Articles | Volume 22, issue 22
https://doi.org/10.5194/bg-22-6841-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-6841-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of mycorrhizal type and plant dominance in regulating nitrogen cycling in Oroarctic soils
Aurora Patchett
Department of Earth Sciences, University of Gothenburg, Box 460, 40530 Gothenburg, Sweden
Gothenburg Global Biodiversity Centre, P.O. Box 461, 405 30 Gothenburg, Sweden
Louise Rütting
Chair of Soil and Plant Systems, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
Tobias Rütting
Department of Earth Sciences, University of Gothenburg, Box 460, 40530 Gothenburg, Sweden
Samuel Bodé
Department of Green Chemistry and Technology, Isotope Bioscience Laboratory, Ghent University, Gent, Belgium
Sara Hallin
Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
Jaanis Juhanson
Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
C. Florian Stange
Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany
Mats P. Björkman
Department of Biology and Environmental Sciences, University of Gothenburg, Box 463, 40530 Gothenburg, Sweden
Gothenburg Global Biodiversity Centre, P.O. Box 461, 405 30 Gothenburg, Sweden
Pascal Boeckx
Department of Green Chemistry and Technology, Isotope Bioscience Laboratory, Ghent University, Gent, Belgium
Gunhild Rosqvist
Department of Physical Geography, Stockholm University, Stockholm, 106 91, Sweden
Department of Earth Sciences, University of Gothenburg, Box 460, 40530 Gothenburg, Sweden
Gothenburg Global Biodiversity Centre, P.O. Box 461, 405 30 Gothenburg, Sweden
Related authors
No articles found.
Inês Vieira, Félicien Meunier, Maria Carolina Duran Rojas, Stephen Sitch, Flossie Brown, Giacomo Gerosa, Silvano Fares, Pascal Boeckx, Marijn Bauters, and Hans Verbeeck
Biogeosciences, 22, 6205–6223, https://doi.org/10.5194/bg-22-6205-2025, https://doi.org/10.5194/bg-22-6205-2025, 2025
Short summary
Short summary
We used a computer model to study how ozone pollution reduces plant growth in six European forests, from Finland to Italy. Combining field data and simulations, we found that ozone can lower carbon uptake by up to 6 % each year, especially in Mediterranean areas. Our study shows that local climate and forest type influence ozone damage and highlights the need to include ozone effects in forest and climate models.
Anna-Maria Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie A. Kuhn, Simran Madaan, Richard O'Keefe, Tiffany Windholz, Kyle A. Arndt, Brendan M. Rogers, Jennifer D. Watts, Kelcy Kent, Mathias Göckede, David Olefeldt, Gerard Rocher-Ros, Edward A. G. Schuur, David Bastviken, Kristoffer Aalstad, Kelly Aho, Joonatan Ala-Könni, Haley Alcock, Inge Althuizen, Christopher D. Arp, Jun Asanuma, Katrin Attermeyer, Mika Aurela, Sivakiruthika Balathandayuthabani, Alan Barr, Maialen Barret, Ochirbat Batkhishig, Christina Biasi, Mats P. Björkman, Andrew Black, Elena Blanc-Betes, Pascal Bodmer, Julia Boike, Abdullah Bolek, Frédéric Bouchard, Ingeborg Bussmann, Lea Cabrol, Eleonora Canfora, Sean Carey, Karel Castro-Morales, Namyi Chae, Andres Christen, Torben R. Christensen, Casper T. Christiansen, Housen Chu, Graham Clark, Francois Clayer, Patrick Crill, Christopher Cunada, Scott J. Davidson, Joshua F. Dean, Sigrid Dengel, Matteo Detto, Catherine Dieleman, Florent Domine, Egor Dyukarev, Colin Edgar, Bo Elberling, Craig A. Emmerton, Eugenie Euskirchen, Grant Falvo, Thomas Friborg, Michelle Garneau, Mariasilvia Giamberini, Mikhail V. Glagolev, Miquel A. Gonzalez-Meler, Gustaf Granath, Jón Guðmundsson, Konsta Happonen, Yoshinobu Harazono, Lorna Harris, Josh Hashemi, Nicholas Hasson, Janna Heerah, Liam Heffernan, Manuel Helbig, Warren Helgason, Michal Heliasz, Greg Henry, Geert Hensgens, Tetsuya Hiyama, Macall