Articles | Volume 22, issue 20
https://doi.org/10.5194/bg-22-6067-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-6067-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying the agricultural footprint on the silicon cycle: insights from silicon isotopes and Ge∕Si ratios
Institut de physique du globe de Paris, Université Paris Cité, CNRS, 75005 Paris, France
Louis Derry
Institut de physique du globe de Paris, Université Paris Cité, CNRS, 75005 Paris, France
Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
Julien Bouchez
Institut de physique du globe de Paris, Université Paris Cité, CNRS, 75005 Paris, France
Related authors
No articles found.
Yutian Ke, Damien Calmels, Julien Bouchez, Marc Massault, Benjamin Chetelat, Aurélie Noret, Hongming Cai, Jiubin Chen, Jérôme Gaillardet, and Cécile Quantin
Earth Surf. Dynam., 12, 347–365, https://doi.org/10.5194/esurf-12-347-2024, https://doi.org/10.5194/esurf-12-347-2024, 2024
Short summary
Short summary
Through a river cross-section, we show that fluvial organic carbon in the lower Huanghe has clear vertical and lateral heterogeneity in elemental and isotopic signals. Bank erosion supplies terrestrial organic carbon to the fluvial transport. Physical erosion of aged and refractory organic carbon, including radiocarbon-dead organic carbon source from the biosphere, from relatively deep soil horizons of the Chinese Loess Plateau contributes to fluvial particulate organic carbon in the Huanghe.
Yutian Ke, Damien Calmels, Julien Bouchez, and Cécile Quantin
Earth Syst. Sci. Data, 14, 4743–4755, https://doi.org/10.5194/essd-14-4743-2022, https://doi.org/10.5194/essd-14-4743-2022, 2022
Short summary
Short summary
In this paper, we introduce the largest and most comprehensive database for riverine particulate organic carbon carried by suspended particulate matter in Earth's fluvial systems: 3546 data entries for suspended particulate matter with detailed geochemical parameters are included, and special attention goes to the elemental and isotopic carbon compositions to better understand riverine particulate organic carbon and its role in the carbon cycle from regional to global scales.
Pierre Nevers, Julien Bouchez, Jérôme Gaillardet, Christophe Thomazo, Delphine Charpentier, Laëticia Faure, and Catherine Bertrand
Earth Surf. Dynam., 9, 487–504, https://doi.org/10.5194/esurf-9-487-2021, https://doi.org/10.5194/esurf-9-487-2021, 2021
Quentin Charbonnier, Julien Bouchez, Jérôme Gaillardet, and Éric Gayer
Biogeosciences, 17, 5989–6015, https://doi.org/10.5194/bg-17-5989-2020, https://doi.org/10.5194/bg-17-5989-2020, 2020
Short summary
Short summary
The abundance and isotope composition of the trace metal barium (Ba) allows us to track and quantify nutrient cycling throughout the Amazon Basin. In particular, we show that the Ba biological fingerprint evolves from that of a strong net nutrient uptake in the mountainous area of the Andes towards efficient nutrient recycling on the plains of the Lower Amazon. Our study highlights the fact that the geochemical signature of rock-derived nutrients transported by the Amazon is scarred by life.
Cited articles
Aguirre, A. A., Derry, L. A., Mills, T. J., and Anderson, S. P.: Colloidal transport in the Gordon Gulch catchment of the Boulder C reek CZO and its effect on C-Q relationships for silicon, Water Resour. Res., 53, 2368–2383, https://doi.org/10.1002/2016WR019730, 2017.
Akkal-Corfini, N., Menasseri-Aubry, S., Rieux, C., Le Naour, E., and Viaud, V.: Caractérisation des systèmes de culture du bassin versant du Coetdan (ORE AgrHys, site de Naizin), Editions INRA UMR 1069 SAS, 2014.
Ameijeiras-Mariño, Y., Opfergelt, S., Derry, L. A., Robinet, J., Govers, G., Minella, J. P. G., and Delmelle, P.: ratios point to increased contribution from deeper mineral weathering to streams after forest conversion to cropland, Appl. Geochem., 96, 24–34, https://doi.org/10.1016/j.apgeochem.2018.06.002, 2018.
Anders, A. M., Sletten, R. S., Derry, L. A., and Hallet, B.: Germanium/silicon ratios in the Copper River Basin, Alaska: Weathering and partitioning in periglacial versus glacial environments: IN GLACIAL/PERIGLACIAL ENVIRONMENTS, J. Geophys. Res.-Earth Surf., 108, https://doi.org/10.1029/2003JF000026, 2003.
Baronas, J. J., Torres, M. A., West, A. J., Rouxel, O., Georg, B., Bouchez, J., Gaillardet, J., and Hammond, D. E.: Ge and Si isotope signatures in rivers: A quantitative multi-proxy approach, Earth Planet. Sci. Lett., 503, 194–215, https://doi.org/10.1016/j.epsl.2018.09.022, 2018.
