarenko, P.: Impact of alkaline cement-dust pollution on boreal Pinus sylvestris forest communities: a study at the bryophyte synusiae level, in: Annales Botanici Fennici, Finnish Zoological and Botanical Publishing Board, 52, 120–134, https://doi.org/10.5735/085.052.0213, 2015.
Paal, J., Vellak, K., Liira, J., and Karofeld, E.: Bog recovery in northeastern Estonia after the reduction of atmospheric pollutant input, Restor. Eco., 18, 387–400, https://doi.org/10.1111/j.1526-100X.2009.00608.x, 2010.
Paavilainen, E. and Päivänen, J.: Utilization of peatlands, in: Peatland Forestry: Ecology and Principles, 15–29, Springer Berlin Heidelberg, Berlin, Heidelberg, Springer Science & Business Media, 1995. ISBN 3540582525, 1995.
Pärtel, M., Helm, A., Ingerpuu, N., Reier, Ü., and Tuvi, E. L.: Conservation of Northern European plant diversity: the correspondence with soil pH, Biol. Conserv., 120, 525–531, https://doi.org/10.1016/j.biocon.2004.03.025, 2004.
Pärtma, M.: The recovery of bogs in NE-Estonia bogs from alkaline air pollution. Case study of Varudi, Sämi-Kurustiku and Uljaste bogs. Master Thesis, Tallinn University, 97 pp., 2023 (in Estonian with English summary).
Patterson III, W. A., Edwards, K. J., and Maguire, D. J.: Microscopic charcoal as a fossil indicator of fire, Quat. Sci. Rev., 6, 3–23, https://doi.org/10.1016/0277-3791(87)90012-6, 1987.
Payne, R. J. and Mitchell, E. A.: How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae, J. Paleolimnology, 42, 483–495, https://doi.org/10.1007/s10933-008-9299-y, 2009.
Pensa, M., Liblik, V., and Jalkanen, R.: Temporal changes in the state of a pine stand in a bog affected by air pollution in northeast Estonia, Water, Air, and Soil Poll., 159, 87–99, https://doi.org/10.1023/B:WATE.0000049191.36830.a7, 2004.
Pensa, M., Jalkanen, R., and Liblik, V.: Variation in Scots pine needle longevity and nutrient conservation in different habitats and latitudes, Canadian J. For. Res., 37, 1599–1604, https://doi.org/10.1139/X07-012, 2007.
Piotrowska, N., Blaauw, M., Mauquoy, D., and Chambers, F. M.: Constructing deposition chronologies for peat deposits using radiocarbon dating, Mires and Peat, 7, 1–14, 2011.
Poska, A.: Human impact on vegetation of coastal Estonia during the Stone Age, Doctoral Dissertation, Uppsala Universitet, Sweden, 2003.
Poska, A. and Saarse, L.: Vegetation development and introduction of agriculture to Saaremaa Island, Estonia: the human response to shore displacement, The Holocene, 12, 555–568, https://doi.org/10.1191/0959683602hl567rp, 2002.
Poska, A., Saarse, L., and Veski, S.: Reflections of pre-and early-agrarian human impact in the pollen diagrams of Estonia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 209, 37–50, https://doi.org/10.1016/j.palaeo.2003.12.024, 2004.
Raukas, A. (Ed.): Environmental Impact Assessment for the Area of Influence of Reconstructed Kunda Cement Factory, Present Situation and Prediction of Potential Changes, Tallinn, 1993.
Rawlins, A. and Morris, J.: Social and economic aspects of peatland management in Northern Europe, with particular reference to the English case, Geoderma, 154, 242–251, https://doi.org/10.1016/j.geoderma.2009.02.022, 2010.
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2023.
Reimer, P. J., Austin, W. E., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., and Grootes, P. M.: The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Roderfeld, H.: Raised bog regeneration after peat harvesting in North-West Germany, Suo, 44, 43–51, 1993.
Rodwell, J. S. (Ed.): British plant communities: Volume 2, mires and heaths (Vol. 2), Cambridge University Press, Cambridge, ISBN 9780521627207, 1998.
Roulet, N. T., Lafleur, P. M., Richard, P. J., Moore, T. R., Humphreys, E. R., and Bubier, J. I. L. L.: Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland, Glob. Change Biol., 13, 397–411, https://doi.org/10.1111/j.1365-2486.2006.01292.x, 2007.