Hock, David Holl, Beth Holmes, Jutta Holst, Thomas Holst, Gabriel Hould-Gosselin, Elyn Humphreys, Jacqueline Hung, Jussi Huotari, Hiroki Ikawa, Danil V. Ilyasov, Mamoru Ishikawa, Go Iwahana, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Joachim Jansen, Järvi Järveoja, Vincent E. J. Jassey, Rasmus Jensen, Katharina Jentzsch, Robert G. Jespersen, Carl-Fredrik Johannesson, Chersity P. Jones, Anders Jonsson, Ji Young Jung, Sari Juutinen, Evan Kane, Jan Karlsson, Sergey Karsanaev, Kuno Kasak, Julia Kelly, Kasha Kempton, Marcus Klaus, George W. Kling, Natacha Kljun, Jacqueline Knutson, Hideki Kobayashi, John Kochendorfer, Kukka-Maaria Kohonen, Pasi Kolari, Mika Korkiakoski, Aino Korrensalo, Pirkko Kortelainen, Egle Koster, Kajar Koster, Ayumi Kotani, Praveena Krishnan, Juliya Kurbatova, Lars Kutzbach, Min Jung Kwon, Ethan D. Kyzivat, Jessica Lagroix, Theodore Langhorst, Elena Lapshina, Tuula Larmola, Klaus S. Larsen, Isabelle Laurion, Justin Ledman, Hanna Lee, A. Joshua Leffler, Lance Lesack, Anders Lindroth, David Lipson, Annalea Lohila, Efrén López-Blanco, Vincent L. St. Louis, Erik Lundin, Misha Luoto, Takashi Machimura, Marta Magnani, Avni Malhotra, Marja Maljanen, Ivan Mammarella, Elisa Männistö, Luca Belelli Marchesini, Phil Marsh, Pertti J. Martkainen, Maija E. Marushchak, Mikhail Mastepanov, Alex Mavrovic, Trofim Maximov, Christina Minions, Marco Montemayor, Tomoaki Morishita, Patrick Murphy, Daniel F. Nadeau, Erin Nicholls, Mats B. Nilsson, Anastasia Niyazova, Jenni Nordén, Koffi Dodji Noumonvi, Hannu Nykanen, Walter Oechel, Anne Ojala, Tomohiro Okadera, Sujan Pal, Alexey V. Panov, Tim Papakyriakou, Dario Papale, Sang-Jong Park, Frans-Jan W. Parmentier, Gilberto Pastorello, Mike Peacock, Matthias Peichl, Roman Petrov, Kyra St. Pierre, Norbert Pirk, Jessica Plein, Vilmantas Preskienis, Anatoly Prokushkin, Jukka Pumpanen, Hilary A. Rains, Niklas Rakos, Aleski Räsänen, Helena Rautakoski, Riika Rinnan, Janne Rinne, Adrian Rocha, Nigel Roulet, Alexandre Roy, Anna Rutgersson, Aleksandr F. Sabrekov, Torsten Sachs, Erik Sahlée, Alejandro Salazar, Henrique Oliveira Sawakuchi, Christopher Schulze, Roger Seco, Armando Sepulveda-Jauregui, Svetlana Serikova, Abbey Serrone, Hanna M. Silvennoinen, Sofie Sjogersten, June Skeeter, Jo Snöälv, Sebastian Sobek, Oliver Sonnentag, Emily H. Stanley, Maria Strack, Lena Strom, Patrick Sullivan, Ryan Sullivan, Anna Sytiuk, Torbern Tagesson, Pierre Taillardat, Julie Talbot, Suzanne E. Tank, Mario Tenuta, Irina Terenteva, Frederic Thalasso, Antoine Thiboult, Halldor Thorgeirsson, Fenix Garcia Tigreros, Margaret Torn, Amy Townsend-Small, Claire Treat, Alain Tremblay, Carlo Trotta, Eeva-Stiina Tuittila, Merritt Turetsky, Masahito Ueyama, Muhammad Umair, Aki Vähä, Lona van Delden, Maarten van Hardenbroek, Andrej Varlagin, Ruth K. Varner, Elena Veretennikova, Timo Vesala, Tarmo Virtanen, Carolina Voigt, Jorien E. Vonk, Robert Wagner, Katey Walter Anthony, Qinxue Wang, Masataka Watanabe, Hailey Webb, Jeffrey M. Welker, Andreas Westergaard-Nielsen, Sebastian Westermann, Jeffrey R. White, Christian Wille, Scott N. Williamson, Scott Zolkos, Donatella Zona, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-585, https://doi.org/10.5194/essd-2025-585, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset includes monthly measurements of carbon dioxide and methane exchange between land, water, and the atmosphere from over 1,000 sites in Arctic and boreal regions. It combines measurements from a variety of ecosystems, including wetlands, forests, tundra, lakes, and rivers, gathered by over 260 researchers from 1984–2024. This dataset can be used to improve and reduce uncertainty in carbon budgets in order to strengthen our understanding of climate feedbacks in a warming world.
