Articles | Volume 22, issue 21
https://doi.org/10.5194/bg-22-6765-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-6765-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A δ11B-pH calibration for the high-latitude foraminifera species Neogloboquadrina pachyderma and Neogloboquadrina incompta
School of Geography, Archaeology, and Irish Studies, University of Galway, H91TK33 Galway, Ireland
Markus Raitzsch
Dettmer Group GmbH & Co. KG., 28195 Bremen, Germany
Gavin L. Foster
School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, SO14 3ZH, UK
Jelle Bijma
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
Ulysses S. Ninnemann
Department of Earth Science and Bjerknes Centre for Climate Research, University of Bergen, 5007, Bergen, Norway
Michal Kucera
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Tali Lea Babila
Case Western Reserve University, Department of Earth, Environmental and Planetary Sciences, Cleveland, Ohio, USA
Jessica Crumpton Banks
School of Geography, Archaeology, and Irish Studies, University of Galway, H91TK33 Galway, Ireland
Mohamed M. Ezat
iC3: Centre for ice, Cryosphere, Carbon and Climate, Department of Geosciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
Audrey Morley
CORRESPONDING AUTHOR
School of Geography, Archaeology, and Irish Studies, University of Galway, H91TK33 Galway, Ireland
iCRAG – Irish Centre for Research in Applied Geosciences, Belfield, Dublin 4, Ireland
Related authors
Elwyn de la Vega, Thomas B. Chalk, Mathis P. Hain, Megan R. Wilding, Daniel Casey, Robin Gledhill, Chongguang Luo, Paul A. Wilson, and Gavin L. Foster
Clim. Past, 19, 2493–2510, https://doi.org/10.5194/cp-19-2493-2023, https://doi.org/10.5194/cp-19-2493-2023, 2023
Short summary
Short summary
We evaluate how faithfully the boron isotope composition of foraminifera records atmospheric CO2 by comparing it to the high-fidelity CO2 record from the Antarctic ice cores. We evaluate potential factors and find that partial dissolution of foraminifera shells, assumptions of seawater chemistry, and the biology of foraminifera all have a negligible effect on reconstructed CO2. This gives confidence in the use of boron isotopes beyond the interval when ice core CO2 is available.
Lukas Jonkers, Martina Hollstein, Michael Siccha, and Michal Kucera
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-599, https://doi.org/10.5194/essd-2025-599, 2025
Preprint under review for ESSD
Short summary
Short summary
Palaeoclimate data can provide a long-term perspective on climate change and serve as an benchmark for climate models. We have compiled a multi-parameter marine palaeoclimate data synthesis that contains time series spanning 0 to 130,000 years ago with rich metadata to facilitate reuse. We describe the methodology, contents and format of version 2 of this synthesis that presents a large increase in spatiotemporal coverage. We end with recommendations for palaeodata stewardship.
Jelle Bijma, Mathilde Hagens, Jens Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim Jesper Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter A. Wolf-Gladrow
EGUsphere, https://doi.org/10.5194/egusphere-2025-2740, https://doi.org/10.5194/egusphere-2025-2740, 2025
Short summary
Short summary
Enhanced rock weathering is a nature based negative emission technology, that permanently stores CO2. It requires rock-flour to be added to arable land with the help of farmers. To be eligible for carbon credits calls for a simple but scientifically solid, so called, Monitoring, Reporting & Verification” (MRV). We demonstrate that the commonly used carbon-based accounting is ill-suited to close the balance in open systems such as arable land, and argue for cation-based accounting strategy.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Pauline Cornuault, Luc Beaufort, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
EGUsphere, https://doi.org/10.5194/egusphere-2025-198, https://doi.org/10.5194/egusphere-2025-198, 2025
Short summary
Short summary
We present new high-resolution data of the relative contribution of the two main pelagic carbonate producers (coccoliths and foraminifera) to the total pelagic carbonate production from the tropical Atlantic in past warm periods since the Miocene. Our findings suggests that the two groups responded differently to orbital forcing and oceanic changes in tropical ocean, but their proportion changes did not drive the changes in overall pelagic carbonate deposition.
Nil Irvalı, Ulysses S. Ninnemann, Are Olsen, Neil L. Rose, David J. R. Thornalley, Tor L. Mjell, and François Counillon
Geochronology, 6, 449–463, https://doi.org/10.5194/gchron-6-449-2024, https://doi.org/10.5194/gchron-6-449-2024, 2024
Short summary
Short summary
Marine sediments are excellent archives for reconstructing past changes in climate and ocean circulation. Yet, dating uncertainties, particularly during the 20th century, pose major challenges. Here we propose a novel chronostratigraphic approach that uses anthropogenic signals, such as the oceanic 13C Suess effect and spheroidal carbonaceous fly-ash particles, to reduce age model uncertainties in high-resolution marine archives over the 20th century.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Michelle J. Curran, Christophe Colin, Megan Murphy O’Connor, Ulysses S. Ninnemann, and Audrey Morley
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-101, https://doi.org/10.5194/cp-2023-101, 2024
Revised manuscript not accepted
Short summary
Short summary
Our multi-proxy examination of an abrupt climate event during peak MIS11 reveals new evidence that the reorganisation of Polar and Atlantic Waters at subpolar latitudes is central mechanistically for the stability of North Atlantic Deep Water formation. We conclude that high-magnitude AMOC variability is possible without the addition of freshwater or Icebergs to deep water formation regions challenging established knowledge of AMOC sensitivity and stability during warm climates.