Baronas, J. J., West, A. J., Burton, K. W., Hammond, D. E., Opfergelt, S., Pogge Von Strandmann, P. A. E., James, R. H., and Rouxel, O. J.: Ge and Si Isotope Behavior During Intense Tropical Weathering and Ecosystem Cycling, Global Biogeochemical Cycles, 34, e2019GB006522, https://doi.org/10.1029/2019GB006522, 2020.
Berggren, D. and Mulder, J.: The role of organic matter in controlling aluminum solubility in acidic mineral soil horizons, Geochim. Cosmochim. Ac., 59, 4167–4180, https://doi.org/10.1016/0016-7037(95)94443-J, 1995.
Beusen, A. H. W., Bouwman, A. F., Dürr, H. H., Dekkers, A. L. M., and Hartmann, J.: Global patterns of dissolved silica export to the coastal zone: Results from a spatially explicit global model, Global Biogeochemical Cycles, 23, 2008GB003281, https://doi.org/10.1029/2008GB003281, 2009.
Blecker, S. W., King, S. L., Derry, L. A., Chadwick, O. A., Ippolito, J. A., and Kelly, E. F.: The ratio of germanium to silicon in plant phytoliths: quantification of biological discrimination under controlled experimental conditions, Biogeochemistry, 86, 189–199, https://doi.org/10.1007/s10533-007-9154-7, 2007.
Bouchez, J. and Von Blanckenburg, F.: The role of vegetation in setting strontium stable isotope ratios in the Critical Zone, Am. J. Sci., 321, 1246–1283, https://doi.org/10.2475/08.2021.04, 2021.
Bouchez, J., Gaillardet, J., France-Lanord, C., Maurice, L., and Dutra-Maia, P.: Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles, Geochem. Geophys. Geosyst., 12, 2010GC003380, https://doi.org/10.1029/2010GC003380, 2011.
Bouchez, J., Von Blanckenburg, F., and Schuessler, J. A.: Modeling novel stable isotope ratios in the weathering zone, Am. J. Sci., 313, 267–308, https://doi.org/10.2475/04.2013.01, 2013.
Cama, J. and Ganor, J.: The effects of organic acids on the dissolution of silicate minerals: A case study of oxalate catalysis of kaolinite dissolution, Geochim. Cosmochim. Ac., 70, 2191–2209, https://doi.org/10.1016/j.gca.2006.01.028, 2006.
Carey, J. C. and Fulweiler, R. W.: Human appropriation of biogenic silicon – the increasing role of agriculture, Funct. Ecol., 30, 1331–1339, https://doi.org/10.1111/1365-2435.12544, 2016.
Carlisle, E. M.: Silicon as a trace nutrient, Sci. Total Environ., 73, 95–106, https://doi.org/10.1016/0048-9697(88)90190-8, 1988.
Chadwick, O. A., Brimhall, G. H., and Hendricks, D. M.: From a black to a gray box – a mass balance interpretation of pedogenesis, Geomorphology, 3, 369–390, https://doi.org/10.1016/0169-555X(90)90012-F, 1990.
Charbonnier, Q., Bouchez, J., Gaillardet, J., and Gayer, É.: Barium stable isotopes as a fingerprint of biological cycling in the Amazon River basin, Biogeosciences, 17, 5989–6015, https://doi.org/10.5194/bg-17-5989-2020, 2020.
Charbonnier, Q., Bouchez, J., Gaillardet, J., Gayer, E., and Porder, S.: A global imbalance in potassium and barium river export: the result of biological uptake?, Geochem. Perspect. Lett., 21, 32–36, https://doi.org/10.7185/geochemlet.2214, 2022.
Clymans, W., Struyf, E., Govers, G., Vandevenne, F., and Conley, D. J.: Anthropogenic impact on amorphous silica pools in temperate soils, Biogeosciences, 8, 2281–2293, https://doi.org/10.5194/bg-8-2281-2011, 2011.
Conley, D. J., Likens, G. E., Buso, D. C., Saccone, L., Bailey, S. W., and Johnson, C. E.: Deforestation causes increased dissolved silicate losses in the Hubbard Brook Experimental Forest, Glob. Change Biol., 14, 2548–2554, https://doi.org/10.1111/j.1365-2486.2008.01667.x, 2008.
Cornelis, J.-T., Delvaux, B., Cardinal, D., André, L., Ranger, J., and Opfergelt, S.: Tracing mechanisms controlling the release of dissolved silicon in forest soil solutions using Si isotopes and ratios, Geochim. Cosmochim. Ac., 74, 3913–3924, https://doi.org/10.1016/j.gca.2010.04.056, 2010.