Jonas Thomsen, Signe Lett, Leif Klemedtsson, Delia Rösel, Louise Rütting, Katja Salomon Johansen, and Tobias Rütting
EGUsphere, https://doi.org/10.5194/egusphere-2025-4108, https://doi.org/10.5194/egusphere-2025-4108, 2025
Short summary
Short summary
Peatlands not only store large amounts of carbon but also harmful metals. In a Swedish wetland, we sampled and analysed peat and water samples and found that iron, lead and carbon are released together, especially after dry periods. Lead levels were often toxic and mostly came from past gasoline pollution. The lake trap some of this released lead down stream of the wetland. We showed that climate change may cause peat to break down, releasing carbon and harmful metals into nearby water systems.
Antoine de Clippele, Astrid C. H. Jaeger, Simon Baumgartner, Marijn Bauters, Pascal Boeckx, Clement Botefa, Glenn Bush, Jessica Carilli, Travis W. Drake, Christian Ekamba, Gode Lompoko, Nivens Bey Mukwiele, Kristof Van Oost, Roland A. Werner, Joseph Zambo, Johan Six, and Matti Barthel
Biogeosciences, 22, 3011–3027, https://doi.org/10.5194/bg-22-3011-2025, https://doi.org/10.5194/bg-22-3011-2025, 2025
Short summary
Short summary
Tropical forest soils as a large terrestrial source of carbon dioxide (CO2) contribute to the global greenhouse gas budget. Despite this, carbon flux data from forested wetlands are scarce in tropical Africa. The study presents 3 years of semi-continuous measurements of surface CO2 fluxes within the Congo Basin. Although no seasonal patterns were evident, our results show a positive effect of soil temperature and moisture, while a quadratic relationship was observed with the water table.
Derrick Muheki, Bas Vercruysse, Krishna Kumar Thirukokaranam Chandrasekar, Christophe Verbruggen, Julie M. Birkholz, Koen Hufkens, Hans Verbeeck, Pascal Boeckx, Seppe Lampe, Ed Hawkins, Peter Thorne, Dominique Kankonde Ntumba, Olivier Kapalay Moulasa, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2024-3779, https://doi.org/10.5194/egusphere-2024-3779, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Archives worldwide host vast records of observed weather data crucial for understanding climate variability. However, most of these records are still in paper form, limiting their use. To address this, we developed MeteoSaver, an open-source tool, to transcribe these records to machine-readable format. Applied to ten handwritten temperature sheets, it achieved a median accuracy of 74%. This tool offers a promising solution to preserve records from archives and unlock historical weather insights.
