Articles | Volume 22, issue 20
https://doi.org/10.5194/bg-22-6097-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-6097-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil signals of key mechanisms driving greater protection of organic carbon under aspen compared to spruce forests in a North American montane ecosystem
Lena Wang
College of Earth Ocean and Atmospheric Science, Oregon State University, 101 SW 26th St, Corvallis, OR 97331, USA
Sharon A. Billings
Department of Ecology and Evolutionary Biology and Kansas Biological Survey & Center for Ecological Research, University of Kansas, 2101 Constant Ave., Lawrence, KS 66047, USA
Department of Civil and Environmental Engineering, Pennsylvania State University, 212 Sackett, University Park, PA 16802, USA
Daniel R. Hirmas
Department of Plant and Soil Science, Texas Tech University, 2500 Broadway Lubbock, TX 7940, USA
Keira Johnson
College of Earth Ocean and Atmospheric Science, Oregon State University, 101 SW 26th St, Corvallis, OR 97331, USA
Devon Kerins
Department of Civil and Environmental Engineering, Pennsylvania State University, 212 Sackett, University Park, PA 16802, USA
Julio Pachon
Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
Curtis Beutler
Lawrence Berkeley National Laboratory, Berkeley CA, 1 Cyclotron Road, Berkeley, CA 94720, USA
Department of Environmental Sciences, University of California Riverside, 2460B Geology Building, Riverside, CA 92521, USA
Karla M. Jarecke
College of Earth Ocean and Atmospheric Science, Oregon State University, 101 SW 26th St, Corvallis, OR 97331, USA
Vaishnavi Varikuti
Department of Plant and Soil Science, Texas Tech University, 2500 Broadway Lubbock, TX 7940, USA
Micah Unruh
Department of Ecology and Evolutionary Biology and Kansas Biological Survey & Center for Ecological Research, University of Kansas, 2101 Constant Ave., Lawrence, KS 66047, USA
Hoori Ajami
Rocky Mountain Biological Laboratory, Gothic 8000 Co Rd 317, Crested Butte, CO 81224, USA
Holly Barnard
Department of Geography, Institute of Arctic and Alpine Research, University of Colorado – Boulder, Guggenheim 110, 260 UCB, Boulder, CO 80309-0260, USA
Alejandro N. Flores
Department of Geosciences, Boise State University, 1295 University Drive, Boise, ID 83706, USA
Kenneth Williams
Lawrence Berkeley National Laboratory, Berkeley CA, 1 Cyclotron Road, Berkeley, CA 94720, USA
Department of Environmental Sciences, University of California Riverside, 2460B Geology Building, Riverside, CA 92521, USA
Pamela L. Sullivan
CORRESPONDING AUTHOR
College of Earth Ocean and Atmospheric Science, Oregon State University, 101 SW 26th St, Corvallis, OR 97331, USA
Related authors
No articles found.
Kachinga Silwimba, Alejandro N. Flores, Irene Cionni, Sharon A. Billings, Pamela L. Sullivan, Hoori Ajami, Daniel R. Hirmas, and Li Li
Geosci. Model Dev., 18, 7707–7734, https://doi.org/10.5194/gmd-18-7707-2025, https://doi.org/10.5194/gmd-18-7707-2025, 2025
Short summary
Short summary
Land models need reliable soil properties to simulate water, but these settings are uncertain. We analyzed Community Land Model version 5 simulations for the United States from 1980 to 2010 to see how different soil settings shape patterns of soil moisture. Compared with an independent global land dataset, patterns align in many regions but differ in water-limited areas such as the Great Plains. Our maps show where to improve settings and guide future tests with observations.
Rainey Aberle, Ellyn Enderlin, Shad O'Neel, Caitlyn Florentine, Louis Sass, Adam Dickson, Hans-Peter Marshall, and Alejandro Flores
The Cryosphere, 19, 1675–1693, https://doi.org/10.5194/tc-19-1675-2025, https://doi.org/10.5194/tc-19-1675-2025, 2025
Short summary
Short summary
Tracking seasonal snow on glaciers is critical for understanding glacier health. Yet previous work has not directly compared machine learning algorithms for snow classification across satellite image products. To address this, we developed a new automated workflow for tracking seasonal snow on glaciers using several image products and machine learning models. Applying this method can help provide insights into glacier health, water resources, and the effects of climate change on snow cover.
James Stegen, Amy J. Burgin, Michelle H. Busch, Joshua B. Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian M. Deines, Julia A. Guimond, Peter Regier, Kenton Rod, Edward K. P. Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin L. Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon N. Sweetman, Jianqiu Zheng, Daniel C. Allen, Elizabeth Herndon, Beth A. Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad F. Patel
Biogeosciences, 22, 995–1034, https://doi.org/10.5194/bg-22-995-2025, https://doi.org/10.5194/bg-22-995-2025, 2025
Short summary
Short summary
The loss and gain of surface water (variable inundation) are common processes across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review the literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Max Berkelhammer, Gerald F. M. Page, Frank Zurek, Christopher Still, Mariah S. Carbone, William Talavera, Laura Hildebrand, James Byron, Kyle Inthabandith, Angellica Kucinski, Melissa Carlson, Kelsey Foss, Wendy Brown, Rosemary W. H. Carroll, Austin Simonpietri, Marshall Worsham, Ian Breckheimer, Anna Ryken, Reed Maxwell, David Gochis, Mark S. Raleigh, Eric Small, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 29, 701–718, https://doi.org/10.5194/hess-29-701-2025, https://doi.org/10.5194/hess-29-701-2025, 2025
Short summary
Short summary
Warming in montane systems is affecting the snowmelt input amount. At the global scale, this will impact subalpine forests that rely on spring snowmelt to support their water demands. We use a network of sensors across a hillslope in the Upper Colorado Basin to show that the changing spring snowpack has a more pronounced impact on dense forest stands, while open stands show a higher reliance on summer rain and are less sensitive to significant changes in snow.