Cornelis, J.-T., Delvaux, B., Georg, R. B., Lucas, Y., Ranger, J., and Opfergelt, S.: Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review, Biogeosciences, 8, 89–112, https://doi.org/10.5194/bg-8-89-2011, 2011.
Datnoff, L. E., Snyder, G. H., and Korndörfer, G. H. (Eds.): Silicon in Agriculture, Studies in Plant Science, vol. 8, Elsevier, Amsterdam, ISBN 978-0-444-50487-3, 2001.
Delstanche, S., Opfergelt, S., Cardinal, D., Elsass, F., André, L., and Delvaux, B.: Silicon isotopic fractionation during adsorption of aqueous monosilicic acid onto iron oxide, Geochim. Cosmochim. Ac., 73, 923–934, https://doi.org/10.1016/j.gca.2008.11.014, 2009.
Delvigne, C., Opfergelt, S., Cardinal, D., Delvaux, B., and André, L.: Distinct silicon and germanium pathways in the soil-plant system: Evidence from banana and horsetail: DISTINCT SI AND GE PATHWAYS IN PLANTS, J. Geophys. Res.-Biogeosciences, 114, https://doi.org/10.1029/2008JG000899, 2009.
Delvigne, C., Guihou, A., Schuessler, J. A., Savage, P., Poitrasson, F., Fischer, S., Hatton, J. E., Hendry, K. R., Bayon, G., Ponzevera, E., Georg, B., Akerman, A., Pokrovsky, O. S., Meunier, J., Deschamps, P., and Basile-Doelsch, I.: Silicon Isotope Analyses of Soil and Plant Reference Materials: An Inter-Comparison of Seven Laboratories, Geostand. Geoanalytical Res., 45, 525–538, https://doi.org/10.1111/ggr.12378, 2021.
Denis, E. and Dabard, M. P.: Sandstone petrography and geochemistry of late proterozoic sediments of the armorican massif (France) – A key to basin development during the cadomian orogeny, Precambrian Research, 42, 189–206, https://doi.org/10.1016/0301-9268(88)90017-4, 1988.
Derry, L. A., Kurtz, A. C., Ziegler, K., and Chadwick, O. A.: Biological control of terrestrial silica cycling and export fluxes to watersheds, Nature, 433, 728–731, https://doi.org/10.1038/nature03299, 2005.
Dia, A., Gruau, G., Olivié-Lauquet, G., Riou, C., Molénat, J., and Curmi, P.: The distribution of rare earth elements in groundwaters: assessing the role of source-rock composition, redox changes and colloidal particles, Geochim. Cosmochim. Ac., 64, 4131–4151, https://doi.org/10.1016/S0016-7037(00)00494-4, 2000.
Ding, T. P., Ma, G. R., Shui, M. X., Wan, D. F., and Li, R. H.: Silicon isotope study on rice plants from the Zhejiang province, China, Chem. Geol., 218, 41–50, https://doi.org/10.1016/j.chemgeo.2005.01.018, 2005.
Ding, T. P., Zhou, J. X., Wan, D. F., Chen, Z. Y., Wang, C. Y., and Zhang, F.: Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon, Geochim. Cosmochim. Ac., 72, 1381–1395, https://doi.org/10.1016/j.gca.2008.01.008, 2008.
Douthitt, C. B.: The geochemistry of the stable isotopes of silicon, Geochim. Cosmochim. Ac., 46, 1449–1458, https://doi.org/10.1016/0016-7037(82)90278-2, 1982.
Drever, J. I. and Stillings, L. L.: The role of organic acids in mineral weathering, Colloids Surf. Physicochem. Eng. Asp., 120, 167–181, https://doi.org/10.1016/S0927-7757(96)03720-X, 1997.
Duchaufour, P.: Sesquioxide-rich soils, in: Pedology: Pedogenesis and Classification, Springer, Dordrecht, 373–425, https://doi.org/10.1007/978-94-011-6003-2_13, 1982.
Dürr, H. H., Meybeck, M., Hartmann, J., Laruelle, G. G., and Roubeix, V.: Global spatial distribution of natural riverine silica inputs to the coastal zone, Biogeosciences, 8, 597–620, https://doi.org/10.5194/bg-8-597-2011, 2011.
Epstein, E.: SILICON, Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 641–664, https://doi.org/10.1146/annurev.arplant.50.1.641, 1999.
Evans, M. J. and Derry, L. A.: Quartz control of high germanium/silicon ratios in geothermal waters, Geology, 30, 1019, https://doi.org/10.1130/0091-7613(2002)030<1019:QCOHGS>2.0.CO;2, 2002.
Fernandez, N. M., Zhang, X., and Druhan, J. L.: Silicon isotopic re-equilibration during amorphous silica precipitation and implications for isotopic signatures in geochemical proxies, Geochim. Cosmochim. Ac., 262, 104–127, https://doi.org/10.1016/j.gca.2019.07.029, 2019.
