Articles | Volume 22, issue 21
https://doi.org/10.5194/bg-22-6651-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-6651-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fire activity in the northern Arctic tundra now exceeds late Holocene levels, driven by increasing dryness and shrub expansion
Angelica Feurdean
CORRESPONDING AUTHOR
Institute of Physical Geography, Goethe University, Altenhöferallee 1, 60438, Frankfurt am Main, Germany
STAR-UBB Institute, Babeş-Bolyai University, Kogălniceanu 1, 400084, Cluj-Napoca, Romania
Randy Fulweber
Toolik Field Station, Institute of Arctic Biology, University of Alaska Fairbanks, 2120 N. Koyukuk Drive, AK 99775-7005, Fairbanks, United States of America
Andrei-Cosmin Diaconu
Department of Geology, Babes-Bolyai University, Kogălniceanu 1, 400084, Cluj-Napoca, Romania
Graeme T. Swindles
Geography, School of Natural and Built Environment, Queen’s University Belfast, BT7 1NN, Belfast, UK
Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, Canada
Mariusz Gałka
CORRESPONDING AUTHOR
Faculty of Biology and Environmental Protection, Department of Biogeography, Paleoecology and Nature Conservation, University of Lodz, Banacha 1/3, 90-237 Lodz, Poland
Related authors
Angelica Feurdean, Richard S. Vachula, Diana Hanganu, Astrid Stobbe, and Maren Gumnior
Biogeosciences, 20, 5069–5085, https://doi.org/10.5194/bg-20-5069-2023, https://doi.org/10.5194/bg-20-5069-2023, 2023
Short summary
Short summary
This paper presents novel results of laboratory-produced charcoal forms from various grass, forb and shrub taxa from the Eurasian steppe to facilitate more robust interpretations of fuel sources and fire types in grassland-dominated ecosystems. Advancements in identifying fuel sources and changes in fire types make charcoal analysis relevant to studies of plant evolution and fire management.
Angelica Feurdean, Andrei-Cosmin Diaconu, Mirjam Pfeiffer, Mariusz Gałka, Simon M. Hutchinson, Geanina Butiseaca, Natalia Gorina, Spassimir Tonkov, Aidin Niamir, Ioan Tantau, Hui Zhang, and Sergey Kirpotin
Clim. Past, 18, 1255–1274, https://doi.org/10.5194/cp-18-1255-2022, https://doi.org/10.5194/cp-18-1255-2022, 2022
Short summary
Short summary
We used palaeoecological records from peatlands in southern Siberia. We showed that warmer climate conditions have lowered the water level and increased the fuel amount and flammability, consequently also increasing the frequency and severity of fires as well as the composition of tree types.
Esther Githumbi, Ralph Fyfe, Marie-Jose Gaillard, Anna-Kari Trondman, Florence Mazier, Anne-Birgitte Nielsen, Anneli Poska, Shinya Sugita, Jessie Woodbridge, Julien Azuara, Angelica Feurdean, Roxana Grindean, Vincent Lebreton, Laurent Marquer, Nathalie Nebout-Combourieu, Miglė Stančikaitė, Ioan Tanţău, Spassimir Tonkov, Lyudmila Shumilovskikh, and LandClimII data contributors
Earth Syst. Sci. Data, 14, 1581–1619, https://doi.org/10.5194/essd-14-1581-2022, https://doi.org/10.5194/essd-14-1581-2022, 2022
Short summary
Short summary
Reconstruction of past land cover is necessary for the study of past climate–land cover interactions and the evaluation of climate models and land-use scenarios. We used 1128 available pollen records from across Europe covering the last 11 700 years in the REVEALS model to calculate percentage cover and associated standard errors for 31 taxa, 12 plant functional types and 3 land-cover types. REVEALS results are reliant on the quality of the input datasets.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Angelica Feurdean
Biogeosciences, 18, 3805–3821, https://doi.org/10.5194/bg-18-3805-2021, https://doi.org/10.5194/bg-18-3805-2021, 2021
Short summary
Short summary
This study characterized the diversity of laboratory-produced charcoal morphological features of various fuel types from Siberia at different temperatures. The results obtained improve the attribution of charcoal particles to fuel types and fire characteristics. This work also provides recommendations for the application of this information to refine the past wildfire history.