Zewei Ma, Kaiyu Guan, Bin Peng, Wang Zhou, Robert Grant, Jinyun Tang, Murugesu Sivapalan, Ming Pan, Li Li, and Zhenong Jin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-340, https://doi.org/10.5194/hess-2024-340, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We explore tile drainage’ impacts on the integrated hydrology-biogeochemistry-plant system, using ecosys with soil oxygen and microbe dynamics. We found that tile drainage lowers soil water content and improves soil oxygen levels, which helps crops grow better, especially during wet springs, and the developed root system also helps mitigate drought stress on dry summers. Overall, tile drainage increases crop resilience to climate change, making it a valuable future agricultural practice.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Matthias Sprenger, Rosemary W. H. Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 28, 1711–1723, https://doi.org/10.5194/hess-28-1711-2024, https://doi.org/10.5194/hess-28-1711-2024, 2024
Short summary
Short summary
Stable isotopes of water (described as d-excess) in mountain snowpack can be used to infer proportions of high-elevation snowmelt in stream water. In a Colorado River headwater catchment, nearly half of the water during peak streamflow is derived from melted snow at elevations greater than 3200 m. High-elevation snowpack contributions were higher for years with lower snowpack and warmer spring temperatures. Thus, we suggest that d-excess could serve to assess high-elevation snowpack changes.
Gary Sterle, Julia Perdrial, Dustin W. Kincaid, Kristen L. Underwood, Donna M. Rizzo, Ijaz Ul Haq, Li Li, Byung Suk Lee, Thomas Adler, Hang Wen, Helena Middleton, and Adrian A. Harpold
Hydrol. Earth Syst. Sci., 28, 611–630, https://doi.org/10.5194/hess-28-611-2024, https://doi.org/10.5194/hess-28-611-2024, 2024
Short summary
Short summary
We develop stream water chemistry to pair with the existing CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) dataset. The newly developed dataset, termed CAMELS-Chem, includes common stream water chemistry constituents and wet deposition chemistry in 516 catchments. Examples show the value of CAMELS-Chem to trend and spatial analyses, as well as its limitations in sampling length and consistency.
Chao Wang, Stephen Leisz, Li Li, Xiaoying Shi, Jiafu Mao, Yi Zheng, and Anping Chen
Earth Syst. Dynam., 15, 75–90, https://doi.org/10.5194/esd-15-75-2024, https://doi.org/10.5194/esd-15-75-2024, 2024
Short summary
Short summary
Climate change can significantly impact river runoff; however, predicting future runoff is challenging. Using historical runoff gauge data to evaluate model performances in runoff simulations for the Mekong River, we quantify future runoff changes in the Mekong River with the best simulation combination. Results suggest a significant increase in the annual runoff, along with varied seasonal distributions, thus heightening the need for adapted water resource management measures.
William Rudisill, Alejandro Flores, and Rosemary Carroll
Geosci. Model Dev., 16, 6531–6552, https://doi.org/10.5194/gmd-16-6531-2023, https://doi.org/10.5194/gmd-16-6531-2023, 2023
Short summary
Short summary
It is important to know how well atmospheric models do in mountains, but there are not very many weather stations. We evaluate rain and snow from a model from 1987–2020 in the Upper Colorado River basin against the available data. The model works rather well, but there are still some uncertainties in remote locations. We then use snow maps collected by aircraft, streamflow measurements, and some advanced statistics to help identify how well the model works in ways we could not do before.
Adam P. Schreiner-McGraw and Hoori Ajami
Hydrol. Earth Syst. Sci., 26, 1145–1164, https://doi.org/10.5194/hess-26-1145-2022, https://doi.org/10.5194/hess-26-1145-2022, 2022
Short summary
Short summary
We assess the impact of uncertainty in measurements of precipitation and air temperature on simulated groundwater processes in a mountainous watershed. We illustrate the role of topography in controlling how uncertainty in the input datasets propagates through the soil and into the groundwater. While the focus of previous investigations has been on the impact of precipitation uncertainty, we show that air temperature uncertainty is equally important in controlling the groundwater recharge.
Haruko M. Wainwright, Sebastian Uhlemann, Maya Franklin, Nicola Falco, Nicholas J. Bouskill, Michelle E. Newcomer, Baptiste Dafflon, Erica R. Siirila-Woodburn, Burke J. Minsley, Kenneth H. Williams, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 26, 429–444, https://doi.org/10.5194/hess-26-429-2022, https://doi.org/10.5194/hess-26-429-2022, 2022
Short summary
Short summary
This paper has developed a tractable approach for characterizing watershed heterogeneity and its relationship with key functions such as ecosystem sensitivity to droughts and nitrogen export. We have applied clustering methods to classify hillslopes into
watershed zonesthat have distinct distributions of bedrock-to-canopy properties as well as key functions. This is a powerful approach for guiding watershed experiments and sampling as well as informing hydrological and biogeochemical models.
Wei Zhi, Yuning Shi, Hang Wen, Leila Saberi, Gene-Hua Crystal Ng, Kayalvizhi Sadayappan, Devon Kerins, Bryn Stewart, and Li Li
Geosci. Model Dev., 15, 315–333, https://doi.org/10.5194/gmd-15-315-2022, https://doi.org/10.5194/gmd-15-315-2022, 2022
Short summary
Short summary
Watersheds are the fundamental Earth surface functioning unit that connects the land to aquatic systems. Here we present the recently developed BioRT-Flux-PIHM v1.0, a watershed-scale biogeochemical reactive transport model, to improve our ability to understand and predict solute export and water quality. The model has been verified against the benchmark code CrunchTope and has recently been applied to understand reactive transport processes in multiple watersheds of different conditions.
Frances A. Podrebarac, Sharon A. Billings, Kate A. Edwards, Jérôme Laganière, Matthew J. Norwood, and Susan E. Ziegler
Biogeosciences, 18, 4755–4772, https://doi.org/10.5194/bg-18-4755-2021, https://doi.org/10.5194/bg-18-4755-2021, 2021
Short summary
Short summary
Soil respiration is a large and temperature-responsive flux in the global carbon cycle. We found increases in microbial use of easy to degrade substrates enhanced the temperature response of respiration in soils layered as they are in situ. This enhanced response is consistent with soil composition differences in warm relative to cold climate forests. These results highlight the importance of the intact nature of soils rarely studied in regulating responses of CO2 fluxes to changing temperature.