Fernandez, N. M., Bouchez, J., Derry, L. A., Chorover, J., Gaillardet, J., Giesbrecht, I., Fries, D., and Druhan, J. L.: Resiliency of Silica Export Signatures When Low Order Streams Are Subject to Storm Events, J. Geophys. Res.-Biogeosciences, 127, e2021JG006660, https://doi.org/10.1029/2021JG006660, 2022.
Fovet, O., Ruiz, L., Gruau, G., Akkal, N., Aquilina, L., Busnot, S., Dupas, R., Durand, P., Faucheux, M., Fauvel, Y., Fléchard, C., Gilliet, N., Grimaldi, C., Hamon, Y., Jaffrezic, A., Jeanneau, L., Labasque, T., Le Henaff, G., Mérot, P., Molénat, J., Petitjean, P., Pierson-Wickmann, A.-C., Squividant, H., Viaud, V., Walter, C., and Gascuel-Odoux, C.: AgrHyS: An Observatory of Response Times in Agro-Hydro Systems, Vadose Zone J., 17, 1–16, https://doi.org/10.2136/vzj2018.04.0066, 2018.
Frick, D. A., Remus, R., Sommer, M., Augustin, J., Kaczorek, D., and Von Blanckenburg, F.: Silicon uptake and isotope fractionation dynamics by crop species, Biogeosciences, 17, 6475–6490, https://doi.org/10.5194/bg-17-6475-2020, 2020.
Frings, P. J., Clymans, W., Fontorbe, G., De La Rocha, C. L., and Conley, D. J.: The continental Si cycle and its impact on the ocean Si isotope budget, Chemical Geology, 425, 12–36, https://doi.org/10.1016/j.chemgeo.2016.01.020, 2016.
Frings, P. J., Oelze, M., Schubring, F., Frick, D. A., and Von Blanckenburg, F.: Interpreting silicon isotopes in the Critical Zone, Am. J. Sci., 321, 1164–1203, https://doi.org/10.2475/08.2021.02, 2021a.
Frings, P. J., Schubring, F., Oelze, M., and Von Blanckenburg, F.: Quantifying biotic and abiotic Si fluxes in the Critical Zone with ratios along a gradient of erosion rates, Am. J. Sci., 321, 1204–1245, https://doi.org/10.2475/08.2021.03, 2021b.
Froelich, P. N., Blanc, V., Mortlock, R. A., Chillrud, S. N., Dunstan, W., Udomkit, A., and Peng, T. -H.: River Fluxes of Dissolved Silica to the Ocean Were Higher during Glacials: In Diatoms, Rivers, and Oceans, Paleoceanography, 7, 739–767, https://doi.org/10.1029/92PA02090, 1992.
Georg, R. B., Reynolds, B. C., Frank, M., and Halliday, A. N.: New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS, Chem. Geol., 235, 95–104, https://doi.org/10.1016/j.chemgeo.2006.06.006, 2006.
Guertin, A., Cunningham, C., Bouchez, J., Gelin, M., Chorover, J., Bauser, H., Kim, M., Troch, P., Derry, L. A., and Druhan, J. L.: Stable silicon isotope fractionation reflects the routing of water through a mesoscale hillslope, Earth Planet. Sci. Lett., 648, 119098, https://doi.org/10.1016/j.epsl.2024.119098, 2024.
Guntzer, F., Keller, C., and Meunier, J.-D.: Benefits of plant silicon for crops: a review, Agron. Sustain. Dev., 32, 201–213, https://doi.org/10.1007/s13593-011-0039-8, 2012.
Hodson, M. J., White, P. J., Mead, A., and Broadley, M. R.: Phylogenetic Variation in the Silicon Composition of Plants, Ann. Bot., 96, 1027–1046, https://doi.org/10.1093/aob/mci255, 2005.
Humbert, G., Jaffrezic, A., Fovet, O., Gruau, G., and Durand, P.: Dry-season length and runoff control annual variability in stream DOC dynamics in a small, shallow groundwater-dominated agricultural watershed, Water Resour. Res., 51, 7860–7877, https://doi.org/10.1002/2015WR017336, 2015.
Jeanroy, E.: Diagnostic des formes du fer dans les pédogénèses tempérées, Ph.D. thesis, Université de Nancy,France, 47–49, 1983.
Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., and Hofmann, A. W.: GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards, Geostand. Geoanalytical Res., 29, 333–338, https://doi.org/10.1111/j.1751-908X.2005.tb00904.x, 2005.
Jones, L. H. P. and Handreck, K. A.: Silica In Soils, Plants, and Animals, in: Advances in Agronomy, vol. 19, Elsevier, 107–149, https://doi.org/10.1016/S0065-2113(08)60734-8, 1967.