Angelica Feurdean, Roxana Grindean, Gabriela Florescu, Ioan Tanţău, Eva M. Niedermeyer, Andrei-Cosmin Diaconu, Simon M. Hutchinson, Anne Brigitte Nielsen, Tiberiu Sava, Andrei Panait, Mihaly Braun, and Thomas Hickler
Biogeosciences, 18, 1081–1103, https://doi.org/10.5194/bg-18-1081-2021, https://doi.org/10.5194/bg-18-1081-2021, 2021
Short summary
Short summary
Here we used multi-proxy analyses from Lake Oltina (Romania) and quantitatively examine the past 6000 years of the forest steppe in the lower Danube Plain, one of the oldest areas of human occupation in southeastern Europe. We found the greatest tree cover between 6000 and 2500 cal yr BP. Forest loss was under way by 2500 yr BP, falling to ~20 % tree cover linked to clearance for agriculture. The weak signs of forest recovery over the past 2500 years highlight recurring anthropogenic pressure.
Angelica Feurdean, Richard S. Vachula, Diana Hanganu, Astrid Stobbe, and Maren Gumnior
Biogeosciences, 20, 5069–5085, https://doi.org/10.5194/bg-20-5069-2023, https://doi.org/10.5194/bg-20-5069-2023, 2023
Short summary
Short summary
This paper presents novel results of laboratory-produced charcoal forms from various grass, forb and shrub taxa from the Eurasian steppe to facilitate more robust interpretations of fuel sources and fire types in grassland-dominated ecosystems. Advancements in identifying fuel sources and changes in fire types make charcoal analysis relevant to studies of plant evolution and fire management.
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences, 20, 4893–4914, https://doi.org/10.5194/bg-20-4893-2023, https://doi.org/10.5194/bg-20-4893-2023, 2023
Short summary
Short summary
Peatlands are vital terrestrial ecosystems that can serve as archives, preserving records of past vegetation and climate. We reconstructed the vegetation history over the last 2600 years of the Beerberg peatland and surrounding area in the Thuringian Forest in Germany using multiple analyses. We found that, although the forest composition transitioned and human influence increased, the peatland remained relatively stable until more recent times, when drainage and dust deposition had an impact.
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Angelica Feurdean, Andrei-Cosmin Diaconu, Mirjam Pfeiffer, Mariusz Gałka, Simon M. Hutchinson, Geanina Butiseaca, Natalia Gorina, Spassimir Tonkov, Aidin Niamir, Ioan Tantau, Hui Zhang, and Sergey Kirpotin
Clim. Past, 18, 1255–1274, https://doi.org/10.5194/cp-18-1255-2022, https://doi.org/10.5194/cp-18-1255-2022, 2022
Short summary
Short summary
We used palaeoecological records from peatlands in southern Siberia. We showed that warmer climate conditions have lowered the water level and increased the fuel amount and flammability, consequently also increasing the frequency and severity of fires as well as the composition of tree types.