William R. Wieder, Derek Pierson, Stevan Earl, Kate Lajtha, Sara G. Baer, Ford Ballantyne, Asmeret Asefaw Berhe, Sharon A. Billings, Laurel M. Brigham, Stephany S. Chacon, Jennifer Fraterrigo, Serita D. Frey, Katerina Georgiou, Marie-Anne de Graaff, A. Stuart Grandy, Melannie D. Hartman, Sarah E. Hobbie, Chris Johnson, Jason Kaye, Emily Kyker-Snowman, Marcy E. Litvak, Michelle C. Mack, Avni Malhotra, Jessica A. M. Moore, Knute Nadelhoffer, Craig Rasmussen, Whendee L. Silver, Benjamin N. Sulman, Xanthe Walker, and Samantha Weintraub
Earth Syst. Sci. Data, 13, 1843–1854, https://doi.org/10.5194/essd-13-1843-2021, https://doi.org/10.5194/essd-13-1843-2021, 2021
Short summary
Short summary
Data collected from research networks present opportunities to test theories and develop models about factors responsible for the long-term persistence and vulnerability of soil organic matter (SOM). Here we present the SOils DAta Harmonization database (SoDaH), a flexible database designed to harmonize diverse SOM datasets from multiple research networks.
Karun Pandit, Hamid Dashti, Andrew T. Hudak, Nancy F. Glenn, Alejandro N. Flores, and Douglas J. Shinneman
Biogeosciences, 18, 2027–2045, https://doi.org/10.5194/bg-18-2027-2021, https://doi.org/10.5194/bg-18-2027-2021, 2021
Short summary
Short summary
A dynamic global vegetation model, Ecosystem Demography (EDv2.2), is used to understand spatiotemporal dynamics of a semi-arid shrub ecosystem under alternative fire regimes. Multi-decadal point simulations suggest shrub dominance for a non-fire scenario and a contrasting phase of shrub and C3 grass growth for a fire scenario. Regional gross primary productivity (GPP) simulations indicate moderate agreement with MODIS GPP and a GPP reduction in fire-affected areas before showing some recovery.
Hang Wen, Pamela L. Sullivan, Gwendolyn L. Macpherson, Sharon A. Billings, and Li Li
Biogeosciences, 18, 55–75, https://doi.org/10.5194/bg-18-55-2021, https://doi.org/10.5194/bg-18-55-2021, 2021
Short summary
Short summary
Carbonate weathering is essential in regulating carbon cycle at the century timescale. Plant roots accelerate weathering by elevating soil CO2 via respiration. It however remains poorly understood how and how much rooting characteristics modify flow paths and weathering. This work indicates that deepening roots in woodlands can enhance carbonate weathering by promoting recharge and CO2–carbonate contact in the deep, carbonate-abundant subsurface.
Cited articles
Alexander, R. R.: Ecology, silviculture, and management of the Engelmann spruce–subalpine fir type in the central and southern Rocky Mountains (No. 659), U. S. Dep. Agric. For. Serv., 1987.
Allison, S. D.: Modeling adaptation of carbon use efficiency in microbial communities, Front. Microbiol., 5, 571, https://doi.org/10.3389/fmicb.2014.00571, 2014.
Alvarez-Cobelas, M., Angeler, D. G., Sánchez-Carrillo, S., and Almendros, G.: A worldwide view of organic carbon export from catchments, Biogeochemistry, 107, 275–293, https://doi.org/10.1007/s10533-010-9553-z, 2012.
Amézketa, E.: Soil aggregate stability: a review, J. Sustain. Agr., 14, 83–151, https://doi.org/10.1300/J064v14n02_08, 1999.
Anderegg, L. D., Anderegg, W. R., Abatzoglou, J., Hausladen, A. M., and Berry, J. A.: Drought characteristics' role in widespread aspen forest mortality across Colorado, USA, Glob. Change Biol., 19, 1526–1537, https://doi.org/10.1111/gcb.12146, 2013.
Andrus, R. A., Hart, S. J., Tutland, N., and Veblen, T. T.: Future dominance by quaking aspen expected following short-interval, compounded disturbance interaction, Ecosphere, 12, e03345, https://doi.org/10.1002/ecs2.3345, 2021.
Angers, D. A. and Caron, J.: Plant-induced changes in soil structure: processes and feedbacks, Biogeochemistry, 42, 55–72, https://doi.org/10.1023/A:1005944025343, 1998.
Araya, S. N. and Ghezzehei, T. A.: Using machine learning for prediction of saturated hydraulic conductivity and its sensitivity to soil structural perturbations, Water Resour. Res., 55, 5715–5737, https://doi.org/10.1029/2018WR024357, 2019.
Attou, F., Bruand, A., and Le Bissonnais, Y.: Effect of clay content and silt–clay fabric on stability of artificial aggregates, Eur. J. Soil Sci., 49, 569–577, https://doi.org/10.1046/j.1365-2389.1998.4940569.x, 1998.
Bartlett, R. J., and Ross, D. S.: Colorimetric determination of oxidizable carbon in acid soil solutions, Soil Science Society of America Journal, 52, 1191–1192, https://doi.org/10.2136/sssaj1988.03615995005200040055x, 1988.
Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., Dai, B., Grothendieck, G., Green, P., and Bolker, M. B.: Package `lme4’. convergence, 12, 2, https://cran.r-project.org/web/packages/lme4/lme4.pdf (last access: 20 June 2025), 2015.
Belay-Tedla, A., Zhou, X., Su, B., Wan, S.,and Luo, Y.: Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping, Soil Biol. Biochem., 41, 110–116, https://doi.org/10.1016/j.soilbio.2008.10.003, 2009.
Billings, S. A. and Richter, D. D.: Changes in stable isotopic signatures of soil nitrogen and carbon during forty years of forest development, Oecologia, 148, 325–333, https://doi.org/10.1007/s00442-006-0366-7, 2006.
Billings, S. A., Hirmas, D., Sullivan, P. L., Lehmeier, C. A., Bagchi, S., Min, K., Brecheisen, Z., Hauser, E., Stair, R., Flournoy, R., and deB Richter, D.: Loss of deep roots limits biogenic agents of soil development that are only partially restored by decades of forest regeneration, Elem. Sci. Anth., 6, 34, https://doi.org/10.1525/elementa.287, 2018.