Kaiser, S., Wagner, S., Moschner, C., Funke, C., and Wiche, O.: Accumulation of germanium (Ge) in plant tissues of grasses is not solely driven by its incorporation in phytoliths, Biogeochemistry, 148, 49–68, https://doi.org/10.1007/s10533-020-00646-x, 2020.
Keller, C., Guntzer, F., Barboni, D., Labreuche, J., and Meunier, J.-D.: Impact of agriculture on the Si biogeochemical cycle: Input from phytolith studies, Comptes Rendus Geosci., 344, 739–746, https://doi.org/10.1016/j.crte.2012.10.004, 2012.
Kurtz, A. C., Derry, L. A., and Chadwick, O. A.: Germanium-silicon fractionation in the weathering environment, Geochim. Cosmochim. Ac., 66, 1525–1537, https://doi.org/10.1016/S0016-7037(01)00869-9, 2002.
Laruelle, G. G., Roubeix, V., Sferratore, A., Brodherr, B., Ciuffa, D., Conley, D. J., Dürr, H. H., Garnier, J., Lancelot, C., Le Thi Phuong, Q., Meunier, J. -D., Meybeck, M., Michalopoulos, P., Moriceau, B., Ní Longphuirt, S., Loucaides, S., Papush, L., Presti, M., Ragueneau, O., Regnier, P., Saccone, L., Slomp, C. P., Spiteri, C., and Van Cappellen, P.: Anthropogenic perturbations of the silicon cycle at the global scale: Key role of the land-ocean transition, Glob. Biogeochem. Cycles, 23, 2008GB003267, https://doi.org/10.1029/2008GB003267, 2009.
López-Urzúa, S., Luu, T.-H., and Derry, L.: Assessment of matrix effects induced by chloride, sulfate and dissolved organic carbon during Si isotope measurements by MC-ICP-MS under wet plasma conditions, J. Anal. At. Spectrom., 39, 1033–1042, https://doi.org/10.1039/D3JA00290J, 2024.
López-Urzúa, S., Derry, L., and Bouchez, J.: Hydrological and geochemical data from soils, natural waters and plants in the Kervidy-Naizin catchment, Britanny, France, Zenodo [data set], https://doi.org/10.5281/zenodo.14615156, 2025.
Lugolobi, F., Kurtz, A. C., and Derry, L. A.: Germanium–silicon fractionation in a tropical, granitic weathering environment, Geochim. Cosmochim. Ac., 74, 1294–1308, https://doi.org/10.1016/j.gca.2009.11.027, 2010.
Lupker, M., France-Lanord, C., Galy, V., Lavé, J., Gaillardet, J., Gajurel, A. P., Guilmette, C., Rahman, M., Singh, S. K., and Sinha, R.: Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin), Geochim. Cosmochim. Ac., 84, 410–432, https://doi.org/10.1016/j.gca.2012.02.001, 2012.
Lutterotti, L.: Maud: a Rietveld analysis program designed for the internet and experiment integration, Acta Crystallogr. Sect. A Found. Crystallogr., 56, s54, https://doi.org/10.1107/S0108767300021954, 2000.
Ma, J. F. and Takahashi, E.: Soil, Fertilizer, and Plant Silicon Research in Japan, Elsevier Science, Amsterdam, London, Boston, ISBN 978-0-444-51166-9, 2002.
Ma, J. F. and Yamaji, N.: Silicon uptake and accumulation in higher plants, Trends Plant Sci., 11, 392–397, https://doi.org/10.1016/j.tplants.2006.06.007, 2006.
Ma, J. F., Miyake, Y., and Takahashi, E.: Chapter 2 Silicon as a beneficial element for crop plants, in: Studies in Plant Science, vol. 8, Elsevier, 17–39, https://doi.org/10.1016/S0928-3420(01)80006-9, 2001.
Ma, J. F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., Katsuhara, M., and Yano, M.: An efflux transporter of silicon in rice, Nature, 448, 209–212, https://doi.org/10.1038/nature05964, 2007.
Malcles, O., Mazzotti, S., Vernant, P., and Godard, V.: Late Pleistocene–Holocene denudation, uplift, and morphology evolution of the Armorican Massif (western Europe), Earth Surf. Dynam., 13, 629–645, https://doi.org/10.5194/esurf-13-629-2025, 2025.
Matichenkov, V. V. and Bocharnikova, E. A.: Chapter 13 The relationship between silicon and soil physical and chemical properties, in: Studies in Plant Science, vol. 8, Elsevier, 209–219, https://doi.org/10.1016/S0928-3420(01)80017-3, 2001.