Schindler, D. W.: Widespread effects of climatic warming on freshwater ecosystems in North America, Hydrol. Process., 11, 1043–1067, https://doi.org/10.1002/(SICI)1099-1085(19970630)11:8<1043::AID-HYP517>3.0.CO;2-5, 1997.
Seppä, H. and Bennett, K. D.: Quaternary pollen analysis: recent progress in palaeoecology and palaeoclimatology, Prog. Phys. Geogr., 27, 548–579, https://doi.org/10.1191/0309133303pp394oa, 2003.
Sheppard, L. J., Leith, I. D., Mizunuma, T., Neil Cape, J., Crossley, A., Leeson, S., Sutton, M. A., van Dijk, N., and Fowler, D.: Dry deposition of ammonia gas drives species change faster than wet deposition of ammonium ions: Evidence from a long-term field manipulation, Glob. Change Biol., 17, 3589–3607, https://doi.org/10.1111/j.1365-2486.2011.02478.x, 2011.
Shotyk, W.: Atmospheric deposition and mass balance of major and trace elements in two oceanic peat bog profiles, northern Scotland and the Shetland Islands, Chem. Geol., 138, 55–72, https://doi.org/10.1016/S0009-2541(96)00172-6, 1997.
Sibul, I., Plado, J., and Jõeleht, A.: Ground-penetrating radar and electrical resistivity tomography for mapping bedrock topography and fracture zones: a case study in Viru-Nigula, NE Estonia, Estonian J. Earth Sci., 66, 142, https://doi.org/10.3176/earth.2017.11, 2017.
Siemensma, F.: Microworld – world of amoeboid organisms, https://arcella.nl, last access: 20 October 2023.
Silva-Sánchez, N., Martínez Cortizas, A., and López-Merino, L.: Linking forest cover, soil erosion and mire hydrology to late-Holocene human activity and climate in NW Spain, The Holocene, 24, 714–725, https://doi.org/10.1177/0959683614526934, 2014.
Šímová, A., Jiroušek, M., Singh, P., Hájková, P., and Hájek, M.: Ecology of testate amoebae along an environmental gradient from bogs to calcareous fens in East-Central Europe: development of transfer functions for palaeoenvironmental reconstructions, Palaeogeogr. Palaeoclimatol. Palaeoecol., 601, 111145, https://doi.org/10.1016/j.palaeo.2022.111145, 2022.
Simpson, G. L.: Modelling palaeoecological time series using generalised additive models, Front. Ecol. Evol., 6, 149, https://doi.org/10.3389/fevo.2018.00149, 2018.
Simpson, G. L. and Oksanen, J.: analogue: Analogue matching and Modern Analogue Technique transfer function models, Statistical package, R package version 0.18.1, 2025.
Stelling, J. M., Slesak, R. A., Windmuller-Campione, M. A., and Grinde, A.: Effects of stand age, tree species, and climate on water table fluctuations and estimated evapotranspiration in managed peatland forests, J. Env. Management, 339, 117783, https://doi.org/10.1016/j.jenvman.2023.117783, 2023.
Stockmarr, J.: Tables with spores used in absolute pollen analysis, Pollen et spores, 13, 615–621, 1971.
Sutton, M. A., van Dijk, N., Levy, P. E., Jones, M. R., Leith, I. D., Sheppard, L. J., Leeson, S., Sim Tang, Y., Stephens, A., Braban, C. F., Dragosits, U., Howard, C. M., Vieno, M., Fowler, D., Corbett, P., Naikoo, M. I., Munzi, S., Ellis, C. J., Chatterjee, S., Steadman, C. E., Móring, A., and Wolseley, P. A.: Alkaline air: changing perspectives on nitrogen and air pollution in an ammonia-rich world, Philos. Trans. R. Soc. Math. Phys. Eng. Sci., 378, 20190315, https://doi.org/10.1098/rsta.2019.0315, 2020.
Swindles, G. T.: Dating recent peat profiles using spheroidal carbonaceous particles (SCPs), Mires and peat, 7, 03, 2010.
Tallis, J. H. and Birks, H. J. B.: The past and present distribution of Scheuchzeria palustris L. in Europe, J. Ecol., 53, 287–298, 1965.
Tanneberger, F., Moen, A., Barthelmes, A., Lewis, E., Miles, L., Sirin, A., Tegetmeyer, C., and Joosten, H.: Mires in Europe – Regional diversity, condition and protection, Diversity, 13, 381, https://doi.org/10.3390/d13080381, 2021.