Esther Githumbi, Ralph Fyfe, Marie-Jose Gaillard, Anna-Kari Trondman, Florence Mazier, Anne-Birgitte Nielsen, Anneli Poska, Shinya Sugita, Jessie Woodbridge, Julien Azuara, Angelica Feurdean, Roxana Grindean, Vincent Lebreton, Laurent Marquer, Nathalie Nebout-Combourieu, Miglė Stančikaitė, Ioan Tanţău, Spassimir Tonkov, Lyudmila Shumilovskikh, and LandClimII data contributors
Earth Syst. Sci. Data, 14, 1581–1619, https://doi.org/10.5194/essd-14-1581-2022, https://doi.org/10.5194/essd-14-1581-2022, 2022
Short summary
Short summary
Reconstruction of past land cover is necessary for the study of past climate–land cover interactions and the evaluation of climate models and land-use scenarios. We used 1128 available pollen records from across Europe covering the last 11 700 years in the REVEALS model to calculate percentage cover and associated standard errors for 31 taxa, 12 plant functional types and 3 land-cover types. REVEALS results are reliant on the quality of the input datasets.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Arial J. Shogren, Jay P. Zarnetske, Benjamin W. Abbott, Samuel Bratsman, Brian Brown, Michael P. Carey, Randy Fulweber, Heather E. Greaves, Emma Haines, Frances Iannucci, Joshua C. Koch, Alexander Medvedeff, Jonathan A. O'Donnell, Leika Patch, Brett A. Poulin, Tanner J. Williamson, and William B. Bowden
Earth Syst. Sci. Data, 14, 95–116, https://doi.org/10.5194/essd-14-95-2022, https://doi.org/10.5194/essd-14-95-2022, 2022
Short summary
Short summary
Rapidly sampling multiple points in an entire river network provides a high-resolution snapshot in time that can reveal where nutrients and carbon are being taken up and released. Here, we describe two such datasets of river network chemistry in six Arctic watersheds in northern Alaska. We describe how these repeated snapshots can be used as an indicator of ecosystem response to climate change and to improve predictions of future release of carbon, nutrient, and other solutes.
Angelica Feurdean
Biogeosciences, 18, 3805–3821, https://doi.org/10.5194/bg-18-3805-2021, https://doi.org/10.5194/bg-18-3805-2021, 2021
Short summary
Short summary
This study characterized the diversity of laboratory-produced charcoal morphological features of various fuel types from Siberia at different temperatures. The results obtained improve the attribution of charcoal particles to fuel types and fire characteristics. This work also provides recommendations for the application of this information to refine the past wildfire history.
Angelica Feurdean, Roxana Grindean, Gabriela Florescu, Ioan Tanţău, Eva M. Niedermeyer, Andrei-Cosmin Diaconu, Simon M. Hutchinson, Anne Brigitte Nielsen, Tiberiu Sava, Andrei Panait, Mihaly Braun, and Thomas Hickler
Biogeosciences, 18, 1081–1103, https://doi.org/10.5194/bg-18-1081-2021, https://doi.org/10.5194/bg-18-1081-2021, 2021
Short summary
Short summary
Here we used multi-proxy analyses from Lake Oltina (Romania) and quantitatively examine the past 6000 years of the forest steppe in the lower Danube Plain, one of the oldest areas of human occupation in southeastern Europe. We found the greatest tree cover between 6000 and 2500 cal yr BP. Forest loss was under way by 2500 yr BP, falling to ~20 % tree cover linked to clearance for agriculture. The weak signs of forest recovery over the past 2500 years highlight recurring anthropogenic pressure.
Cited articles
Adolf, C., Wunderle, S., Colombaroli, D., Weber, H., Gobet, E., Heiri, O., van Leeuwen, J. F. N., Bigler, C., Connor, S. E., Gałka, M., La Mantia, T., and Tinner, W.: The sedimentary and remote sensing reflection of biomass burning in Europe, Glob. Ecol. Biogeogr., 27, 199–212, https://doi.org/10.1111/geb.12682, 2018.
Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L., and Bradstock, R. A.: Defining pyromes and global syndromes of fire regimes, Proc. Natl. Acad. Sci. USA, 110, 6442–6447, https://doi.org/10.1073/pnas.1211466110, 2013.