Marius Buydens, Emil De Borger, Lorenz Meire, Samuel Bodé, Antonio Schirone, Karline Soetaert, Ann Vanreusel, and Ulrike Braeckman
EGUsphere, https://doi.org/10.5194/egusphere-2025-102, https://doi.org/10.5194/egusphere-2025-102, 2025
Short summary
Short summary
As the Greenland Ice Sheet retreats, it is important to understand how this impacts the carbon burial in Greenland fjords. By comparing a fjord with marine-terminating glaciers versus one fed by a land-terminating glacier, we see that the productive waters associated to marine-terminating glaciers not necessary lead to enhanced carbon burial. Instead, we highlight the complex interplay of physical, biological, and sedimentary processes that mediate carbon dynamics in these fjords.
Roxanne Daelman, Marijn Bauters, Matti Barthel, Emmanuel Bulonza, Lodewijk Lefevre, José Mbifo, Johan Six, Klaus Butterbach-Bahl, Benjamin Wolf, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 22, 1529–1542, https://doi.org/10.5194/bg-22-1529-2025, https://doi.org/10.5194/bg-22-1529-2025, 2025
Short summary
Short summary
The increase in atmospheric concentrations of several greenhouse gases (GHGs) since 1750 is attributed to human activity. However, natural ecosystems, such as tropical forests, also contribute to GHG budgets. The Congo Basin hosts the second largest tropical forest and is understudied. In this study, measurements of soil GHG exchange were carried out during 16 months in a tropical forest in the Congo Basin. Overall, the soil acted as a major source of CO2 and N2O and a minor sink of CH4.
Astrid Françoys, Orly Mendoza, Junwei Hu, Pascal Boeckx, Wim Cornelis, Stefaan De Neve, and Steven Sleutel
SOIL, 11, 121–140, https://doi.org/10.5194/soil-11-121-2025, https://doi.org/10.5194/soil-11-121-2025, 2025
Short summary
Short summary
To assess the impact of the groundwater table (GWT) depth on soil moisture and C mineralization, we designed a laboratory setup using 200 cm undisturbed soil columns. Surprisingly, the moisture increase induced by a shallower GWT did not result in enhanced C mineralization. We presume this upward capillary moisture effect was offset by increased C mineralization upon rewetting, particularly noticeable in drier soils when capillary rise affected the topsoil to a lesser extent due to a deeper GWT.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
Cole G. Brachmann, Tage Vowles, Riikka Rinnan, Mats P. Björkman, Anna Ekberg, and Robert G. Björk
Biogeosciences, 20, 4069–4086, https://doi.org/10.5194/bg-20-4069-2023, https://doi.org/10.5194/bg-20-4069-2023, 2023
Short summary
Short summary
Herbivores change plant communities through grazing, altering the amount of CO2 and plant-specific chemicals (termed VOCs) emitted. We tested this effect by excluding herbivores and studying the CO2 and VOC emissions. Herbivores reduced CO2 emissions from a meadow community and altered VOC composition; however, community type had the strongest effect on the amount of CO2 and VOCs released. Herbivores can mediate greenhouse gas emissions, but the effect is marginal and community dependent.
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Johanna Pihlblad, Louise C. Andresen, Catriona A. Macdonald, David S. Ellsworth, and Yolima Carrillo
Biogeosciences, 20, 505–521, https://doi.org/10.5194/bg-20-505-2023, https://doi.org/10.5194/bg-20-505-2023, 2023
Short summary
Short summary
Elevated CO2 in the atmosphere increases forest biomass productivity when growth is not limited by soil nutrients. This study explores how mature trees stimulate soil availability of nitrogen and phosphorus with free-air carbon dioxide enrichment after 5 years of fumigation. We found that both nutrient availability and processes feeding available pools increased in the rhizosphere, and phosphorus increased at depth. This appears to not be by decomposition but by faster recycling of nutrients.
Flossie Brown, Gerd A. Folberth, Stephen Sitch, Susanne Bauer, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Makoto Deushi, Inês Dos Santos Vieira, Corinne Galy-Lacaux, James Haywood, James Keeble, Lina M. Mercado, Fiona M. O'Connor, Naga Oshima, Kostas Tsigaridis, and Hans Verbeeck
Atmos. Chem. Phys., 22, 12331–12352, https://doi.org/10.5194/acp-22-12331-2022, https://doi.org/10.5194/acp-22-12331-2022, 2022
Short summary
Short summary
Surface ozone can decrease plant productivity and impair human health. In this study, we evaluate the change in surface ozone due to climate change over South America and Africa using Earth system models. We find that if the climate were to change according to the worst-case scenario used here, models predict that forested areas in biomass burning locations and urban populations will be at increasing risk of ozone exposure, but other areas will experience a climate benefit.