Elwyn de la Vega, Thomas B. Chalk, Mathis P. Hain, Megan R. Wilding, Daniel Casey, Robin Gledhill, Chongguang Luo, Paul A. Wilson, and Gavin L. Foster
Clim. Past, 19, 2493–2510, https://doi.org/10.5194/cp-19-2493-2023, https://doi.org/10.5194/cp-19-2493-2023, 2023
Short summary
Short summary
We evaluate how faithfully the boron isotope composition of foraminifera records atmospheric CO2 by comparing it to the high-fidelity CO2 record from the Antarctic ice cores. We evaluate potential factors and find that partial dissolution of foraminifera shells, assumptions of seawater chemistry, and the biology of foraminifera all have a negligible effect on reconstructed CO2. This gives confidence in the use of boron isotopes beyond the interval when ice core CO2 is available.
Sabrina Hohmann, Michal Kucera, and Anne de Vernal
Clim. Past, 19, 2027–2051, https://doi.org/10.5194/cp-19-2027-2023, https://doi.org/10.5194/cp-19-2027-2023, 2023
Short summary
Short summary
Drivers for dinocyst assemblage compositions differ regionally and through time. Shifts in the assemblages can sometimes only be interpreted robustly by locally and sometimes globally calibrated transfer functions, questioning the reliability of environmental reconstructions. We suggest the necessity of a thorough evaluation of transfer function performance and significance for downcore applications to disclose the drivers for present and fossil dinocyst assemblages in a studied core location.
Michal Kučera and Geert-Jan A. Brummer
J. Micropalaeontol., 42, 33–34, https://doi.org/10.5194/jm-42-33-2023, https://doi.org/10.5194/jm-42-33-2023, 2023
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Franziska Tell, Lukas Jonkers, Julie Meilland, and Michal Kucera
Biogeosciences, 19, 4903–4927, https://doi.org/10.5194/bg-19-4903-2022, https://doi.org/10.5194/bg-19-4903-2022, 2022
Short summary
Short summary
This study analyses the production of calcite shells formed by one of the main Arctic pelagic calcifiers, the foraminifera N. pachyderma. Using vertically resolved profiles of shell concentration, size and weight, we show that calcification occurs throughout the upper 300 m with an average production flux below the calcification zone of 8 mg CaCO3 m−2 d−1 representing 23 % of the total pelagic biogenic carbonate production. The production flux is attenuated in the twilight zone by dissolution.
Dakota E. Holmes, Tali L. Babila, Ulysses Ninnemann, Gordon Bromley, Shane Tyrrell, Greig A. Paterson, Michelle J. Curran, and Audrey Morley
Clim. Past, 18, 989–1009, https://doi.org/10.5194/cp-18-989-2022, https://doi.org/10.5194/cp-18-989-2022, 2022
Short summary
Short summary
Our proxy-based observations of the glacial inception following MIS 11 advance our mechanistic understanding of (and elucidates antecedent conditions that can lead to) high-magnitude climate instability during low- and intermediate-ice boundary conditions. We find that irrespective of the magnitude of climate variability or boundary conditions, the reorganization between Polar Water and Atlantic Water at subpolar latitudes appears to influence deep-water flow in the Nordic Seas.
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Lukas Jonkers, Oliver Bothe, and Michal Kucera
Clim. Past, 17, 2577–2581, https://doi.org/10.5194/cp-17-2577-2021, https://doi.org/10.5194/cp-17-2577-2021, 2021
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Jutta E. Wollenburg, Jelle Bijma, Charlotte Cremer, Ulf Bickmeyer, and Zora Mila Colomba Zittier
Biogeosciences, 18, 3903–3915, https://doi.org/10.5194/bg-18-3903-2021, https://doi.org/10.5194/bg-18-3903-2021, 2021
Short summary
Short summary
Cultured at in situ high-pressure conditions Cibicides and Cibicidoides taxa develop lasting ectoplasmic structures that cannot be retracted or resorbed. An ectoplasmic envelope surrounds their test and may protect the shell, e.g. versus carbonate aggressive bottom water conditions. Ectoplasmic roots likely anchor the specimens in areas of strong bottom water currents, trees enable them to elevate themselves above ground, and twigs stabilize and guide the retractable pseudopodial network.
Anne L. Morée, Jörg Schwinger, Ulysses S. Ninnemann, Aurich Jeltsch-Thömmes, Ingo Bethke, and Christoph Heinze
Clim. Past, 17, 753–774, https://doi.org/10.5194/cp-17-753-2021, https://doi.org/10.5194/cp-17-753-2021, 2021
Short summary
Short summary
This modeling study of the Last Glacial Maximum (LGM, ~ 21 000 years ago) ocean explores the biological and physical changes in the ocean needed to satisfy marine proxy records, with a focus on the carbon isotope 13C. We estimate that the LGM ocean may have been up to twice as efficient at sequestering carbon and nutrients at depth as compared to preindustrial times. Our work shows that both circulation and biogeochemical changes must have occurred between the LGM and preindustrial times.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Cited articles
Alldredge, A. L. and Cohen, Y.: Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets, Science, 235, 689–691, 1987.
Altuna, N. E. B., Pieńkowski, A. J., Eynaud, F., and Thiessen, R.: The morphotypes of Neogloboquadrina pachyderma: Isotopic signature and distribution patterns in the Canadian Arctic Archipelago and adjacent regions, Marine Micropaleontology, 142, 13–24, 2018.
Anagnostou, E., Huang, K.-F., You, C.-F., Sikes, E., and Sherrell, R.: Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: Evidence of physiological pH adjustment, Earth and Planetary Science Letters, 349, 251–260, 2012.
Anagnostou, E., Williams, B., Westfield, I., Foster, G., and Ries, J.: Calibration of the pH-δ11B and temperature-Mg/Li proxies in the long-lived high-latitude crustose coralline red alga Clathromorphum compactum via controlled laboratory experiments, Geochimica et Cosmochimica Acta, 254, 142–155, 2019.
Anand, P., Elderfield, H., and Conte, M. H.: Calibration of thermometry in planktonic foraminifera from a sediment trap time series, Paleoceanography, 18, 1050, https://doi.org/10.1029/2002pa000846, 2003.