Billings, S. A., Lajtha, K., Malhotra, A., Berhe, A. A., de Graaff, M.-A., Earl, S., Fraterrigo, J., Georgiou, K., Grandy, S., Hobbie, S. E., Moore, J. A. M., Nadelhoffer, K., Pierson, D., Rasmussen, C., Silver, W. L., Sulman, B. N., Weintraub, S., and Wieder, W.: Soil organic carbon is not just for soil scientists: Measurement recommendations for diverse practitioners, Ecol. Appl., 31, https://doi.org/10.1002/eap.2290, 2021.
Blanco-Canqui, H., and Lal, R.: Mechanisms of carbon sequestration in soil aggregates. Critical reviews in plant sciences, 23, 481–504, https://doi.org/10.1080/07352680490886842, 2004.
Boča, A., Jacobson, A. R., and Van Miegroet, H.: Aspen soils retain more dissolved organic carbon than conifer soils in a sorption experiment, Front. For. Glob. Change, 3, 594473, https://doi.org/10.3389/ffgc.2020.594473, 2020.
Brewen, C. J., Berrill, J. P., Ritchie, M. W., Boston, K., Dagley, C. M., Jones, B., Coppoletta, M., and Burnett, C. L.: 76-year decline and recovery of aspen mediated by contrasting fire regimes: Long-unburned, infrequent and frequent mixed-severity wildfire, PLOS ONE, 16, e0232995, https://doi.org/10.1371/journal.pone.0232995, 2021.
Bronick, C. J. and Lal, R.: Soil structure and management: a review, Geoderma, 124, 3–22, https://doi.org/10.1016/j.geoderma.2004.03.005, 2005.
Brookes, P. C., Landman, A., Pruden, G., and Jenkinson, D. S.: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil, Soil Biol. Biochem, 17, 837–842, 1985.
Buck, J. R. and St. Clair, S. B.: Aspen increase soil moisture, nutrients, organic matter and respiration in Rocky Mountain forest communities, PLoS One, 7, e52369, https://doi.org/10.1371/journal.pone.0052369, 2012.
Buckeridge, K. M., Creamer, C., and Whitaker, J.: Deconstructing the microbial necromass continuum to inform soil carbon sequestration, Funct. Ecol., 36, 1396–1410, https://doi.org/10.1111/1365-2435.14014, 2022.
Burnett, B. N., Meyer, G. A., and McFadden, L. D.: Aspect-related microclimatic influences on slope forms and processes, northeastern Arizona, J. Geophys. Res., 113, F03002, https://doi.org/10.1029/2007JF000789, 2008.
Canelles, Q., Aquilué, N., James, P. M. A., Lawler, J., and Brotons, L.: Global review on interactions between insect pests and other forest disturbances, Landsc. Ecol., 36, 945–972, https://doi.org/10.1007/s10980-021-01209-7, 2021.
Carroll, R. W., Bearup, L. A., Brown, W., Dong, W., Bill, M., and Willlams, K. H.: Factors controlling seasonal groundwater and solute flux from snow‐dominated basins, Hydrological Processes, 32, 21870–2202, https://doi.org/10.1002/hyp.13151, 2008.
Chorover, J., Kretzschmar, R., Garcia-Pichel, F., and Sparks, D. L.: Soil biogeochemical processes within the critical zone, Elements, 3, 321–326, https://doi.org/10.2113/gselements.3.5.321, 2007.
Cincotta, M. M., Perdrial, J. N., Shavitz, A., Libenson, A., Landsman-Gerjoi, M., Perdrial, N., Armfield, J., Adler, T., and Shanley, J. B.: Soil aggregates as a source of dissolved organic carbon to streams: an experimental study on the effect of solution chemistry on water extractable carbon, Front. Environ. Sci., 172, https://doi.org/10.3389/fenvs.2019.00172, 2019.
Coop, J. D., Barker, K. J., Knight, A. D., and Pecharich, J. S.: Aspen (Populus tremuloides) stand dynamics and understory plant community changes over 46 years near Crested Butte, Colorado, USA, Forest Ecol. Manag., 318, 1 12, https://doi.org/10.1016/j.foreco.2014.01.019, 2014.
Cory, R. M., Harrold, K. H., Neilson, B. T., and Kling, G. W.: Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation, Biogeosciences, 12, 6669–6685, https://doi.org/10.5194/bg-12-6669-2015, 2015.
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E.: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?, Glob. Change Biol., 19, 988–995, https://doi.org/10.1111/gcb.12113, 2013.
Cotrufo, M. F., Soong, J. L., Horton, A. J., Campbell, E. E., Haddix, M. L., Wall, D. H., and Parton, W. J.: Formation of soil organic matter via biochemical and physical pathways of litter mass loss, Nat. Geosci., 8, 776–779, https://doi.org/10.1038/ngeo2520, 2015.
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E.: Soil carbon storage informed by particulate and mineral-associated organic matter, Nat. Geosci., 12, 989–994, https://doi.org/10.1038/s41561-019-0484-6, 2019.
Culman, S.: Calculating Cation Exchange Capacity, Base Saturation, and Calcium Saturation, Ohioline, https://ohioline.osu.edu/factsheet/anr-81 (last access: 20 June 2025), 2019.
DeForest, J. L.: The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA, Soil Biol. Biochem., 41, 1180–1186, https://doi.org/10.1016/j.soilbio.2009.02.029, 2009.
Dickson, E. L., Rasiah, V., and Groenevelt, P. H.: Comparison of four prewetting techniques in wet aggregate stability determination, Can. J. Soil Sci., 71, 67–72, https://doi.org/10.4141/cjss91-006, 1991.
Dohnalkova, A. C., Tfaily, M. M., Chu, R. K., Smith, A. P., Brislawn, C. J., Varga, T., Crump, A. R., Kovarik, L., Thomashow, L. S., Harsh, J. B., and Keller, C. K.: Effects of Microbial-Mineral Interactions on Organic Carbon Stabilization in a Ponderosa Pine Root Zone: A Micro-Scale Approach, Front. Earth Sci., 10, 799694, https://doi.org/10.3389/feart.2022.799694, 2022.
Dupré, B., Viers, J., Dandurand, J. L., Polve, M., Bénézeth, P., Vervier, P., and Braun, J. J.: Major and trace elements associated with colloids in organic-rich river waters: ultrafiltration of natural and spiked solutions, Chem. Geol., 160, 63–80, https://doi.org/10.1016/S0009-2541(99)00060-1, 1999.