Jenie Gil, Maija E. Marushchak, Tobias Rütting, Elizabeth M. Baggs, Tibisay Pérez, Alexander Novakovskiy, Tatiana Trubnikova, Dmitry Kaverin, Pertti J. Martikainen, and Christina Biasi
Biogeosciences, 19, 2683–2698, https://doi.org/10.5194/bg-19-2683-2022, https://doi.org/10.5194/bg-19-2683-2022, 2022
Short summary
Short summary
N2O emissions from permafrost soils represent up to 11.6 % of total N2O emissions from natural soils, and their contribution to the global N2O budget will likely increase due to climate change. A better understanding of N2O production from permafrost soil is needed to evaluate the role of arctic ecosystems in the global N2O budget. By studying microbial N2O production processes in N2O hotspots in permafrost peatlands, we identified denitrification as the dominant source of N2O in these surfaces.
Adrian Gustafson, Paul A. Miller, Robert G. Björk, Stefan Olin, and Benjamin Smith
Biogeosciences, 18, 6329–6347, https://doi.org/10.5194/bg-18-6329-2021, https://doi.org/10.5194/bg-18-6329-2021, 2021
Short summary
Short summary
We performed model simulations of vegetation change for a historic period and a range of climate change scenarios at a high spatial resolution. Projected treeline advance continued at the same or increased rates compared to our historic simulation. Temperature isotherms advanced faster than treelines, revealing a lag in potential vegetation shifts that was modulated by nitrogen availability. At the year 2100 projected treelines had advanced by 45–195 elevational metres depending on the scenario.
Caroline C. Clason, Will H. Blake, Nick Selmes, Alex Taylor, Pascal Boeckx, Jessica Kitch, Stephanie C. Mills, Giovanni Baccolo, and Geoffrey E. Millward
The Cryosphere, 15, 5151–5168, https://doi.org/10.5194/tc-15-5151-2021, https://doi.org/10.5194/tc-15-5151-2021, 2021
Short summary
Short summary
Our paper presents results of sample collection and subsequent geochemical analyses from the glaciated Isfallsglaciären catchment in Arctic Sweden. The data suggest that material found on the surface of glaciers,
cryoconite, is very efficient at accumulating products of nuclear fallout transported in the atmosphere following events such as the Chernobyl disaster. We investigate how this compares with samples in the downstream environment and consider potential environmental implications.
Laura Summerauer, Philipp Baumann, Leonardo Ramirez-Lopez, Matti Barthel, Marijn Bauters, Benjamin Bukombe, Mario Reichenbach, Pascal Boeckx, Elizabeth Kearsley, Kristof Van Oost, Bernard Vanlauwe, Dieudonné Chiragaga, Aimé Bisimwa Heri-Kazi, Pieter Moonen, Andrew Sila, Keith Shepherd, Basile Bazirake Mujinya, Eric Van Ranst, Geert Baert, Sebastian Doetterl, and Johan Six
SOIL, 7, 693–715, https://doi.org/10.5194/soil-7-693-2021, https://doi.org/10.5194/soil-7-693-2021, 2021
Short summary
Short summary
We present a soil mid-infrared library with over 1800 samples from central Africa in order to facilitate soil analyses of this highly understudied yet critical area. Together with an existing continental library, we demonstrate a regional analysis and geographical extrapolation to predict total carbon and nitrogen. Our results show accurate predictions and highlight the value that the data contribute to existing libraries. Our library is openly available for public use and for expansion.