Barhoumi, C., Peyron, O., Joannin, S., Subetto, D., Kryshen, A., Drobyshev, I., Girardin, M. P., Brossier, B., Paradis, L., Pastor, T., and Alleaume, S.: Gradually increasing forest fire activity during the Holocene in the northern Ural region (Komi Republic, Russia), Holocene, 29, 906–920, https://doi.org/10.1177/0959683619865593, 2019.
Blarquez, O., Vannière, B., Marlon, J. R., Daniau, A.-L., Power, M. J., Brewer, S., and Bartlein, P. J.: Paleofire – An R package to analyse sedimentary charcoal records from the Global Charcoal Database to reconstruct past biomass burning, Comput. Geosci., 72, 255–261, https://doi.org/10.1016/j.cageo.2014.07.020, 2014.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51, 337–-360, https://doi.org/10.1017/S0033822200033865, 2009.
Chipman, M. L. and Hu, F. S.: Linkages among climate, fire, and thermoerosion in Alaskan tundra over the past three millennia, J. Geophys. Res. Biogeosci., 122, 3362–-3377, https://doi.org/10.1002/2017JG004002, 2017.
Chipman, M. L., Hudspith, V., Higuera, P. E., Duffy, P. A., Kelly, R., Oswald, W. W., and Hu, F. S.: Spatiotemporal patterns of tundra fires: late-Quaternary charcoal records from Alaska, Biogeosciences, 12, 4017–4027, https://doi.org/10.5194/bg-12-4017-2015, 2015.
Cleary, K. G., Xia, Z., and Yu, Z.: The Growth and Carbon Sink of Tundra Peat Patches in Arctic Alaska, J. Geophys. Res.-Biogeo., 129, e2023JG007890, https://doi.org/10.1029/2023JG007890, 2024.
Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A. F., and Krebs, P.: Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation, Quat. Sci. Rev.,, 28, 555–576, https://doi.org/10.1016/j.quascirev.2008.11.005, 2009.
Cox, C. J., Stone, R. S., Douglas, D. C., Stanitski, D. M., Divoky, G. J., Dutton, G. S., Sweeney, C., George, J. C., and Longenecker, D. U.: Drivers and environmental responses to the changing annual snow cycle of northern Alaska, Bull. Am. Meteorol. Soc., 98, 2559–2577, https://doi.org/10.1175/BAMS-D-16-0201.1, 2017.
de Groot, W. J. and Wein, R. W.: Betula glandulosa Michx. response to burning and postfire growth temperature and implications of climate change, Int. J. Wildland Fire, 9, 51–64, https://doi.org/10.1071/WF03048, 1999.
de Groot, W. J., Cantin, A. S., Flannigan, M. D., Soja, A. J., Gowman, L. M., and Newbery, A.: A comparison of Canadian and Russian boreal forest fire regimes, For. Ecol. Manag., 294, 23–34, https://doi.org/10.1016/j.foreco.2012.07.033, 2013.
Descals, A., Verger, A., Vilar, L., López-García, M. J., Pettinari, M. L., Tansey, K., and Pons, X.: Unprecedented fire activity above the Arctic Circle linked to rising temperatures, Science, 378, 532–537, https://doi.org/10.1126/science.abn9768, 2022.
Environmental Data Center Team: Meteorological monitoring program at Toolik, Alaska. Toolik Field Station, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, https://www.uaf.edu/toolik/edc/monitoring/abiotic/met-data-query.php (last access: 18 October 2025), 2024.
Feurdean, A.: Experimental production of charcoal morphologies to discriminate fuel source and fire type: an example from Siberian taiga, Biogeosciences, 18, 3805–3821, https://doi.org/10.5194/bg-18-3805-2021, 2021.
Feurdean, A., Veski, S., Florescu, G., Vannière, B., Pfeiffer, M., O'Hara, R. B., Stivrins, N., Amon, L., Heinsalu, A., Vassiljev, J., and Hickler, T.: Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe), Quat. Sci. Rev., 169, 378–390, https://doi.org/10.1016/j.quascirev.2017.05.024, 2017.