Azetsu-Scott, K., Clarke, A., Falkner, K., Hamilton, J., Jones, E. P., Lee, C., Petrie, B., Prinsenberg, S., Starr, M., and Yeats, P.: Calcium carbonate saturation states in the waters of the Canadian Arctic Archipelago and the Labrador Sea, Journal of Geophysical Research: Oceans, 115, C11021, https://doi.org/10.1029/2009JC005917, 2010.
Barker, S., Greaves, M., and Elderfield, H.: A study of cleaning procedures used for foraminiferal paleothermometry, Geochemistry Geophysics Geosystems, 4, 8407, https://doi.org/10.1029/2003GC000559, 2003.
Bauch, D., Carstens, J., and Wefer, G.: Oxygen isotope composition of living Neogloboquadrina pachyderma (sin.) in the Arctic Ocean, Earth and Planetary Science Letters, 146, 47–58, 1997.
Baumann, A.: Dinoflagellaten-Zysten als Paläoumweltindikatoren im Spätquartär des Europäischen Nordmeeres, PhD thesis, Universität Bremen, https://doi.org/10.23689/fidgeo-314, 2007.
Bentov, S., Brownlee, C., and Erez, J.: The role of seawater endocytosis in the biomineralization process in calcareous foraminifera, Proceedings of the National Academy of Sciences, 106, 21500–21504, 2009.
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present, Geophysical Research Letters, 42, 542–549, 2015.
Berger, W. H. and Piper, D. J. W.: Planktonic foraminifera: differential settling, dissolution, and redeposition, Limnology Oceanography, 17, 275–287, 1972.
Berger, W. H., Bonneau, M.-C., and Parker, F. L.: Foraminifera on the deep-sea floor: lysocline and dissolution rate, Oceanologica Acta, 5, 249–258, 1982.
Bishop, J. K.: The barite-opal-organic carbon association in oceanic particulate matter, Nature, 6162, 341–343, 1988.
Burke, J. E., Renema, W., Schiebel, R., and Hull, P. M.: Three-dimensional analysis of inter-and intraspecific variation in ontogenetic growth trajectories of planktonic foraminifera, Marine Micropaleontology, 155, 101794, https://doi.org/10.1016/j.marmicro.2019.101794, 2020.
Chalk, T. B., Hain, M. P., Foster, G. L., Rohling, E. J., Sexton, P. F., Badger, M. P., Cherry, S. G., Hasenfratz, A. P., Haug, G. H., and Jaccard, S. L.: Causes of ice age intensification across the Mid-Pleistocene Transition, Proceedings of the National Academy of Sciences, 114, 13114–13119, 2017.
Cifelli, R.: Globigerina incompta, a new species of pelagic foraminifera from the North Atlantic, Contributions from the Cushman Foundation for Foraminiferal Research, 12, 83–86, 1961.
Consortium, C. C. P. I. P., Hönisch, B., Royer, D. L., Breecker, D. O., Polissar, P. J., Bowen, G. J., Henehan, M. J., Cui, Y., Steinthorsdottir, M., and McElwain, J. C.: Toward a Cenozoic history of atmospheric CO2, Science, 382, eadi5177, https://doi.org/10.1126/science.adi5177, 2023.
Darling, K. F., Kucera, M., Kroon, D., and Wade, C. M.: A resolution for the coiling direction paradox in Neogloboquadrina pachyderma, Paleoceanography, 21, PA2011, https://doi.org/10.1029/2005PA001189, 2006.
Davis, C. V., Fehrenbacher, J. S., Hill, T. M., Russell, A. D., and Spero, H. J.: Relationships Between Temperature, pH, and Crusting on Ratios in Laboratory-Grown Neogloboquadrina Foraminifera, Paleoceanography, 32, 1137–1152, 2017.
Davis, C. V., Livsey, C. M., Palmer, H. M., Hull, P. M., Thomas, E., Hill, T. M., and Benitez-Nelson, C. R.: Extensive morphological variability in asexually produced planktic foraminifera, Science Advances, 6, eabb8930, https://doi.org/10.1126/sciadv.abb8930, 2020.
Dehairs, F., Chesselet, R., and Jedwab, J.: Discrete suspended particles of barite and the barium cycle in the open ocean, Earth and Planetary Science Letters, 49, 528–550, https://doi.org/10.1016/0012-821X(80)90094-1, 1980.
Dekens, P. S., Lea, D. W., Pak, D. K., and Spero, H. J.: Core top calibration of in tropical foraminifera: Refining paleotemperature estimation, Geochemistry Geophysics Geosystems, 3, 1022, https://doi.org/10.1029/2001gc000200, 2002.
de la Vega, E., Chalk, T. B., Hain, M. P., Wilding, M. R., Casey, D., Gledhill, R., Luo, C., Wilson, P. A., and Foster, G. L.: Orbital CO2 reconstruction using boron isotopes during the late Pleistocene, an assessment of accuracy, Clim. Past, 19, 2493–2510, https://doi.org/10.5194/cp-19-2493-2023, 2023.
de Nooijer, L. J., Toyofuku, T., and Kitazato, H.: Foraminifera promote calcification by elevating their intracellular pH, Proceedings of the National Academy of Sciences, 106, 15374–15378, 2009.
de Nooijer, L. D., Spero, H., Erez, J., Bijma, J., and Reichart, G.-J.: Biomineralization in perforate foraminifera, Earth-Science Reviews, 135, 48–58, 2014.
Dickson, A.: Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K, Deep Sea Research Part A, 37, 755–766, 1990.
Erez, J. and Honjo, S.: Comparison of isotopic composition of planktonic foraminifera in plankton tows, sediment traps and sediments, Palaeogeogr. Palaeoclimatol. Palaeocol., 33, 129–156, 1981.
Evans, D., Müller, W., and Erez, J.: Assessing foraminifera biomineralisation models through trace element data of cultures under variable seawater chemistry, Geochimica et Cosmochimica Acta, 236, 198–217, 2018.