Heleen Deroo, Masuda Akter, Samuel Bodé, Orly Mendoza, Haichao Li, Pascal Boeckx, and Steven Sleutel
Biogeosciences, 18, 5035–5051, https://doi.org/10.5194/bg-18-5035-2021, https://doi.org/10.5194/bg-18-5035-2021, 2021
Short summary
Short summary
We assessed if and how incorporation of exogenous organic carbon (OC) such as straw could affect decomposition of native soil organic carbon (SOC) under different irrigation regimes. Addition of exogenous OC promoted dissolution of native SOC, partly because of increased Fe reduction, leading to more net release of Fe-bound SOC. Yet, there was no proportionate priming of SOC-derived DOC mineralisation. Water-saving irrigation can retard both priming of SOC dissolution and mineralisation.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Simon Baumgartner, Marijn Bauters, Matti Barthel, Travis W. Drake, Landry C. Ntaboba, Basile M. Bazirake, Johan Six, Pascal Boeckx, and Kristof Van Oost
SOIL, 7, 83–94, https://doi.org/10.5194/soil-7-83-2021, https://doi.org/10.5194/soil-7-83-2021, 2021
Short summary
Short summary
We compared stable isotope signatures of soil profiles in different forest ecosystems within the Congo Basin to assess ecosystem-level differences in N cycling, and we examined the local effect of topography on the isotopic signature of soil N. Soil δ15N profiles indicated that the N cycling in in the montane forest is more closed, whereas the lowland forest and Miombo woodland experienced a more open N cycle. Topography only alters soil δ15N values in forests with high erosional forces.
Elena Barbaro, Krystyna Koziol, Mats P. Björkman, Carmen P. Vega, Christian Zdanowicz, Tonu Martma, Jean-Charles Gallet, Daniel Kępski, Catherine Larose, Bartłomiej Luks, Florian Tolle, Thomas V. Schuler, Aleksander Uszczyk, and Andrea Spolaor
Atmos. Chem. Phys., 21, 3163–3180, https://doi.org/10.5194/acp-21-3163-2021, https://doi.org/10.5194/acp-21-3163-2021, 2021
Short summary
Short summary
This paper shows the most comprehensive seasonal snow chemistry survey to date, carried out in April 2016 across 22 sites on 7 glaciers across Svalbard. The dataset consists of the concentration, mass loading, spatial and altitudinal distribution of major ion species (Ca2+, K+,
Na2+, Mg2+,
NH4+, SO42−,
Br−, Cl− and
NO3−), together with its stable oxygen and hydrogen isotope composition (δ18O and
δ2H) in the snowpack. This study was part of the larger Community Coordinated Snow Study in Svalbard.
Christian Zdanowicz, Jean-Charles Gallet, Mats P. Björkman, Catherine Larose, Thomas Schuler, Bartłomiej Luks, Krystyna Koziol, Andrea Spolaor, Elena Barbaro, Tõnu Martma, Ward van Pelt, Ulla Wideqvist, and Johan Ström
Atmos. Chem. Phys., 21, 3035–3057, https://doi.org/10.5194/acp-21-3035-2021, https://doi.org/10.5194/acp-21-3035-2021, 2021
Short summary
Short summary
Black carbon (BC) aerosols are soot-like particles which, when transported to the Arctic, darken snow surfaces, thus indirectly affecting climate. Information on BC in Arctic snow is needed to measure their impact and monitor the efficacy of pollution-reduction policies. This paper presents a large new set of BC measurements in snow in Svalbard collected between 2007 and 2018. It describes how BC in snow varies across the archipelago and explores some factors controlling these variations.
Paula Alejandra Lamprea Pineda, Marijn Bauters, Hans Verbeeck, Selene Baez, Matti Barthel, Samuel Bodé, and Pascal Boeckx
Biogeosciences, 18, 413–421, https://doi.org/10.5194/bg-18-413-2021, https://doi.org/10.5194/bg-18-413-2021, 2021
Short summary
Short summary
Tropical forest soils are an important source and sink of greenhouse gases (GHGs) with tropical montane forests having been poorly studied. In this pilot study, we explored soil fluxes of CO2, CH4, and N2O in an Ecuadorian neotropical montane forest, where a net consumption of N2O at higher altitudes was observed. Our results highlight the importance of short-term variations in N2O and provide arguments and insights for future, more detailed studies on GHG fluxes from montane forest soils.