Feurdean, A., Florescu, G., Tanţău, I., Vannière, B., Diaconu, A. C., Pfeiffer, M., Warren, D., Hutchinson, S. M., Gorina, N., Gałka, M., and Kirpotin, S.: Recent fire regime in the southern boreal forests of western Siberia is unprecedented in the last five millennia, Quat. Sci. Rev.,, 244, 106495, https://doi.org/10.1016/j.quascirev.2020.106495, 2020.
Feurdean, A., Diaconu, A.-C., Pfeiffer, M., Gałka, M., Hutchinson, S. M., Butiseaca, G., Gorina, N., Tonkov, S., Niamir, A., Tantau, I., Zhang, H., and Kirpotin, S.: Holocene wildfire regimes in western Siberia: interaction between peatland moisture conditions and the composition of plant functional types, Clim. Past, 18, 1255–1274, https://doi.org/10.5194/cp-18-1255-2022, 2022.
Frank-DePue, L. and Chipman, M. L.: Late Holocene tundra fires and linkages to climate and vegetation in Northern Alaska, Arctic Science, 11, 1–14, https://doi.org/10.1139/as-2025-0009, 2025.
Galka, M.: NBb pollen dataset (Version 1.0), Neotoma Paleoecology Database [data set], https://doi.org/10.21233/3WXR-9P46, 2025a.
Galka, M.: GaI pollen dataset (Version 1.0), Neotoma Paleoecology Database [data set], https://doi.org/10.21233/AYTC-HK08, 2025b.
Galka, M.: GaII pollen dataset (Version 1.0), Neotoma Paleoecology Database [data set], https://doi.org/10.21233/YM1G-KC79, 2025c.
Gałka, M., Swindles, G. T., Szal, M., Fulweber, R., and Feurdean, A.: Response of plant communities to climate change during the late Holocene: palaeoecological insights from peatlands in the Alaskan Arctic, Ecol. Indic., 85, 525–536, https://doi.org/10.1016/j.ecolind.2017.10.062, 2018.
Gałka, M., Diaconu, A. C., Cwanek, A., Baranov, V. A., Feurdean, A., Loisel, J., Novenko, E. Y., and De Klerk, P.: Climate-induced hydrological fluctuations shape Arctic Alaskan peatland plant communities, Sci. Total Environ., 905, 167381, https://doi.org/10.1016/j.scitotenv.2023.167381, 2023.
Gałka, M., Knorr, K.-H., Obremska, M., Diaconu, A.-C., Hedenäs, L., Cwanek, A., Stivrins, N., Swindles, G. T., Sala, D., Łokas, E., and Feurdean, A.: The role of climate and hydrology fluctuations in shaping Northern Alaska plant community over the last three millennia, Prog. Phys. Geogr. Earth Environ., 49, 421–-442, https://doi.org/10.1177/03091333251353696, 2025.
Hamilton, T. D.: Late Cenozoic glaciation of the central Brooks Range, in: Glaciation in Alaska: The Geologic Record, edited by: Hamilton, T. D., Reed, K. M., and Thorson, R. M., Alaska Geological Society, Fairbanks, AK, 9–49, 1986.
Higuera, P. E., Sprugel, D. G., and Brubaker, L. B.: Reconstructing fire regimes with charcoal from small-hollow sediments: a calibration with tree-ring records of fire, Holocene, 15, 238–251, https://doi.org/10.1191/0959683605hl789rp, 2005.
Higuera, P. E., Peters, M. E., Brubaker, L. B., and Gavin, D. G.: Understanding the origin and analysis of sediment-charcoal records with a simulation model, Quat. Sci. Rev., 26, 1790–1809, https://doi.org/10.1016/j.quascirev.2007.03.010, 2007.
Higuera, P. E., Brubaker, L. B., Anderson, P. M., Brown, T. A., Kennedy, A. T., and Hu, F. S.: Frequent fires in ancient shrub tundra: implications of paleorecords for arctic environmental change, PLoS ONE, 3, e1744, https://doi.org/10.1371/journal.pone.0001744, 2008.