Ezat, M. M., Rasmussen, T. L., Hönisch, B., Groeneveld, J., and Demenocal, P.: Episodic release of CO2 from the high-latitude North Atlantic Ocean during the last 135 kyr, Nature Communications, 8, 14498, https://doi.org/10.1038/ncomms14498, 2017.
Farmer, J. R., Hönisch, B., and Uchikawa, J.: Single laboratory comparison of MC-ICP-MS and N-TIMS boron isotope analyses in marine carbonates, Chemical Geology, 447, 173–182, 2016.
Farmer, J. R., Branson, O., Uchikawa, J., Penman, D. E., Hönisch, B., and Zeebe, R. E.: Boric acid and borate incorporation in inorganic calcite inferred from B/Ca, boron isotopes and surface kinetic modeling, Geochimica et Cosmochimica Acta, 244, 229–247, 2019.
Fehrenbacher, J. S., Russell, A. D., Davis, C. V., Gagnon, A. C., Spero, H. J., Cliff, J. B., Zhu, Z., and Martin, P.: Link between light-triggered Mg-banding and chamber formation in the planktic foraminifera Neogloboquadrina dutertrei, Nature Communications, 8, 15441, https://doi.org/10.1038/ncomms15441, 2017.
Fehrenbacher, J. S., Russell, A. D., Davis, C. V., Spero, H. J., Chu, E., and Hönisch, B.: ratios in the non-spinose planktic foraminifer Neogloboquadrina dutertrei: Evidence for an organic aggregate microhabitat, Geochimica et Cosmochimica Acta, 236, 361–372, 2018.
Foster, G.: Seawater pH, pCO2 and [CO2-3] variations in the Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic foraminifera, Earth and Planetary Science Letters, 271, 254–266, 2008.
Foster, G. L. and Rae, J. W.: Reconstructing ocean pH with boron isotopes in foraminifera, Annual Review of Earth and Planetary Sciences, 44, 207–237, 2016.
Foster, G., Pogge von Strandmann, P. A., and Rae, J.: Boron and magnesium isotopic composition of seawater, Geochemistry, Geophysics, Geosystems, 11, Q08015, https://doi.org/10.1029/2010GC003201, 2010.
Foster, G. L., Hönisch, B., Paris, G., Dwyer, G. S., Rae, J. W., Elliott, T., Gaillardet, J., Hemming, N. G., Louvat, P., and Vengosh, A.: Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS, Chemical Geology, 358, 1–14, 2013.
Fritz-Endres, T., Fehrenbacher, J. S., Russell, A. D., and Cynar, H.: Increased productivity in the equatorial pacific during the deglaciation inferred from the ratios of non-spinose planktic foraminifera, Paleoceanography and Paleoclimatology, 37, e2022PA004506, https://doi.org/10.1029/2022PA004506, 2022.
Gagnon, A. C., Gothmann, A. M., Branson, O., Rae, J. W., and Stewart, J. A.: Controls on boron isotopes in a cold-water coral and the cost of resilience to ocean acidification, Earth and Planetary Science Letters, 554, 116662, https://doi.org/10.1016/j.epsl.2020.116662, 2021.
Gaillardet, J., Lemarchand, D., Göpel, C., and Manhès, G.: Evaporation and sublimation of boric acid: application for boron purification from organic rich solutions, Geostandards Newsletter, 25, 67–75, 2001.
Gilbert, P. U., Bergmann, K. D., Boekelheide, N., Tambutté, S., Mass, T., Marin, F., Adkins, J. F., Erez, J., Gilbert, B., and Knutson, V.: Biomineralization: Integrating mechanism and evolutionary history, Science advances, 8, eabl9653, https://doi.org/10.1126/sciadv.abl9653, 2022.
González-Munoz, M. T., Fernández-Luque, B., Martínez-Ruiz, F., Ben Chekroun, K., Arias, J. M., Rodríguez-Gallego, M., Martínez-Canamero, M., de Linares, C., and Paytan, A.: Precipitation of barite by Myxococcus xanthus: possible implications for the biogeochemical cycle of barium, Applied and Environmental Microbiology, 69.9, https://doi.org/10.1128/AEM.69.9.5722-5725.2003, 2003.
Gray, W. R. and Evans, D.: Nonthermal influences on in planktonic foraminifera: A review of culture studies and application to the last glacial maximum, Paleoceanography and Paleoclimatology, 34, 306–315, 2019.
Greco, M., Jonkers, L., Kretschmer, K., Bijma, J., and Kucera, M.: Depth habitat of the planktonic foraminifera Neogloboquadrina pachyderma in the northern high latitudes explained by sea-ice and chlorophyll concentrations, Biogeosciences, 16, 3425–3437, https://doi.org/10.5194/bg-16-3425-2019, 2019.
Guillermic, M., Misra, S., Eagle, R., Villa, A., Chang, F., and Tripati, A.: Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients, Biogeosciences, 17, 3487–3510, https://doi.org/10.5194/bg-17-3487-2020, 2020.
Gutjahr, M., Bordier, L., Douville, E., Farmer, J., Foster, G. L., Hathorne, E. C., Hönisch, B., Lemarchand, D., Louvat, P., and McCulloch, M.: Sub-permil interlaboratory consistency for solution-based boron isotope analyses on marine carbonates, Geostandards and Geoanalytical Research, 45, 59–75, 2021.
Hansen, B. and Østerhus, S.: North atlantic–nordic seas exchanges, Progress in oceanography, 45, 109–208, 2000.
Hathorne, E. C., Gagnon, A., Felis, T., Adkins, J., Asami, R., Boer, W., Caillon, N., Case, D., Cobb, K. M., and Douville, E.: Interlaboratory study for coral Sr/Ca and other element Ca ratio measurements, Geochemistry, Geophysics, Geosystems, 14, 3730–3750, 2013.