Simon Baumgartner, Matti Barthel, Travis William Drake, Marijn Bauters, Isaac Ahanamungu Makelele, John Kalume Mugula, Laura Summerauer, Nora Gallarotti, Landry Cizungu Ntaboba, Kristof Van Oost, Pascal Boeckx, Sebastian Doetterl, Roland Anton Werner, and Johan Six
Biogeosciences, 17, 6207–6218, https://doi.org/10.5194/bg-17-6207-2020, https://doi.org/10.5194/bg-17-6207-2020, 2020
Short summary
Short summary
Soil respiration is an important carbon flux and key process determining the net ecosystem production of terrestrial ecosystems. The Congo Basin lacks studies quantifying carbon fluxes. We measured soil CO2 fluxes from different forest types in the Congo Basin and were able to show that, even though soil CO2 fluxes are similarly high in lowland and montane forests, the drivers were different: soil moisture in montane forests and C availability in the lowland forests.
Cited articles
Aber, J. D., Melillo, J. M., and McClaugherty, C. A.: Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems, Canadian Journal of Botany, 68, 2201–2208, https://doi.org/10.1139/b90-287, 1990.
Aerts, R.: Nitrogen supply effects on leaf dynamics and nutrient input into the soil of plant species in a sub-arctic tundra ecosystem, Polar Biol., 32, 207–214, https://doi.org/10.1007/s00300-008-0521-1, 2009.
Alawi, M., Lipski, A., Sanders, T., Eva-Maria-Pfeiffer, and Spieck, E.: Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic, ISME Journal, 1, 256–264, https://doi.org/10.1038/ismej.2007.34, 2007.
Alawi, M., Off, S., Kaya, M., and Spieck, E.: Temperature influences the population structure of nitrite-oxidizing bacteria in activated sludge, Environ. Microbiol. Rep., 1, 184–190, https://doi.org/10.1111/j.1758-2229.2009.00029.x, 2009.
Alves, R. J. E., Wanek, W., Zappe, A., Richter, A., Svenning, M. M., Schleper, C., and Urich, T.: Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea, ISME Journal, 7, 1620–1631, https://doi.org/10.1038/ismej.2013.35, 2013.
Alves, R. J. E., Kerou, M., Zappe, A., Bittner, R., Abby, S. S., Schmidt, H. A., Pfeifer, K., and Schleper, C.: Ammonia oxidation by the arctic terrestrial thaumarchaeote candidatus nitrosocosmicus arcticus is stimulated by increasing temperatures, Front. Microbiol., 10, https://doi.org/10.3389/fmicb.2019.01571, 2019.
Amundson, R., Austin, A. T., Schuur, E. A. G., Yoo, K., Matzek, V., Kendall, C., Uebersax, A., Brenner, D., and Baisden, W. T.: Global patterns of the isotopic composition of soil and plant nitrogen, Global Biogeochem. Cycles, 17, https://doi.org/10.1029/2002GB001903, 2003.
Andresen, L. C., Bodé, S., Björk, R. G., Michelsen, A., Aerts, R., Boeckx, P., Cornelissen, J. H. C., Klanderud, K., van Logtestijn, R. S. P., and Rütting, T.: Patterns of free amino acids in tundra soils reflect mycorrhizal type, shrubification, and warming, Mycorrhiza, 32, 305–313, https://doi.org/10.1007/s00572-022-01075-4, 2022.
Averill, C., Turner, B. L., and Finzi, A. C.: Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage, Nature, 505, 543–545, https://doi.org/10.1038/nature12901, 2014.
Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D., and Kivlin, S. N.: Global imprint of mycorrhizal fungi on whole-plant nutrient economics, P. Natl. Acad. Sci. USA, 116, 23163–23168, https://doi.org/10.1073/pnas.1906655116, 2019.
Avolio, M. L., Forrestel, E. J., Chang, C. C., La Pierre, K. J., Burghardt, K. T., and Smith, M. D.: Demystifying dominant species, New Phytologist, 223, 1106–1126, https://doi.org/10.1111/nph.15789, 2019.