Taranu, Z. E., Carpenter, S. R., Frossard, V., Jenny, J. P., Thomas, Z., Vermaire, J. C., and Perga, M. E.: Can we detect ecosystem critical transitions and signals of changing resilience from paleo-ecological records?, Ecosphere, 9, e02438, https://doi.org/10.1002/ecs2.2438, 2018.
Thormann, M. N., Currah, R. S., and Bayley, S. E.: Succession of microfungal assemblages in decomposing peatland plants, Plant and Soil, 250, 323–333, https://doi.org/10.1023/A:1022845604385, 2003.
Tobolski, K.: Przewodnik do oznaczania torfów i osadów jeziornych [Guide to the determination of peat and lake sediments], Vademecum Geobotanicum, T. 2, Warszawa, Wydaw. Nauk, PWN, 508 pp., 2000 (in Polish).
Trumm, U., Raju, T., and Kangur, P.: Kunda tsement – 140: tsemendi tootmise ajalugu Kundas 1870–2010, Nomine OÜ, edited by: Klein, M., Tallinn, ISBN 9789949211180, 2010 (in Estonian).
Turetsky, M. R. and St Louis, V. L.: Disturbance in boreal peatlands. In Boreal peatland ecosystems, 359–379, Berlin, Heidelberg: Springer Berlin Heidelberg, edited by: Wieder, R. K. and Vitt, D. H., ISBN 978-3-540-31912-2, 2006.
Turner, T. E., Swindles, G. T., and Roucoux, K. H.: Late Holocene ecohydrological and carbon dynamics of a UK raised bog: impact of human activity and climate change, Quat. Sci. Rev., 84, 65–85, https://doi.org/10.1016/j.quascirev.2013.10.030, 2014.
Uno, K. T., Quade, J., Fisher, D. C., Wittemyer, G., Douglas-Hamilton, I., Andanje, S., Omondi, P., Litoroh, M., and Cerling, T. E.: Bomb-curve radiocarbon measurement of recent biologic tissues and applications to wildlife forensics and stable isotope (paleo) ecology, P. Natl. Acad. Sci. USA, 110, 11736–11741, https://doi.org/10.1073/pnas.1302226110, 2013.
Vaasma, T., Kiisk, M., Meriste, T., and Tkaczyk, A. H.: The enrichment of natural radionuclides in oil shale-fired power plants in Estonia–The impact of new circulating fluidized bed technology, J. Env. Radioact., 129, 133–139, https://doi.org/10.1016/j.jenvrad.2014.01.002, 2014.
Vaasma, T., Kaasik, M., Loosaar, J., Kiisk, M., and Tkaczyk, A. H.: Long-term modelling of fly ash and radionuclide emissions as well as deposition fluxes due to the operation of large oil shale-fired power plants, J. of Env. Radioact., 178, 232–244, https://doi.org/10.1016/j.jenvrad.2017.08.017, 2017.
Vandel, E. and Vaasma, T.: Development of small lakes in Estonia: paleolimnological studies. Dynamiques environnementales, J. Int. de géosciences et de l'environnement, 42, 368–375, https://doi.org/10.4000/dynenviron.2533, 2018.
Van den Brink, P. J. and Braak, C. J. T.: Principal response curves: Analysis of time-dependent multivariate responses of biological community to stress, Env. Toxico. and Chemistry: An Int. J., 18, 138–148, https://doi.org/10.1002/etc.5620180207, 1999.
van Geel, B.: A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands, based on the analysis of pollen, spores and macro-and microscopic remains of fungi, algae, cormophytes and animals, Rev of palaeobot and palynol., 25, 1–120, https://doi.org/10.1016/0034-6667(78)90040-4, 1978.
van Geel, B. and Aptroot, A.: Fossil ascomycetes in Quaternary deposits, Nova Hedwigia, 82, 313–330, https://doi.org/10.1127/0029-5035/2006/0082-0313, 2006.
Varvas, M. and Punning, J. M.: Use of the 210Pb method in studies of the development and human-impact history of some Estonian lakes, The Holocene, 3, 34–44, https://doi.org/10.1177/095968369300300104, 1993.
Vellak, K., Liira, J., Karofeld, E., Galanina, O., Noskova, M., and Paal, J.: Drastic turnover of bryophyte vegetation on bog microforms initiated by air pollution in Northeastern Estonia and bordering Russia, Wetlands, 34, 1097–1108, https://doi.org/10.1007/s13157-014-0569-3, 2014.
Veski, S.: Vegetation history, human impact and palaeogeography of West Estonia: Pollen analytical studies of lake and bog sediments, Doctoral dissertation, Societas Upsaliensis pro geologia quaternaria Kvartärgeologiska fören, 1998.