Henehan, M. J., Rae, J. W., Foster, G. L., Erez, J., Prentice, K. C., Kucera, M., Bostock, H. C., Martínez-Botí, M. A., Milton, J. A., and Wilson, P. A.: Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction, Earth and Planetary Science Letters, 364, 111–122, 2013.
Henehan, M. J., Foster, G. L., Rae, J. W., Prentice, K. C., Erez, J., Bostock, H. C., Marshall, B. J., and Wilson, P. A.: Evaluating the utility of B/Ca ratios in planktic foraminifera as a proxy for the carbonate system: A case study of Globigerinoides ruber, Geochemistry, Geophysics, Geosystems, 16, 1052–1069, 2015.
Henehan, M. J., Foster, G. L., Bostock, H. C., Greenop, R., Marshall, B. J., and Wilson, P. A.: A new boron isotope-pH calibration for Orbulina universa, with implications for understanding and accounting for `vital effects', Earth and Planetary Science Letters, 454, 282–292, 2016.
Hönisch, B. and Hemming, N. G.: Ground-truthing the boron isotope-paleo-pH proxy in planktonic foraminifera shells: Partial dissolution and shell size effects, Paleoceanography, 19, PA4010, https://doi.org/10.1029/2004PA001026, 2004.
Hönisch, B., Bijma, J., Russell, A. D., Spero, H. J., Palmer, M. R., Zeebe, R. E., and Eisenhauer, A.: The influence of symbiont photosynthesis on the boron isotopic composition of foraminifera shells, Marine Micropaleontology, 49, 87–96, 2003.
Hönisch, B., Allen, K. A., Russell, A. D., Eggins, S. M., Bijma, J., Spero, H. J., Lea, D. W., and Yu, J.: Planktic foraminifers as recorders of seawater , Marine Micropaleontology, 79, 52–57, https://doi.org/10.1016/j.marmicro.2011.01.003, 2011.
Hönisch, B., Eggins, S. M., Haynes, L. L., Allen, K. A., Holland, K. D., and Lorbacher, K.: Boron proxies in paleoceanography and paleoclimatology, Wiley, ISBN 9781119010678, 2019.
Horner, T. J. and Crockford, P. W.: Barium isotopes: Drivers, dependencies, and distributions through space and time, Cambridge University Press, Cambridge University Press, ISBN 9781108865845, 2021.
Hupp, B. N. and Fehrenbacher, J. S.: Geochemical differences between alive, uncrusted and dead, crusted shells of Neogloboquadrina pachyderma: Implications for paleoreconstruction, Paleoceanography and Paleoclimatology, 38, e2023PA004638, https://doi.org/10.1029/2023PA004638, 2023.
Johnson, G. C.: Quantifying Antarctic bottom water and North Atlantic deep water volumes, Journal of Geophysical Research: Oceans, 113, C05027, https://doi.org/10.1029/2007JC004477, 2008.
Jonkers, L., Brummer, G. J. A., Peeters, F. J., van Aken, H. M., and De Jong, M. F.: Seasonal stratification, shell flux, and oxygen isotope dynamics of left-coiling N. pachyderma and T. quinqueloba in the western subpolar North Atlantic, Paleoceanography, 25, PA2204, https://doi.org/10.1029/2009PA001849, 2010.
Jonkers, L., Heuven, S., Zahn, R., and Peeters, F. J.: Seasonal patterns of shell flux, δ18O and δ13C of small and large N. pachyderma (s) and G. bulloides in the subpolar North Atlantic, Paleoceanography, 28, 164–174, 2013.
Jonkers, L., Buse, B., Brummer, G.-J. A., and Hall, I. R.: Chamber formation leads to banding in the planktonic foraminifer Neogloboquadrina pachyderma, Earth and Planetary Science Letters, 451, 177–184, 2016.
Jonkers, L., Brummer, G.-J. A., Meilland, J., Groeneveld, J., and Kucera, M.: Variability in Neogloboquadrina pachyderma stable isotope ratios from isothermal conditions: implications for individual foraminifera analysis, Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, 2022.
King, A. L. and Howard, W. R.: δ18O seasonality of planktonic foraminifera from Southern Ocean sediment traps: Latitudinal gradients and implications for paleoclimate reconstructions, Marine Micropaleontology, 56, 1–24, 2005.
Klochko, K., Kaufman, A. J., Yao, W., Byrne, R. H., and Tossell, J. A.: Experimental measurement of boron isotope fractionation in seawater, Earth and Planetary Science Letters, 248, 276–285, 2006.
Kohfeld, K. E., Fairbanks, R. G., Smith, S. L., and Walsh, I. D.: Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from Northeast Water Polynya plankton tows, sediment traps, and surface sediments, Paleoceanography, 11, 679–699, 1996.
Kozdon, R., Ushikubo, T., Kita, N., Spicuzza, M., and Valley, J.: Intratest oxygen isotope variability in the planktonic foraminifer N. pachyderma: Real vs. apparent vital effects by ion microprobe, Chemical Geology, 258, 327–337, 2009.
Lauvset, S. K., Lange, N., Tanhua, T., Bittig, H. C., Olsen, A., Kozyr, A., Alin, S., Álvarez, M., Azetsu-Scott, K., Barbero, L., Becker, S., Brown, P. J., Carter, B. R., da Cunha, L. C., Feely, R. A., Hoppema, M., Humphreys, M. P., Ishii, M., Jeansson, E., Jiang, L.-Q., Jones, S. D., Lo Monaco, C., Murata, A., Müller, J. D., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Ulfsbo, A., Velo, A., Woosley, R. J., and Key, R. M.: GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product, Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, 2022.
Lea, D., Mashiotta, T. A., and Spero, H. J.: Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing, Geochimica et Cosmochimica Acta, 63, 2369–2379, 1999.
Lee, K., Kim, T.-W., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu, Y.-M.: The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans, Geochimica et Cosmochimica Acta, 74, 1801–1811, 2010.