Higuera, P. E., Chipman, M. L., Barnes, J. L., Urban, M. A., and Hu, F. S.: Variability of tundra fire regimes in Arctic Alaska: millennial-scale patterns and ecological implications, Ecol. Appl., 21, 3211–3226, https://doi.org/10.1890/11-0387.1, 2011.
Hoecker, T. K., Higuera, P. E., Kelly, R., and Hu, F. S.: Arctic and boreal paleofire records reveal drivers of fire activity and departures from Holocene variability, Ecology, 101, e03096, https://doi.org/10.1002/ecy.3096, 2020.
Hu, F. S., Higuera, P. E., Walsh, J. E., Chapman, W. L., Duffy, P. A., Brubaker, L. B., and Chipman, M. L.: Tundra burning in Alaska: Linkages to climatic change and sea ice retreat, J. Geophys. Res.-Biogeo., 115, G04002, https://doi.org/10.1029/2009JG001270, 2010.
Hu, F. S., Higuera, P. E., Duffy, P. A., Chipman, M. L., Rocha, A. V., Young, A. M., Kelly, R., and Dietze, M. C.: Arctic tundra fires: Natural variability and responses to climate change, Front. Ecol. Environ., 13, 369–377, https://doi.org/10.1890/150063, 2015.
Hua, Q., Turnbull, J. C., Santos, G. M., Rakowski, A. Z., Ancapichún, S., De Pol-Holz, R., Hammer, S., Lehman, S. J., Levin, I., Miller, J. B., Palmer, J. G., and Turney, C. S. M.: Atmospheric radiocarbon for the period 1950–-2019, Radiocarbon, 64, 723–-745, https://doi.org/10.1017/RDC.2021.95, 2022.
Kettridge, N., Turetsky, M., Sherwood, J. H., Thompson, D. K., Miller, C. A., Benscoter, B. W., Flannigan, M. D., Wotton, B. M., and Waddington, J. M.: Moderate drop in water table increases peatland vulnerability to post-fire regime shift, Sci. Rep., 5, 8063, https://doi.org/10.1038/srep08063, 2015.
Kuosmanen, N., Väliranta, M., Piilo, S., Tuittila, E.-S., Oksanen, P., and Wallenius, T.: Repeated fires in forested peatlands in sporadic permafrost zone in Western Canada, Environmental Research Letters, 18, 094051, https://doi.org/10.1088/1748-9326/acf05b, 2023.
Loisel, J., Gallego-Sala, A. V., Amesbury, M. J., Magnan, G., Anshari, G., Beilman, D. W., Benavides, J. C., Blewett, J., Camill, P., Charman, D. J., Chawchai, S., Hedgpeth, A., Kleinen, T., Korhola, A., Large, D., Mansilla, C. A., Müller, J., van Bellen, S., West, J. B., Yu, Z., Bubier, J. L., Garneau, M., Moore, T., Sannel, A. B. K., Page, S., Väliranta, M., Bechtold, M., Brovkin, V., Cole, L. E. S., Chanton, J. P., Christensen, T. R., Davies, M. A., De Vleeschouwer, F., Finkelstein, S. A., Frolking, S., Gałka, M., Gandois, L., Girkin, N., Harris, L. I., Heinemeyer, A., Hoyt, A. M., Jones, M. C., Joos, F., Juutinen, S., Kaiser, K., Lacourse, T., Lamentowicz, M., Larmola, T., Leifeld, J., Lohila, A., Milner, A. M., Minkkinen, K., Moss, P., Naafs, B. D. A., Nichols, J., O’Donnell, J., Payne, R., Philben, M., Piilo, S., Quillet, A., Ratnayake, A. S., Roland, T. P., Sjögersten, S., Sonnentag, O., Swindles, G. T., Swinnen, W., Talbot, J., Treat, C., Valach, A. C., and Wu, J.: Expert assessment of future vulnerability of the global peatland carbon sink, Nat. Clim. Change, 11, 70–77, https://doi.org/10.1038/s41558-020-00944-0, 2021.