Veski, S., Koppel, K., and Poska, A.: Integrated palaeoecological and historical data in the service of fine-resolution land use and ecological change assessment during the last 1000 years in Rõuge, southern Estonia, J. Biogeogr., 32, 1473–1488, https://doi.org/10.1111/j.1365-2699.2005.01290.x, 2005.
Wagner, K. I., Gallagher, S. K., Hayes, M., Lawrence, B. A., and Zedler, J. B.: Wetland restoration in the new millennium: do research efforts match opportunities?, Restor. Ecol., 16, 367–372, https://doi.org/10.1111/j.1526-100X.2008.00433.x, 2008.
Walvoord, M. A. and Kurylyk, B. L.: Hydrologic impacts of thawing permafrost – A review, Vadose Zone J., 15, https://doi.org/10.2136/vzj2016.01.0010, 2016.
Wardenaar, E. C. P.: A new hand tool for cutting peat profiles, Canadian J. of Botany, 65, 1772–1773, https://doi.org/10.1139/b87-243, 1987.
Warner, B. G. and Asada, T.: Biological diversity of peatlands in Canada, Aquatic Sci., 68, 240–253, https://doi.org/10.1007/s00027-006-0853-2, 2006.
Waters, C. N., Turner, S. D., Zalasiewicz, J., and Head, M. J.: Candidate sites and other reference sections for the Global boundary Stratotype Section and Point of the Anthropocene series, Anthropocene Rev., 10, https://doi.org/10.1177/20530196221136422, 2023.
Word, C. S., McLaughlin, D. L., Strahm, B. D., Stewart, R. D., Varner, J. M., Wurster, F. C., Amestoy, T. J., and Link, N. T.: Peatland drainage alters soil structure and water retention properties: Implications for ecosystem function and management, Hydrological Processes, 36, e14533, https://doi.org/10.1002/hyp.14533, 2022.
Yang, Q., Liu, Z., and Bai, E.: Comparison of carbon and nitrogen accumulation rate between bog and fen phases in a pristine peatland with the fen-bog transition, Glob. Change Biol., 29, 6350–6366, https://doi.org/10.1111/gcb.16915, 2023.
Young, D. M., Baird, A. J., Charman, D. J., Evans, C. D., Gallego-Sala, A. V., Gill, P. J., Hughes, P. D., Morris, P. J., and Swindles, G. T.: Misinterpreting carbon accumulation rates in records from near-surface peat, Sci. Rep., 9, 17939, https://doi.org/10.1038/s41598-019-53879-8, 2019.
Young, D. M., Baird, A. J., Gallego-Sala, A. V., and Loisel, J.: A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores, Sci. Rep., 11, 9547, https://doi.org/10.1038/s41598-021-88766-8, 2021.
Yu, Z., Beilman, D. W., and Jones, M. C.: Sensitivity of northern peatland carbon dynamics to Holocene climate change. Carbon cycling in northern peatlands, 184, 55–69, edited by: Baird, A. J., Belyea, L. R., Comas, X., Reeve, A. S., and Slater, L. D., https://doi.org/10.1029/2008GM000822, 2009.
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.: Global peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37, https://doi.org/10.1029/2010GL043584, 2010.
Yu, Z. C.: Northern peatland carbon stocks and dynamics: a review, Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, 2012.
Zvereva, E. L., Toivonen, E., and Kozlov, M. V.: Changes in species richness of vascular plants under the impact of air pollution: a global perspective, Glob. Ecol. and Biogeog., 17, 305–319, https://doi.org/10.1111/j.1466-8238.2007.00366.x, 2008a.
Zvereva, V. E., Zvereva, E. L., and Kozlov, M. V.: Slow growth of Empetrum nigrum in industrial barrens: Combined effect of pollution and age of extant plants, Env. Poll., 156, 454–460, https://doi.org/10.1016/j.envpol.2008.01.025, 2008b.
Short summary
The long-term effects of alkalinisation upon peatland ecosystem functioning remains poorly understood. Using palaeoecological techniques, we show that intensive cement dust pollution altered vegetation cover and reduced carbon storage in an Estonian peatland. Changes also occurred during the 13th century following agricultural intensification. These shifts occurred following substantial as well as small but sustained increases in alkalinity. Limited recovery was evident ~30 years post-pollution.
The long-term effects of alkalinisation upon peatland ecosystem functioning remains poorly...
Altmetrics
Final-revised paper
Preprint