Livsey, C. M., Kozdon, R., Bauch, D., Brummer, G. J. A., Jonkers, L., Orland, I., Hill, T. M., and Spero, H. J.: High-resolution and δ18O patterns in modern Neogloboquadrina pachyderma from the Fram Strait and Irminger Sea, Paleoceanography and Paleoclimatology, 35, e2020PA003969, https://doi.org/10.1029/2020PA003969, 2020.
Lombard, F., Labeyrie, L., Michel, E., Bopp, L., Cortijo, E., Retailleau, S., Howa, H., and Jorissen, F.: Modelling planktic foraminifer growth and distribution using an ecophysiological multi-species approach, Biogeosciences, 8, 853–873, https://doi.org/10.5194/bg-8-853-2011, 2011.
Manno, C. and Pavlov, A.: Living planktonic foraminifera in the Fram Strait (Arctic): absence of diel vertical migration during the midnight sun, Hydrobiologia, 721, 285–295, 2014.
Martínez-Botí, M., Mortyn, P., Schmidt, D., Vance, D., and Field, D.: in foraminifera from plankton tows: Evaluation of proxy controls and comparison with core tops, Earth and Planetary Science Letters, 307, 113–125, 2011.
Martínez-Botí, M. A., Marino, G., Foster, G. L., Ziveri, P., Henehan, M. J., Rae, J. W., Mortyn, P. G., and Vance, D.: Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation, Nature, 518, 219, https://doi.org/10.1038/nature14155, 2015.
Martinez-Ruiz, F., Paytan, A., Gonzalez-Munoz, M., Jroundi, F., Abad, M. d. M., Lam, P. J., Horner, T. J., and Kastner, M.: Barite precipitation on suspended organic matter in the mesopelagic zone, Frontiers in Earth Science, 8, 567714, https://doi.org/10.3389/feart.2020.567714, 2020.
Mayk, D., Fietzke, J., Anagnostou, E., and Paytan, A.: LA-MC-ICP-MS study of boron isotopes in individual planktonic foraminifera: A novel approach to obtain seasonal variability patterns, Chemical Geology, 531, 119351, https://doi.org/10.1016/j.chemgeo.2019.119351, 2020.
McCulloch, M., Trotter, J., Montagna, P., Falter, J., Dunbar, R., Freiwald, A., Försterra, G., Correa, M. L., Maier, C., and Rüggeberg, A.: Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation, Geochimica et Cosmochimica Acta, 87, 21–34, 2012.
Meilland, J., Siccha, M., Kaffenberger, M., Bijma, J., and Kucera, M.: Population dynamics and reproduction strategies of planktonic foraminifera in the open ocean, Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, 2021.
Mikis, A., Hendry, K. R., Pike, J., Schmidt, D. N., Edgar, K. M., Peck, V., Peeters, F. J. C., Leng, M. J., Meredith, M. P., Jones, C. L. C., Stammerjohn, S., and Ducklow, H.: Temporal variability in foraminiferal morphology and geochemistry at the West Antarctic Peninsula: a sediment trap study, Biogeosciences, 16, 3267–3282, https://doi.org/10.5194/bg-16-3267-2019, 2019.
Misra, S., Owen, R., Kerr, J., Greaves, M., and Elderfield, H.: Determination of δ11B by HR-ICP-MS from mass limited samples: Application to natural carbonates and water samples, Geochimica et Cosmochimica Acta, 140, 531–552, 2014.
Moffa-Sánchez, P., Hall, I. R., Barker, S., Thornalley, D. J., and Yashayaev, I.: Surface changes in the eastern Labrador Sea around the onset of the Little Ice Age, Paleoceanography, 29, 160–175, 2014.
Morley, A., de la Vega, E., Raitzsch, M., Bijma, J., Ninnemann, U., Foster, G., Chalk, T. B., Meilland, J., Cave, R., and Büscher, J.: A solution for constraining past marine Polar Amplification, Nature Communications, 15, 9002, https://doi.org/10.1038/s41467-024-53424-w, 2024.
Mortyn, P. G. and Charles, C. D.: Planktonic foraminiferal depth habitat and δ18O calibrations: Plankton tow results from the Atlantic sector of the Southern Ocean, Paleoceanography, 18, 1037, https://doi.org/10.1029/2001PA000637, 2003.
Ni, Y., Foster, G. L., Bailey, T., Elliott, T., Schmidt, D. N., Pearson, P., Haley, B., and Coath, C.: A core top assessment of proxies for the ocean carbonate system in surface-dwelling foraminifers, Paleoceanography, 22, PA3212, https://doi.org/10.1029/2006PA001337, 2007.
Nickoloff, G., Else, B., Ahmed, M., Burgers, T., Miller, L., and Papakyriakou, T.: Strong pCO2 undersaturation in an Arctic sea: A decade of spatial and temporal variability in Baffin Bay, Journal of Geophysical Research: Oceans, 129, e2023JC020595, https://doi.org/10.1029/2023JC020595, 2024.
Østerhus, S., Woodgate, R., Valdimarsson, H., Turrell, B., de Steur, L., Quadfasel, D., Olsen, S. M., Moritz, M., Lee, C. M., Larsen, K. M. H., Jónsson, S., Johnson, C., Jochumsen, K., Hansen, B., Curry, B., Cunningham, S., and Berx, B.: Arctic Mediterranean exchanges: a consistent volume budget and trends in transports from two decades of observations, Ocean Sci., 15, 379–399, https://doi.org/10.5194/os-15-379-2019, 2019.
Pados, T. and Spielhagen, R. F.: Species distribution and depth habitat of recent planktic foraminifera in Fram Strait, Arctic Ocean, Polar Research, 33, 22483, https://doi.org/10.3402/polar.v33.22483, 2014.
Ploug, H., Grossart, H.-P., Azam, F., and Jorgensen, B. B.: Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: implications for the carbon cycle, Marine Ecology Progress Series, 179, 1–11, 1999.