Evans, C. D., Monteith, D. T., and Cooper, D. M.: Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts, Environ. Pollut., 137, 55–71, https://doi.org/10.1016/j.envpol.2004.12.031, 2005.
Even, R. J. and Cotrufo, M. F.: The ability of soils to aggregate, more than the state of aggregation, promotes protected soil organic matter formation, Geoderma, 442, 116760, https://doi.org/10.1016/j.geoderma.2023.116760, 2024.
Fan, L., Lehmann, P., Zheng, C., and Or, D.: Vegetation‐promoted soil structure inhibits hydrologic landslide triggering and alters carbon fluxes, Geophysical Research Letters, 49, e2022GL100389, https://doi.org/10.1029/2022GL100389, 2022.
Fossum, C., Estera-Molina, K. Y., Yuan, M., Herman, D. J., Chu-Jacoby, I., Nico, P. S., Morrison, K. D., Pett-Ridge, J., and Firestone, M. K.: Belowground allocation and dynamics of recently fixed plant carbon in a California annual grassland, Soil Biol. Biochem., 165, 108519, https://doi.org/10.1016/j.soilbio.2021.108519, 2022.
Gaskill, D. L., Mutschler, F. E., Kramer, J. H., Thomas, J. A., and Zahony, S. G.: Geologic map of the gothic quadrangle, Gunnison County, Colorado, The Survey, https://doi.org/10.3133/gq1689, 1991.
German, D. P., Weintraub, M. N., Grandy, A. S., Lauber, C. L., Rinkes, Z. L., and Allison, S. D.: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies, Soil Biol. Biochem., 43, 1387–1397, https://doi.org/10.1016/j.soilbio.2011.03.017, 2011.
Gillabel, J., Denef, K., Brenner, J., Merckx, R., and Paustian, K.: Carbon sequestration and soil aggregation in center-pivot irrigated and dryland cultivated farming systems, Soil Sci. Soc. Am. J., 71, 1020–1028, https://doi.org/10.2136/sssaj2006.0215, 2007.
Godsey, S. E., Kirchner, J. W., and Tague, C. L.: Effects of changes in winter snowpacks on summer low flows: case studies in the Sierra Nevada, California, USA, Hydrol. Process., 28, 5048–5064, https://doi.org/10.1038/s41612-018-0012-1, 2014.
Hauser, E., Richter, D. D., Markewitz, D., Brecheisen, Z., and Billings, S. A.: Persistent anthropogenic legacies structure depth dependence of regenerating rooting systems and their functions, Biogeochemistry, 147, 259–275, 2020.
Hu, Y., Wang, Z., Wang, Q., Wang, S., Zhang, Z., Zhang, Z., and Zhao, Y.: Climate change affects soil labile organic carbon fractions in a Tibetan alpine meadow, J. Soils Sediments, 17, 326–339, https://doi.org/10.1007/s11368-016-1565-4, 2017.
Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., and Pineiro, G.: The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls, Annu. Rev. Ecol. Evol. S., 48, 419–445, https://doi.org/10.1146/annurev-ecolsys-112414-054234, 2017.
Jastrow, J. D.: Soil aggregate formation and the accrual of particulate and mineral-associated organic matter, Soil Biol. Biochem., 28, 665–676, https://doi.org/10.1016/0038-0717(95)00159-X, 1996.
Jastrow, J. D., Miller, R. M., and Boutton, T. W.: Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance, Soil Sci. Soc. Am. J., 60, 801–807, https://doi.org/10.2136/sssaj1996.03615995006000030017x, 1996.
Jilling, A., Keiluweit, M., Gutknecht, J. L., and Grandy, A. S.: Priming mechanisms providing plants and microbes access to mineral-associated organic matter, Soil Biol. Biochem., 158, 108265, https://doi.org/10.1016/j.soilbio.2021.108265, 2021.
Keller, C. K.: Carbon exports from terrestrial ecosystems: A Critical-Zone framework, Ecosystems, 22, 1691–1705, https://doi.org/10.1007/s10021-019-00375-9, 2019.
Kerins, D. and Li, L.: High dissolved carbon concentration in arid rocky mountain streams, Environmental Science & Technology, 57, 4656–4667, 2023.
Kerins, D., Sadayappan, K., Zhi, W., Sullivan, P. L., Williams, K. H., Carroll, R. W., Barnard, H., Sprenger, M., Wenming, D., Williams, K., Pedrial, J., and Li, L.: Hydrology outweighs temperature in driving production and export of dissolved carbon in a snowy mountain catchment, Water Resour. Res., 60, e2023WR036077, https://doi.org/10.1029/2023WR036077, 2024.
Kleber, M., Sollins, P., and Sutton, R.: A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces, Biogeochemistry, 85, 9–24, https://doi.org/10.1007/s10533-007-9103-5, 2007.
Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., and Nico, P. S.: Mineral–organic associations: formation, properties, and relevance in soil environments, Adv. Agron., 130, 1–140, https://doi.org/10.1016/bs.agron.2014.10.005, 2015.
Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., Eusterhues, K., and Leinweber, P.: Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry, J. Plant Nutr. Soil Sc., 171, 61–82, https://doi.org/10.1002/jpln.200700048, 2008.
Laegdsmand, M., Villholth, K. G., Ullum, M., and Jensen, K. H.: Processes of colloid mobilization and transport in macroporous soil monoliths, Geoderma, 93, 33–59, https://doi.org/10.1016/S0016-7061(99)00041-5, 1999.
Laganiere, J., Paré, D., Bergeron, Y., Chen, H. Y., Brassard, B. W., and Cavard, X.: Stability of soil carbon stocks varies with forest composition in the Canadian boreal biome, Ecosystems, 16, 852–865, https://doi.org/10.1007/s10021-013-9658-z, 2013.
Laganière, J., Boča, A., Van Miegroet, H., and Paré, D.: A tree species effect on soil that is consistent across the species' range: the case of aspen and soil carbon in North America, Forests, 8, 113, https://doi.org/10.3390/f8040113, 2017.
Lakshmi, V., Jackson, T. J., and Zehrfuhs, D.: Soil moisture–temperature relationships: results from two field experiments, Hydrol. Process., 17, 3041–3057, https://doi.org/10.1002/hyp.1275, 2003.