Meek, K., Derry, L., Sparks, J., and Cathles, L.: , , and ratios as tracers of solute sources and biogeochemical cycling at a temperate forested shale catchment, central Pennsylvania, USA, Chem. Geol., 445, 84–102, https://doi.org/10.1016/j.chemgeo.2016.04.026, 2016.
Méheut, M. and Schauble, E. A.: Silicon isotope fractionation in silicate minerals: Insights from first-principles models of phyllosilicates, albite and pyrope, Geochim. Cosmochim. Ac., 134, 137–154, https://doi.org/10.1016/j.gca.2014.02.014, 2014.
Méheut, M., Lazzeri, M., Balan, E., and Mauri, F.: Structural control over equilibrium silicon and oxygen isotopic fractionation: A first-principles density-functional theory study, Chem. Geol., 258, 28–37, https://doi.org/10.1016/j.chemgeo.2008.06.051, 2009.
Mehra, O. P. and Jackson, M. L.: Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate, in: Clays and Clay Minerals, Proceedings of the Seventh National Conference on Clays and Clay Minerals, Washington, D.C., 1958, edited by: Swineford, A., Elsevier, Amsterdam, 317–327, ISBN 978-0-08-009235-5, 2015.
Molenat, J., Gascuel-Odoux, C., Ruiz, L., and Gruau, G.: Role of water table dynamics on stream nitrate export and concentration in agricultural headwater catchment (France), J. Hydrol., 348, 363–378, https://doi.org/10.1016/j.jhydrol.2007.10.005, 2008.
Murnane, R. J. and Stallard, R. F.: Germanium and silicon in rivers of the Orinoco drainage basin, Nature, 344, 749–752, https://doi.org/10.1038/344749a0, 1990.
Oelze, M., Von Blanckenburg, F., Hoellen, D., Dietzel, M., and Bouchez, J.: Si stable isotope fractionation during adsorption and the competition between kinetic and equilibrium isotope fractionation: Implications for weathering systems, Chem. Geol., 380, 161–171, https://doi.org/10.1016/j.chemgeo.2014.04.027, 2014.
Opfergelt, S., Cardinal, D., Henriet, C., André, L., and Delvaux, B.: Silicon isotope fractionation between plant parts in banana: In situ vs. in vitro, J. Geochem. Explor., 88, 224–227, https://doi.org/10.1016/j.gexplo.2005.08.044, 2006.
Opfergelt, S., De Bournonville, G., Cardinal, D., André, L., Delstanche, S., and Delvaux, B.: Impact of soil weathering degree on silicon isotopic fractionation during adsorption onto iron oxides in basaltic ash soils, Cameroon, Geochim. Cosmochim. Ac., 73, 7226–7240, https://doi.org/10.1016/j.gca.2009.09.003, 2009.
Pauwels, H., Kloppmann, W., Foucher, J.-C., Martelat, A., and Fritsche, V.: Field tracer test for denitrification in a pyrite-bearing schist aquifer, Appl. Geochem., 13, 767–778, https://doi.org/10.1016/S0883-2927(98)00003-1, 1998.
Pellerin, J. and Van Vliet Lanoë, B.: Cadre géomorphologique du bassin du Coët-Dan et du Haut Evel (Morbihan): Rapport sur les travaux de cartographie et de stratigraphie, unpublished Ph.D. thesis, University of Brest, France, 1994.
Pokrovsky, O. S., Pokrovski, G. S., Schott, J., and Galy, A.: Experimental study of germanium adsorption on goethite and germanium coprecipitation with iron hydroxide: X-ray absorption fine structure and macroscopic characterization, Geochim. Cosmochim. Ac., 70, 3325–3341, https://doi.org/10.1016/j.gca.2006.04.012, 2006.
Pribyl, D. W.: A critical review of the conventional SOC to SOM conversion factor, Geoderma, 156, 75–83, https://doi.org/10.1016/j.geoderma.2010.02.003, 2010.
Rains, D. W., Epstein, E., Zasoski, R. J., and Aslam, M.: Active Silicon Uptake by Wheat, Plant Soil, 280, 223–228, https://doi.org/10.1007/s11104-005-3082-x, 2006.
Reynolds, B. C., Aggarwal, J., André, L., Baxter, D., Beucher, C., Brzezinski, M. A., Engström, E., Georg, R. B., Land, M., Leng, M. J., Opfergelt, S., Rodushkin, I., Sloane, H. J., Van Den Boorn, S. H. J. M., Vroon, P. Z., and Cardinal, D.: An inter-laboratory comparison of Si isotope reference materials, J. Anal. Spectrom., 22, 561–568, https://doi.org/10.1039/B616755A, 2007.
Riebe, C. S., Kirchner, J. W., Granger, D. E., and Finkel, R. C.: Strong tectonic and weak climatic control of long-term chemical weathering rates, Geology, 29, 511, https://doi.org/10.1130/0091-7613(2001)029<0511:STAWCC>2.0.CO;2, 2001.