Magnan, G. M., Lavoie, M., and Payette, S.: Impact of fire on long-term vegetation dynamics of ombrotrophic peatlands in northwestern Quebec, Canada, Quat. Res., 77, 110–121, https://doi.org/10.1016/j.yqres.2011.10.006, 2012.
Miller, E. A., Jones, B. M., Baughman, C. A., Jandt, R. R., Jenkins, J. L., and Yokel, D. A.: Unrecorded tundra fires of the Arctic Slope, Alaska, USA, Fire, 6, 101, https://doi.org/10.3390/fire6030101, 2023.
Pereboom, E. M., Vachula, R. S., Huang, Y., and Russell, J.: The morphology of experimentally produced charcoal distinguishes fuel types in the Arctic tundra, Holocene, 7, 1–6, https://doi.org/10.1177/0959683620908629, 2020.
Raynolds, M. A., Walker, D. A., and Maier, H. A.: Alaska Arctic Tundra Vegetation Map, Scale 1:4,000,000, Conservation of Arctic Flora and Fauna (CAFF) Map No. 2, U.S. Fish and Wildlife Service, Anchorage, Alaska, https://arcticatlas.geobotany.org/catalog/dataset/alaska-arctic-tundra-vegetation-map-raynolds-et-al-2006 (last access: 30 October 2025), 2006.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southern, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal ka BP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Remy, C. C., Fouquemberg, C., Asselin, H., Andrieux, B., Magnan, G., Brossier, B., Grondin, P., Bergeron, Y., Talon, B., Girardin, M. P., and Blarquez, O.: Guidelines for the use and interpretation of palaeofire reconstructions based on various archives and proxies, Quat. Sci. Rev.,, 193, 312–322, https://doi.org/10.1016/j.quascirev.2018.06.010, 2018.
Sayedi, S. S., Abbott, B. W., Vannière, B., Leys, B., Colombaroli, D., Gil Romera, G., Słowiński, M., Aleman, J. C., Blarquez, O., Feurdean, A., and Brown, K.: Assessing changes in global fire regimes, Fire Ecol., 20, 1–22, https://doi.org/10.1186/s42408-023-00237-9, 2024.
Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M., and Veraverbeke, S.: Overwintering fires in boreal forests, Nature, 593, 399–404, https://doi.org/10.1038/s41586-021-03437-y, 2021.
Scholten, R. C., Veraverbeke, S., and Chen, Y.: Spatial variability in Arctic–boreal fire regimes influenced by environmental and human factors, Nat. Geosci., 17, 866–873, https://doi.org/10.1038/s41561-024-01505-2, 2024.
Sim, T. G., Swindles, G. T., Morris, P. J., Baird, A. J., Gallego-Sala, A. V., Wang, Y., Blaauw, M., Camill, P., Garneau, M., Hardiman, M., and Loisel, J.: Regional variability in peatland burning at mid- to high-latitudes during the Holocene, Quat. Sci. Rev., 305, 108020, https://doi.org/10.1016/j.quascirev.2023.108020, 2023.
Stivrins, N., Aakala, T., Ilvonen, L., Pasanen, L., Kuuluvainen, T., Vasander, H., Gałka, M., Disbrey, H. R., Liepins, J., Holmström, L., and Seppä, H.: Integrating fire-scar, charcoal and fungal spore data to study fire events in the boreal forest of northern Europe, Holocene, 29, 1480–1490, https://doi.org/10.1177/0959683619854524, 2019.