Lavee, H., Sarah, P., and Imeson, A.: Aggregate stability dynamics as affected by soil temperature and moisture regimes, Geografiska Annaler: Series A, Physical Geography, 78, 73–82, https://doi.org/10.1080/04353676.1996.11880453, 1996.
Le Bissonnais, Y.: Aggregate stability and assessment of soil crustability and erodibility: I, Theory and methodology, Eur. J. Soil Sci., 47, 425–437, https://doi.org/10.1111/j.1365-2389.1996.tb01843.x, 1996.
Leonard, L. T., Vanzin, G. F., Garayburu-Caruso, V. A., Lau, S. S., Beutler, C. A., Newman, A. W., Mitch, W. A., Stegen, J. C., Williams, K. H., and Sharp, J. O.: Disinfection byproducts formed during drinking water treatment reveal an export control point for dissolved organic matter in a subalpine headwater stream, Water Research X, 15, 100144, https://doi.org/10.1016/j.wroa.2022.100144, 2022.
Liang, C., Amelung, W., Lehmann, J., and Kästner, M.: Quantitative assessment of microbial necromass contribution to soil organic matter, Glob. Change Biol., 25, 3578–3590, https://doi.org/10.1111/gcb.14781, 2019.
Lucas, M., Schlüter, S., Vogel, H. J., and Vetterlein, D.: Roots compact the surrounding soil depending on the structures they encounter, Sci. Rep., 9, 16236, https://doi.org/10.1038/s41598-019-52665-w, 2019.
Luo, C., Xu, G., Wang, Y., Wang, S., Lin, X., Hu, Y., Zhang, Z., Chang, X., Duan, J., Su, A., and Zhao, X.: Effects of grazing and experimental warming on DOC concentrations in the soil solution on the Qinghai-Tibet plateau, Soil Biol. Biochem., 41, 2493–2500, https://doi.org/10.1016/j.soilbio.2009.09.006, 2009.
Mainka, M., Summerauer, L., Wasner, D., Garland, G., Griepentrog, M., Berhe, A. A., and Doetterl, S.: Soil geochemistry as a driver of soil organic matter composition: insights from a soil chronosequence, Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, 2022.
Makó, A., Tóth, G., Weynants, M., Rajkai, K., Hermann, T., and Tóth, B.: Pedotransfer functions for converting laser diffraction particle‐size data to conventional values, European Journal of Soil Science, 68, 769–782, https://doi.org/10.1111/ejss.12456, 2017.
Mauer, O. and Palátová, E.: Root system development in Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) on fertile sites, Journal of Forest Science, 58, 400–409, https://doi.org/10.17221/94/2011-JFS, 2012.
Mekontchou, C. G., Houle, D., Bergeron, Y., and Drobyshev, I.: Contrasting root system structure and belowground interactions between black spruce (Picea mariana (Mill.) B. S.P) and trembling aspen (Populus tremuloides Michx) in boreal mixed woods of eastern Canada, Forests, 11, 127, https://doi.org/10.3390/f11020127, 2020.
Mikutta, R., Turner, S., Schippers, A., Gentsch, N., Meyer-Stüve, S., Condron, L. M., Peltzer, D. A., Richardson, S. J., Eger, A., Hempel, G., and Kaiser, K.: Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient, Sci. Rep., 9, 10294, https://doi.org/10.1038/s41598-019-46501-4, 2019.
Moldrup, P., Deepagoda, T. C., Hamamoto, S., Komatsu, T., Kawamoto, K., Rolston, D. E., and de Jonge, L. W.: Structure-dependent water-induced linear reduction model for predicting gas diffusivity and tortuosity in repacked and intact soil, Vadose Zone J., 12, https://doi.org/10.2136/vzj2013.01.0026, 2013.
Monteith, D. T., Stoddard, J. L., Evans, C. D., De Wit, H. A., Forsius, M., Høgåsen, T., Wilander, A., Skjelkvåle, B. L., Jeffries, D. S., Vuorenmaa, J., and Keller, B.: Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry, Nature, 450, 537–540, https://doi.org/10.1038/nature06316, 2007.
Moore, T. R., Trofymow, J. A., Prescott, C. E., Fyles, J., and Titus, B. D.: Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests, Ecosystems, 9, 46–62, https://doi.org/10.1007/s10021-004-0026-x, 2006.
Morris, D. P., Zagarese, H., Williamson, C. E., Balseiro, E. G., Hargreaves, B. R., Modenutti, B., and Queimalinos, C.: The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon, Limnol. Oceanogr., 40, 1381–1391, 1995.
Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., and Engel, R.: Dramatic declines in snowpack in the western US, Npj Climate and Atmospheric Science, 1, 2, https://doi.org/10.1038/s41612-018-0012-1, 2018.
Nadelhoffer, K. J. and Fry, B.: Nitrogen-15 and carbon-13 abundances in forest soil organic matter, Soil Sci. Soc. Am. J., 52,1633-1640, 1988.
Neris, J., Jiménez, C., Fuentes, J., Morillas, G., and Tejedor, M.: Vegetation and land-use effects on soil properties and water infiltration of Andisols in Tenerife (Canary Islands, Spain), Catena, 98, 55–62, https://doi.org/10.1016/j.catena.2012.06.006, 2012.
Nimmo, J. R. and Perkins, K. S.: 2.6 Aggregate stability and size distribution. Methods of soil analysis: part 4 physical methods, 5, 317–328, https://doi.org/10.2136/sssabookser5.4.c14, 2002.
Norris, C. E., Quideau, S. A., and Oh, S. W.: Microbial utilization of double-labeled aspen litter in boreal aspen and spruce soils, Soil Biol. Biochem., 100, 9–20, https://doi.org/10.1016/j.soilbio.2016.05.013, 2016.
Oades, J. M.: Soil organic matter and structural stability: mechanisms and implications for management, Plant Soil, 76, 319–337, https://doi.org/10.1007/BF02205590, 1984.
Pagano, T., Bida, M., and Kenny, J. E.: Trends in levels of allochthonous dissolved organic carbon in natural water: a review of potential mechanisms under a changing climate, Water, 6, 2862–2897, https://doi.org/10.3390/w6102862, 2014.