Roerdink, D. L., Van Den Boorn, S. H. J. M., Geilert, S., Vroon, P. Z., and Van Bergen, M. J.: Experimental constraints on kinetic and equilibrium silicon isotope fractionation during the formation of non-biogenic chert deposits, Chem. Geol., 402, 40–51, https://doi.org/10.1016/j.chemgeo.2015.02.038, 2015.
Sarath, P. K., Mangalaa, K. R., Cardinal, D., Gurumurthy, G. P., Dapoigny, A., Sarma, V. V. S. S., and Riotte, J.: Seasonal, weathering and water use controls of silicon cycling along the river flow in two contrasting basins of South India, Chem. Geol., 604, 120883, https://doi.org/10.1016/j.chemgeo.2022.120883, 2022.
Savage, P. S., Armytage, R. M. G., Georg, R. B., and Halliday, A. N.: High temperature silicon isotope geochemistry, Lithos, 190–191, 500–519, https://doi.org/10.1016/j.lithos.2014.01.003, 2014.
Schoelynck, J., Subalusky, A. L., Struyf, E., Dutton, C. L., Unzué-Belmonte, D., Van De Vijver, B., Post, D. M., Rosi, E. J., Meire, P., and Frings, P.: Hippos (Hippopotamus amphibius): The animal silicon pump, Sci. Adv., 5, eaav0395, https://doi.org/10.1126/sciadv.aav0395, 2019.
Schuessler, J. A., Von Blanckenburg, F., Bouchez, J., Uhlig, D., and Hewawasam, T.: Nutrient cycling in a tropical montane rainforest under a supply-limited weathering regime traced by elemental mass balances and Mg stable isotopes, Chem. Geol., 497, 74–87, https://doi.org/10.1016/j.chemgeo.2018.08.024, 2018.
Scribner, A. M., Kurtz, A. C., and Chadwick, O. A.: Germanium sequestration by soil: Targeting the roles of secondary clays and Fe-oxyhydroxides, Earth Planet. Sci. Lett., 243, 760–770, https://doi.org/10.1016/j.epsl.2006.01.051, 2006.
Sparks, J. P., Chandra, S., Derry, L. A., Parthasarathy, M. V., Daugherty, C. S., and Griffin, R.: Subcellular localization of silicon and germanium in grass root and leaf tissues by SIMS: evidence for differential and active transport, Biogeochemistry, 104, 237–249, https://doi.org/10.1007/s10533-010-9498-2, 2011.
Stamm, F. M., Zambardi, T., Chmeleff, J., Schott, J., Von Blanckenburg, F., and Oelkers, E. H.: The experimental determination of equilibrium Si isotope fractionation factors among H4SiO4o, H3SiO4− and amorphous silica (SiO2⋅0.32 H2O) at 25 and 75 °C using the three-isotope method, Geochim. Cosmochim. Ac., 255, 49–68, https://doi.org/10.1016/j.gca.2019.03.035, 2019.
Steinhoefel, G., Breuer, J., Von Blanckenburg, F., Horn, I., and Sommer, M.: The dynamics of Si cycling during weathering in two small catchments in the Black Forest (Germany) traced by Si isotopes, Chem. Geol., 466, 389–402, https://doi.org/10.1016/j.chemgeo.2017.06.026, 2017.
Strömberg, C. A. E., Di Stilio, V. S., and Song, Z.: Functions of phytoliths in vascular plants: an evolutionary perspective, Funct. Ecol., 30, 1286–1297, https://doi.org/10.1111/1365-2435.12692, 2016.
Struyf, E., Smis, A., Van Damme, S., Garnier, J., Govers, G., Van Wesemael, B., Conley, D. J., Batelaan, O., Frot, E., Clymans, W., Vandevenne, F., Lancelot, C., Goos, P., and Meire, P.: Historical land use change has lowered terrestrial silica mobilization, Nat. Commun., 1, 129, https://doi.org/10.1038/ncomms1128, 2010.
Sun, Y., Wu, L., Li, X., Sun, L., Gao, J., Ding, T., and Zhu, Y.: Silicon Isotope Fractionation in Maize and its Biogeochemical Significance, Anal. Lett., 50, 2475–2490, https://doi.org/10.1080/00032719.2017.1295460, 2017.
Tamm, O.: Um bestämning ow de organiska komponenterna i markens gelkomplex, Meddelanden Fran Statens Skogsförsöksanstalt, 19, 385–404, 1932.
Thomas, E., Le Berre, P., Foucaud-Lemercier, B., Le Bris, A. L., Carn-Dheilley, A., and Naas, P.: Notice explicative de la feuille Josselin à , BRGM Éditions, Service Géologique National, 2009.