Rae, J. W., Foster, G. L., Schmidt, D. N., and Elliott, T.: Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system, Earth and Planetary Science Letters, 302, 403–413, 2011.
Rae, J. W., Burke, A., Robinson, L., Adkins, J. F., Chen, T., Cole, C., Greenop, R., Li, T., Littley, E., and Nita, D.: CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales, Nature, 562, 569–573, 2018.
Raitzsch, M., Bijma, J., Benthien, A., Richter, K.-U., Steinhoefel, G., and Kučera, M.: Boron isotope-based seasonal paleo-pH reconstruction for the Southeast Atlantic–A multispecies approach using habitat preference of planktonic foraminifera, Earth and Planetary Science Letters, 487, 138–150, 2018.
Raitzsch, M., Rollion-Bard, C., Horn, I., Steinhoefel, G., Benthien, A., Richter, K.-U., Buisson, M., Louvat, P., and Bijma, J.: Technical note: Single-shell δ11B analysis of Cibicidoides wuellerstorfi using femtosecond laser ablation MC-ICPMS and secondary ion mass spectrometry, Biogeosciences, 17, 5365–5375, https://doi.org/10.5194/bg-17-5365-2020, 2020.
Ravelo, A. C. and Hillaire-Marcel, C.: Chapter eighteen the use of oxygen and carbon isotopes of foraminifera in paleoceanography, Developments in marine geology, 1, 735–764, 2007.
Raven, J. A. and Falkowski, P. G.: Oceanic sinks for atmospheric CO2, Plant, Cell & Environment, 22, 741–755, 1999.
Richey, J. N., Fehrenbacher, J. S., Reynolds, C. E., Davis, C. V., and Spero, H. J.: Barium enrichment in the non-spinose planktic foraminifer, Globorotalia truncatulinoides, Geochimica et Cosmochimica Acta, 333, 184–199, 2022.
Rink, S., Kühl, M., Bijma, J., and Spero, H.: Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa, Marine Biology, 131, 583–595, 1998.
Rysgaard, S., Bendtsen, J., Pedersen, L. T., Ramløv, H., and Glud, R. N.: Increased CO2 uptake due to sea ice growth and decay in the Nordic Seas, Journal of Geophysical Research: Oceans, 114, C09011, https://doi.org/10.1029/2008JC005088, 2009.
Sanyal, A., Bijma, J., Spero, H., and Lea, D. W.: Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: Implications for the boron isotope paleo-pH proxy, Paleoceanography, 16, 515–519, 2001.
Schlitzer, R.: Interactive analysis and visualization of geoscience data with Ocean Data View, Computers & Geosciences, 28, 1211–1218, https://doi.org/10.1016/S0098-3004(02)00040-7, 2002.
Schmittner, A. and Galbraith, E. D.: Glacial greenhouse-gas fluctuations controlled by ocean circulation changes, Nature, 456, 373–376, 2008.
Seki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., and Pancost, R. D.: Alkenone and boron-based Pliocene pCO2 records, Earth and Planetary Science Letters, 292, 201–211, 2010.
Shackleton, N.: Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial, Colloq. Int. C.N.R.S., 219, 203–209, 1974.
Shuttleworth, R., Bostock, H., Chalk, T. B., Calvo, E., Jaccard, S., Pelejero, C., Martínez-García, A., and Foster, G.: Early deglacial CO2 release from the Sub-Antarctic Atlantic and Pacific oceans, Earth and Planetary Science Letters, 554, 116649, https://doi.org/10.1016/j.epsl.2020.116649, 2021.
Si, W., Novak, J. B., Richter, N., Polissar, P., Ma, R., Santos, E., Nirenberg, J., Herbert, T. D., and Aubry, M.-P.: Alkenone-derived estimates of Cretaceous p CO2, Geology, 52, 555–559, 2024.
Simstich, J., Sarnthein, M., and Erlenkeuser, H.: Paired δ 18 O signals of Neogloboquadrina pachyderma (s) and Turborotalita quinqueloba show thermal stratification structure in Nordic Seas, Marine Micropaleontology, 48, 107–125, 2003.
Standish, C. D., Chalk, T. B., Babila, T. L., Milton, J. A., Palmer, M. R., and Foster, G. L.: The effect of matrix interferences on in situ boron isotope analysis by laser ablation multi-collector inductively coupled plasma mass spectrometry, Rapid Communications in Mass Spectrometry, 33, 959–968, 2019.
Stangeew, E.: Distribution and Isotopic Composition of Living Planktonic Foraminifera N. pachyderma (sinistral) and T. quinqueloba in the High Latitude North Atlantic, PhD thesis, Christian-Albrechts Universität Kiel, https://nbn-resolving.org/urn:nbn:de:gbv:8-diss-4645 (last access: 13 November 2025), 2001.
Stewart, J. A., Anagnostou, E., and Foster, G. L.: An improved boron isotope pH proxy calibration for the deep-sea coral Desmophyllum dianthus through sub-sampling of fibrous aragonite, Chemical Geology, 447, 148–160, 2016.
Stewart, J. A., Christopher, S. J., Kucklick, J. R., Bordier, L., Chalk, T. B., Dapoigny, A., Douville, E., Foster, G. L., Gray, W. R., and Greenop, R.: NIST RM 8301 boron isotopes in marine carbonate (simulated coral and foraminifera solutions): Inter-laboratory δ11B and trace element ratio value assignment, Geostandards and Geoanalytical Research, 45, 77–96, 2021.
Sulpis, O., Lauvset, S. K., and Hagens, M.: Current estimates of K1* and K2* appear inconsistent with measured CO2 system parameters in cold oceanic regions, Ocean Sci., 16, 847–862, https://doi.org/10.5194/os-16-847-2020, 2020.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., and Sabine, C.: Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans, Deep Sea Research Part II, 56, 554–577, 2009.