Popenoe, J. H., Bevis, K. A., Gordon, B. R., Sturhan, N. K., and Hauxwell, D. L.: Soil-vegetation relationships in Franciscan terrain of northwestern California, Soil Sci. Soc. Am. J., 56, 1951–1959, https://doi.org/10.2136/sssaj1992.03615995005600060050x, 1992.
Rhoades, A. M., Ullrich, P. A., and Zarzycki, C. M.: Projecting 21st century snowpack trends in western USA mountains using variable-resolution CESM, Clim. Dynam., 50, 261–288, https://doi.org/10.1007/s00382-017-3606-0, 2018.
Richter, D. D., and Billings, S. A.: One physical system: Tansley's ecosystem as Earth's critical zone, New Phytologist, 206, 900–912, 2015.
Román Dobarco, M. and Van Miegroet, H.: Soil Organic Carbon Storage and Stability in the Aspen-Conifer Ecotone in Montane Forests in Utah, USA, Forests, 5, 666–688, https://doi.org/10.3390/f5040666, 2014.
Román Dobarco, M., Jacobson, A. R., and Van Miegroet, H.: Chemical composition of soil organic carbon from mixed aspen-conifer forests characterized with Fourier transform infrared spectroscopy, Eur. J. Soil Sci., 72, 1410–1430, https://doi.org/10.1111/ejss.13065, 2021.
Roulet, N. and Moore, T. R.: Browning the waters, Nature, 444, 283–284, https://doi.org/10.1038/444283a, 2006.
Rossi, A. M., Hirmas, D. R., Graham, R. C., and Sternberg, P. D.: Bulk density determination by automated three-dimensional laser scanning, Soil Sci. Soc. Am. J., 72, 1591–1593, https://doi.org/10.2136/sssaj2008.0072N, 2008.
Rutter, E. B., Ruiz Diaz, D., and Hargrave, L. M.: Evaluation of Mehlich‐3 for determination of cation exchange capacity in Kansas soils, Soil Science Society of America Journal, 86, 146–156, https://doi.org/10.1002/saj2.20354, 2022.
Sadnes, A., Eldhuset, T. D., and Wollebaek, G.: Organic acids in root exudates and soil solution of Norway spruce and silver birch, Soil Biol. Biochem., 37, 259–269, https://doi.org/10.1016/j.soilbio.2004.07.036, 2005.
Sae-Tun, O., Bodner, G., Rosinger, C., Zechmeister-Boltenstern, S., Mentler, A., and Keiblinger, K.: Fungal biomass and microbial necromass facilitate soil carbon sequestration and aggregate stability under different soil tillage intensities, Appl. Soil Ecol., 179, 104599, https://doi.org/10.1016/j.apsoil.2022.104599, 2022.
Scharlemann, J. P., Tanner, E. V., Hiederer, R., and Kapos, V.: Global soil carbon: understanding and managing the largest terrestrial carbon pool, Carbon. Manag., 5, 81–91, https://doi.org/10.4155/cmt.13.77, 2014.
Schjønning, P., Thomsen, I. K., Møberg, J. P., de Jonge, H., Kristensen, K., and Christensen, B. T.: Turnover of organic matter in differently textured soils: I, Physical characteristics of structurally disturbed and intact soils, Geoderma, 89, 177–198, https://doi.org/10.1016/S0016-7061(98)00083-4, 1999.
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.: NIH Image to ImageJ: 25 years of image analysis, Nature Methods, 9, 671–675, https://doi.org/10.1038/nmeth.2089, 2012.
Schoeneberger, P. J., Wysocki, D. A., Benham E. C., and Soil Survey Staff: Field book for describing and sampling soils, Version 3.0, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE, https://www.govinfo.gov/content/pkg/GOVPUB-A57-PURL-gpo174414/pdf/GOVPUB-A57-PURL-gpo174414.pdf (last access: 20 June 2025), 2012.
Shand, C. A., Williams, B. L., and Coutts, G.: Determination of N-species in soil extracts using microplate techniques, Talanta, 74, 648–654, https://doi.org/10.1016/j.talanta.2007.06.039, 2008.
Shepperd, W., Rogers, P. C., Burton, D. and Bartos, D. L.: Ecology, management, and restoration of aspen in the Sierra Nevada, Gen. Tech. Rep, RMRS-GTR-178, Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station 122 p., 178, https://doi.org/10.2737/RMRS-GTR-178, 2006.
Singer, M. J., Southard, R. J., Warrington, D. N., and Janitzky, P.: Stability of synthetic sand-clay aggregates after wetting and drying cycles, Soil Sci. Soc. Am. J., 56, 1843–1848. 1992.
Sinsabaugh, R. L. and Moorhead, D. L.: Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition, Soil Biol. Biochem., 26, 1305–1311, https://doi.org/10.1016/0038-0717(94)90211-9, 1994.
Six, J. and Jastrow, J. D.: Organic matter turnover, in: Encyclopedia of Soil Science, Marcel Dekker, New York., 10, 2002.
Six, J., Paustian, K., Elliott, E. T., and Combrink, C.: Soil structure and organic matter I. Distribution of aggregate‐size classes and aggregate‐associated carbon, Soil Science Society of America Journal, 64, 681–689, https://doi.org/10.2136/sssaj2000.642681x, 2000.
Six, J., Bossuyt, H., Degryze, S., and Denef, K.: A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics, Soil Till. Res., 79, 7–31, https://doi.org/10.1016/j.still.2004.03.008, 2004.
Soil Survey Staff: Natural Resources Conservation Service, United States Department of Agriculture, Web Soil Survey, http://websoilsurvey.sc.egov.usda.gov/, last access: 21 May 2023a.
Soil Survey Staff: Kellogg Soil Survey Laboratory methods manual. Soil Survey Investigations Report, 42, Version 6.0. United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), https://www.nrcs.usda.gov/sites/default/files/2023-01/SSIR42.pdf (last access: 20 June 2025), 2023b.
Sokol, N. W., Whalen, E. D., Jilling, A., Kallenbach, C., Pett-Ridge, J., and Georgiou, K.: Global distribution, and formation and fate of mineral-associated soil organic matter under a changing climate: A trait-based perspective, Funct. Ecol., 36, 1411–1429, https://doi.org/10.1111/1365-2435.14040, 2022.