Swindles, G. T., Morris, P. J., Mullan, D. J., Payne, R. J., Roland, T. P., Amesbury, M. J., Lamentowicz, M., Turner, T. E., Gallego-Sala, A., Sim, T., and Barr, I. D.: Widespread drying of European peatlands in recent centuries, Nat. Geosci., 12, 922–928, https://doi.org/10.1038/s41561-019-0462-z, 2019.
Taylor, L. S., Swindles, G. T., Morris, P. J., Gałka, M., and Green, S. M.: Evidence for ecosystem state shifts in Alaskan continuous permafrost peatlands in response to recent warming, Quat. Sci. Rev., 207, 134–144, https://doi.org/10.1016/j.quascirev.2019.02.001, 2019.
Turetsky, M., Benscoter, B., Page, S., Rein, G., van der Werf, G. R., and Watts, A.: Global vulnerability of peatlands to fire and carbon loss, Nat. Geosci., 8, 11–14, https://doi.org/10.1038/ngeo2325, 2015.
Vachula, R. S. and Rehn, E.: Modeled dispersal patterns for wood and grass charcoal are different: implications for paleofire reconstruction, Holocene, 33, 159–166, https://doi.org/10.1177/09596836221131708, 2023.
Vachula, R. S., Sae-Lim, J., and Russell, J. M.: Sedimentary charcoal proxy records of fire in Alaskan tundra ecosystems, Palaeogeography Palaeoclimatology Palaeoecology, 1, 541, 109564, https://doi.org/10.1016/j.palaeo.2019.109564, 2020.
Walker, D. A., Raynolds, M. K., Daniëls, F. J. A., Einarsson, E., Elvebakk, A., Gould, W. A., Katenin, A. E., Kholod, S. S., Markon, C. J., Melnikov, E. S., Moskalenko, N. G., Talbot, S. S., Yurtsev, B. A., Bliss, L. C., Edlund, S. A., Zoltai, S. C., Wilhelm, M., Bay, C., Gudjonsson, G., Ananjeva, G. V., Drozdov, D. S., Konchenko, L. A., Korostelev, Y. V., Ponomareva, O. E., Matveyeva, N. V., Safranova, I. N., Shelkunova, R., Polezhaev, A. N., Johansen, B. E., Maier, H. A., Murray, D. F., Fleming, M. D., Trahan, N. G., Charron, T. M., Lauritzen, S. M., and Vairin, B. A.: The Circumpolar Arctic vegetation map, J. Veg. Sci., 16, 267–282, https://doi.org/10.1111/j.1654-1103.2005.tb02365.x, 2005.
Walker, M. D., Walker, D. A., and Auerbach, N. A.: Plant communities of a tussock tundra landscape in the Brooks Range Foothills, Alaska, J. Veg. Sci., 5, 843–866, https://doi.org/10.2307/3236198, 1994.
Whitman, E., Parisien, M.-A., Thompson, D. K., and Flannigan, M. D.: Topoedaphic and forest controls on post-fire vegetation assemblies are modified by fire history and burn severity in the northwestern Canadian boreal forest, Forests, 9, 151, https://doi.org/10.3390/f9030151, 2018.
Whitman, E., Parisien, M.-A., Thompson, D. K., and Flannigan, M. D.: Short-interval wildfire and drought overwhelm boreal forest resilience, Sci. Rep., 9, 16519, https://doi.org/10.1038/s41598-019-55036-7, 2019.
Short summary
We found low fire activity in northern Arctic Alaska from ~1000 BCE to 500 CE, and a marked increase post-1950 CE, when it exceeded any levels observed in the preceding millennia. Deepening of water tables and peatland drying associated with permafrost thaw have facilitated woody encroachment, leading to enhanced fire activity. This study highlights that moisture–vegetation–fire feedbacks significantly influence tundra fire regimes, with implications for ongoing Arctic greening and warming.
We found low fire activity in northern Arctic Alaska from ~1000 BCE to 500 CE, and a marked...
Altmetrics
Final-revised paper
Preprint