Takahashi, T., Sutherland, S. C., and Kozyr, A.: Global ocean surface water partial pressure of CO2 database: Measurements performed during 1957–2018 (version 2018), NOAA/NCEI/OCADS NDP-088 (V2018) Rep., 25 pp., https://www.ncei.noaa.gov (last access: 27 February 2025), 2019.
Tell, F., Jonkers, L., Meilland, J., and Kucera, M.: Upper-ocean flux of biogenic calcite produced by the Arctic planktonic foraminifera Neogloboquadrina pachyderma, Biogeosciences, 19, 4903–4927, https://doi.org/10.5194/bg-19-4903-2022, 2022.
Toyofuku, T., Matsuo, M. Y., de Nooijer, L. J., Nagai, Y., Kawada, S., Fujita, K., Reichart, G.-J., Nomaki, H., Tsuchiya, M., and Sakaguchi, H.: Proton pumping accompanies calcification in foraminifera, Nature Communications, 8, 14145, https://doi.org/10.1038/ncomms14145, 2017.
Uchikawa, J., Penman, D. E., Zachos, J. C., and Zeebe, R. E.: Experimental evidence for kinetic effects on B/Ca in synthetic calcite: implications for potential B (OH) 4- and B (OH) 3 incorporation, Geochimica et Cosmochimica Acta, 150, 171–191, 2015.
Ujiié, Y., Ishitani, Y., Nagai, Y., Takaki, Y., Toyofuku, T., and Ishii, S. i.: Unique evolution of foraminiferal calcification to survive global changes, Science Advances, 9, eadd3584, https://doi.org/10.1126/sciadv.add3584, 2023.
Volkmann, R. and Mensch, M.: Stable isotope composition (δ18O, δ13C) of living planktic foraminifers in the outer Laptev Sea and the Fram Strait, Marine Micropaleontology, 42, 163–188, 2001.
Wang, B.-S., You, C.-F., Huang, K.-F., Wu, S.-F., Aggarwal, S. K., Chung, C.-H., and Lin, P.-Y.: Direct separation of boron from Na-and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS, Talanta, 82, 1378–1384, 2010.
Weiss, R. F.: Carbon dioxide in water and seawater: The solubility of a non-ideal gas, Marine Chemistry, 2, 203–215, 1974.
WestgÅrd, A., Ezat, M. M., Chalk, T. B., Chierici, M., Foster, G. L., and Meilland, J.: Large-scale culturing of Neogloboquadrina pachyderma, its growth in, and tolerance of, variable environmental conditions, Journal of Plankton Research, 45, 732–745, 2023.
Winkelbauer, H. A., Hoogakker, B. A., Chance, R. J., Davis, C. V., Anthony, C. J., Bischoff, J., Carpenter, L. J., Chenery, S. R., Hamilton, E. M., and Holdship, P.: Planktic foraminifera iodine/calcium ratios from plankton tows, Frontiers in Marine Science, 10, 1095570, https://doi.org/10.3389/fmars.2023.1095570, 2023.
Wycech, J. B., Kelly, D. C., Kitajima, K., Kozdon, R., Orland, I. J., and Valley, J. W.: Combined effects of gametogenic calcification and dissolution on δ18O measurements of the planktic foraminifer Trilobatus sacculifer, Geochemistry, Geophysics, Geosystems, 19, 4487–4501, 2018.
Yasunaka, S., Manizza, M., Terhaar, J., Olsen, A., Yamaguchi, R., Landschützer, P., Watanabe, E., Carroll, D., Adiwira, H., and Müller, J. D.: An assessment of CO2 uptake in the Arctic Ocean from 1985 to 2018, Global Biogeochemical Cycles, 37, e2023GB007806, https://doi.org/10.1029/2023GB007806, 2023.
York, D., Evensen, N. M., Martínez, M. L., and De Basabe Delgado, J.: Unified equations for the slope, intercept, and standard errors of the best straight line, American journal of physics, 72, 367–375, 2004.
Yu, J., Thornalley, D. J., Rae, J. W., and McCave, N. I.: Calibration and application of B/Ca, Cd/Ca, and δ11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation, Paleoceanography, 28, 237–252, 2013.
Zeebe, R. E.: Stable boron isotope fractionation between dissolved B(OH)3 and B(OH)4-, Geochimica et Cosmochimica Acta, 69, 2753–2766, https://doi.org/10.1016/j.gca.2004.12.011, 2005.
Zeebe, R. E. and Sanyal, A.: Comparison of two potential strategies of planktonic foraminifera for house building: Mg2+ or H+ removal?, Geochimica et Cosmochimica Acta, 66, 1159–1169, 2002.
Zeebe, R. E. and Wolf-Gladrow, D.: CO2 in seawater: equilibrium, kinetics, isotopes, 65, Gulf Professional Publishing, ISBN 9780444509468, 2001.
Zeebe, R. E., Bijma, J., and Wolf-Gladrow, D. A.: A diffusion-reaction model of carbon isotope fractionation in foraminifera, Marine Chemistry, 64, 199–127, 1999.
Zeebe, R. E., Wolf-Gladrow, D. A., Bijma, J., and Hönisch, B.: Vital effects in foraminifera do not compromise the use of δ11B as a paleo-pH indicator: Evidence from modeling, Paleoceanography, 18, 1043, https://doi.org/10.1029/2003PA000881, 2003.
Short summary
The boron isotopic composition (δ11B) of foraminifera shells is an established proxy for the reconstruction of ocean pH. Applications to the Arctic oceans are however limited as robust calibrations in these regions are lacking. Here, we present a new calibration linking δ11B measured in two high-latitude foraminifera species to seawater pH. We show that the δ11B of the species analysed is well correlated with seawater pH and that this calibration can be applied to the paleorecord.
The boron isotopic composition (δ11B) of foraminifera shells is an established proxy for the...
Altmetrics
Final-revised paper
Preprint