Solly, E. F., Weber, V., Zimmermann, S., Walthert, L., Hagedorn, F., and Schmidt, M. W.: A critical evaluation of the relationship between the effective cation exchange capacity and soil organic carbon content in Swiss forest soils, Front. For. Glob. Change, 3, 98, https://doi.org/10.3389/ffgc.2020.00098, 2020.
Souza, L. F., Hirmas, D. R., Sullivan, P. L., Reuman, D. C., Kirk, M. F., Li, L., Ajami, H., Wen, H., Sarto, M. V., Loecke, T. D., Rudick, A. K., and Billings, S. A.: Root distributions, precipitation, and soil structure converge to govern soil organic carbon depth distributions, Geoderma, 437, 116569, https://doi.org/10.1016/j.geoderma.2023.116569, 2023.
Stanley, E. H., Powers, S. M., Lottig, N. R., Buffam, I., and Crawford, J. T.: and Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: is there a role for DOC management?, Freshwater Biol., 57, 26–42, 2012.
Stătescu, F., Zaucă, D. C., and Pavel, L. V.: Soil structure and water-stable aggregates, Environ. Eng. Manag. J., 12, https://doi.org/10.30638/eemj.2013.091, 2013.
Stone, M. M., DeForest, J. L., and Plante, A. F.: Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory, Soil Biol. Biochem., 75, 237–247, https://doi.org/10.1016/j.soilbio.2014.04.017, 2014.
Sullivan, P. and Li, L.: DWCZ CO – Coal Creek (CC), HydroShare, [data set], http://www.hydroshare.org/resource/9948ad04a9a74246ad9bd5f8decb40b9 (last access: 20 June 2025), 2022a.
Sullivan, P. L., Billings, S. A., Hirmas, D., Li, L., Zhang, X., Ziegler, S., Murenbeeld, K., Ajami, H., Guthrie, A., Singha, K., and Giménez, D.: Embracing the dynamic nature of soil structure: A paradigm illuminating the role of life in critical zones of the Anthropocene, Earth-Sci. Rev., 225, 103873, https://doi.org/10.1016/j.earscirev.2021.103873, 2022b.
von Lützow, M., Kögel-Knabner, I., Ludwig, B., Matzner, E., Flessa, H., Ekschmitt, K., Guggenberger, G., Marschner, B., and Kalbitz, K.: Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model, J. Plant Nutr. Soil Sc., 171, 111–124, https://doi.org/10.1002/jpln.200700047, 2008.
Wadgymar, S. M., Ogilvie, J. E., Inouye, D. W., Weis, A. E., and Anderson, J. T.: Phenological responses to multiple environmental drivers under climate change: insights from a long-term observational study and a manipulative field experiment, New Phytol., 218, 517–529, https://doi.org/10.1111/nph.15029, 2018.
Wang, Q., Xiao, J., Ding, J., and Zou, T.: Differences in root exudate inputs and rhizosphere effects on soil N transformation between deciduous and evergreen trees, Plant Soil, 458, https://doi.org/10.1007/s11104-019-04156-0, 2021.
Wang, Y., Gao, S., Li, C., Zhang, J., and Wang, L.: Effects of temperature on soil organic carbon fractions contents, aggregate stability and structural characteristics of humic substances in a Mollisol, J. Soils Sediments, 16, 1849–1857, https://doi.org/10.1007/s11368-016-1379-4, 2016.
Wasner, D., Abramoff, R., Griepentrog, M., Venegas, E. Z., Boeckx, P., and Doetterl, S.: The role of climate, mineralogy and stable aggregates for soil organic carbon dynamics along a geoclimatic gradient, Glob. Biogeochem. Cy., 38, e2023GB007934, https://doi.org/10.1029/2023GB007934, 2024.
Weil, R. R. and Brady, N. C.: The nature and properties of soils, 15 edn., Pearson, ISBN 9780133254488, 2017.
Woldeselassie, M., Van Miegroet, H., Gruselle, M. C., and Hambly, N.: Storage and stability of soil organic carbon in aspen and conifer forest soils of northern Utah, Soil Sci. Soc. Am. J., 76, 2230–2240, https://doi.org/10.2136/sssaj2011.0364, 2012.
Woolf, D. and Lehmann, J.: Microbial models with minimal mineral protection can explain long-term soil organic carbon persistence, Sci. Rep., 9, https://doi.org/10.1038/s41598-019-43026-8, 2019.
Ye, C., Chen, D., Hall, S. J., Pan, S., Yan, X., Bai, T., Guo, H., Zhang, Y., Bai, Y., and Hu, S.: Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls, Ecol. Lett., 21, 1162–1173, https://doi.org/10.1111/ele.13083, 2018.
Zhang, Y., Niu, J., Yu, X., Zhu, W., and Du, X.: Effects of fine root length density and root biomass on soil preferential flow in forest ecosystems, For. Syst., 24, 12, https://doi.org/10.5424/fs/2015241-06048, 2015.
Zhao, D., Xu, M., Liu, G., Ma, L., Zhang, S., Xiao, T., and Peng, G.: Effect of vegetation type on microstructure of soil aggregates on the Loess Plateau, China, Agr. Ecosyst. Environ., 242, 1–8, https://doi.org/10.1016/j.agee.2017.03.014, 2017.
Zhi, W., Williams, K. H., Carroll, R. W., Brown, W., Dong, W., Kerins, D., and Li, L.: Significant stream chemistry response to temperature variations in a high-elevation mountain watershed, Commun. Earth Environ., 1, 43, https://doi.org/10.1038/s43247-020-00039-w, 2020.
Ziegler, S. E., Benner, R., Billings, S. A., Edwards, K. A., Philben, M., Zhu, X., and Laganière, J.: Climate warming can accelerate carbon fluxes without changing soil carbon stocks, Front. Earth Sci., https://doi.org/10.3389/feart.2017.00002, 2017.
Short summary
Our study looked at how different forest types and conditions affected soil microbes and soil carbon and stability. Aspen organic matter led to higher microbial activity, smaller soil aggregates, and more stable soil carbon, possibly reducing dissolved organic carbon movement from hillslopes to streams. This shows the importance of models like the Microbial Efficiency – Matrix Stabilization framework for predicting CO2 release, soil carbon stability, and carbon movement.
Our study looked at how different forest types and conditions affected soil microbes and soil...
Altmetrics
Final-revised paper
Preprint