Tréguer, P. J., Sutton, J. N., Brzezinski, M., Charette, M. A., Devries, T., Dutkiewicz, S., Ehlert, C., Hawkings, J., Leynaert, A., Liu, S. M., Llopis Monferrer, N., López-Acosta, M., Maldonado, M., Rahman, S., Ran, L., and Rouxel, O.: Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean, Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, 2021.
Trembath-Reichert, E., Wilson, J. P., McGlynn, S. E., and Fischer, W. W.: Four hundred million years of silica biomineralization in land plants, P. Natl. Acad. Sci. USA, 112, 5449–5454, https://doi.org/10.1073/pnas.1500289112, 2015.
Uhlig, D., Schuessler, J. A., Bouchez, J., Dixon, J. L., and Von Blanckenburg, F.: Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes, Biogeosciences, 14, 3111–3128, https://doi.org/10.5194/bg-14-3111-2017, 2017.
U.S. Geological Survey: Centrifuge extraction method, in: Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory, U.S. Geological Survey Open File Report 01-041, https://pubs.usgs.gov/of/2001/of01-041/htmldocs/methods/centrifu.htm (last access: 29 December 2024), 2001.
Vandevenne, F., Struyf, E., Clymans, W., and Meire, P.: Agricultural silica harvest: have humans created a new loop in the global silica cycle?, Front. Ecol. Environ., 10, 243–248, https://doi.org/10.1890/110046, 2012.
Vandevenne, F. I., Barão, A. L., Schoelynck, J., Smis, A., Ryken, N., Van Damme, S., Meire, P., and Struyf, E.: Grazers: biocatalysts of terrestrial silica cycling, Proc. R. Soc. B., 280, 20132083, https://doi.org/10.1098/rspb.2013.2083, 2013.
Vandevenne, F. I., Delvaux, C., Hughes, H. J., André, L., Ronchi, B., Clymans, W., Barão, L., Cornelis, J.-T., Govers, G., Meire, P., and Struyf, E.: Landscape cultivation alters δ30Si signature in terrestrial ecosystems, Sci. Rep., 5, 7732, https://doi.org/10.1038/srep07732, 2015.
Van Vliet-Lanoë, B., Laurent, M., Hallégouet, B., Margerel, J. P., Chauvel, J. J., Michel, Y., Moguedet, G., Trautman, F., and Vauthier, S.: Le mio-pliocène du massif armoricain. Données nouvelles, C.R. Acad. Sci. Paris, Sciences de la Terre et des Planètes, 326, 333–340, 1998.
Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geosci. Front. [software], 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
Vongvixay, A., Grimaldi, C., Dupas, R., Fovet, O., Birgand, F., Gilliet, N., and Gascuel-Odoux, C.: Contrasting suspended sediment export in two small agricultural catchments: Cross-influence of hydrological behaviour and landscape degradation or stream bank management, Land Degrad. Dev., 29, 1385–1396, https://doi.org/10.1002/ldr.2940, 2018.
Walter, C. and Curmi, P.: Les sols du bassin versant du Coet-Dan: Organisation, variabilité spatiale et cartographie, in: Agriculture intensive et qualité des eaux, edited by: Cheverry, C., INRA Editions, La Géraudière, France, 85–108, ISBN 2-7380-0801-1, 1998.
Wieland, E. and Stumm, W.: Dissolution kinetics of kaolinite in acidic aqueous solutions at 25 °C, Geochim. Cosmochim. Ac., 56, 3339–3355, https://doi.org/10.1016/0016-7037(92)90382-S, 1992.
Yool, A. and Tyrrell, T.: Role of diatoms in regulating the ocean's silicon cycle, Glob. Biogeochem. Cycles, 17, https://doi.org/10.1029/2002GB002018, 2003.
Ziegler, K., Chadwick, O. A., Brzezinski, M. A., and Kelly, E. F.: Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands, Geochim. Cosmochim. Ac., 69, 4597–4610, https://doi.org/10.1016/j.gca.2005.05.008, 2005a.
Ziegler, K., Chadwick, O. A., White, A. F., and Brzezinski, M. A.: δ30Si systematics in a granitic saprolite, Puerto Rico, Geology, 33, 817, https://doi.org/10.1130/G21707.1, 2005b.
Short summary
Silicon (Si) is essential for ecosystem health and Earth's climate, yet human activities such as agriculture have significantly disrupted its natural cycle. In a French agricultural catchment, we found that crop harvesting removes most of the Si released from rocks – 1 to 4 times more than the dissolved Si transport downstream by rivers. Using geochemical tools, including Si isotopes and germanium-silicon ratio, we traced Si cycling and highlighted the impact of agriculture on Si exports.
Silicon (Si) is essential for ecosystem health and Earth's climate, yet human activities such as...
Altmetrics
Final-revised paper
Preprint