Avrahami, S. and Conrad, R.: Patterns of Community Change among Ammonia Oxidizers in Meadow Soils upon Long-Term Incubation at Different Temperatures, Appl. Environ. Microbiol., 69, 6152–6164, https://doi.org/10.1128/AEM.69.10.6152-6164.2003, 2003.
Bahram, M., Netherway, T., Hildebrand, F., Pritsch, K., Drenkhan, R., Loit, K., Anslan, S., Bork, P., and Tedersoo, L.: Plant nutrient-acquisition strategies drive topsoil microbiome structure and function, New Phytologist, 227, 1189–1199, https://doi.org/10.1111/nph.16598, 2020.
Bai, E. and Houlton, B. Z.: Coupled isotopic and process-based modeling of gaseous nitrogen losses from tropical rain forests, Global Biogeochem. Cycles, 23, https://doi.org/10.1029/2008GB003361, 2009.
Banerjee, S., Si, B. C., and Siciliano, S. D.: Evidence of high microbial abundance and spatial dependency in three Arctic soil ecosystems, Soil Science Society of America Journal, 75, 2227–2232, https://doi.org/10.2136/sssaj2011.0098, 2011.
Bending, G. D. and Read, D. J.: Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi, Soil Biol. Biochem., 28, 1603–1612, https://doi.org/10.1016/S0038-0717(96)00258-1, 1996.
Bengtson, P., Barker, J., and Grayston, S. J.: Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects, Ecol. Evol., 2, 1843–1852, https://doi.org/10.1002/ece3.311, 2012.
Biasi, C., Jokinen, S., Prommer, J., Ambus, P., Dörsch, P., Yu, L., Granger, S., Boeckx, P., Van Nieuland, K., Brüggemann, N., Wissel, H., Voropaev, A., Zilberman, T., Jäntti, H., Trubnikova, T., Welti, N., Voigt, C., Gebus-Czupyt, B., Czupyt, Z., and Wanek, W.: Challenges in measuring nitrogen isotope signatures in inorganic nitrogen forms: An interlaboratory comparison of three common measurement approaches, Rapid Communications in Mass Spectrometry, 36, 1–16, https://doi.org/10.1002/rcm.9370, 2022.
Björk, R. G., Klemedtsson, L., Molau, U., Harndorf, J., Ödman, A., and Giesler, R.: Linkages between N turnover and plant community structure in a tundra landscape, Plant Soil, 294, 247–261, https://doi.org/10.1007/s11104-007-9250-4, 2007.
Bjorkman, A. D., García Criado, M., Myers-Smith, I. H., Ravolainen, V., Jónsdóttir, I. S., Westergaard, K. B., Lawler, J. P., Aronsson, M., Bennett, B., Gardfjell, H., Heiðmarsson, S., Stewart, L., and Normand, S.: Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring, Ambio, 49, 678–692, https://doi.org/10.1007/s13280-019-01161-6, 2020.
Booth, M. S., Stark, J. M., and Rastetter, E.: Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data, Ecol. Monogr., 75, 139–157, https://doi.org/10.1890/04-0988, 2005.
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Mächler, M., and Bolker, B. M.: glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling, R Journal, 9, 378–400, https://doi.org/10.32614/rj-2017-066, 2017.
Brooks, P. D., Stark, J. M., McInteer, B. B., and Preston, T.: Diffusion method to prepare soil extracts for automated nitrogen-15 analysis, Soil Science Society of America Journal, 53, 1707–1711, 1989.
Buckeridge, K. M., Zufelt, E., Chu, H., and Grogan, P.: Soil nitrogen cycling rates in low arctic shrub tundra are enhanced by litter feedbacks, Plant Soil, 330, 407–421, https://doi.org/10.1007/s11104-009-0214-8, 2010.
Burkert, A., Douglas, T. A., Waldrop, M. P., and Mackelprang, R.: Changes in the active, dead, and dormant microbial community structure across a Pleistocene permafrost chronosequence, Applied Microbiology, 85, e02646-18, https://doi.org/10.1128/AEM.02646-18, 2019.
Castaño, C., Hallin, S., Egelkraut, D., Lindahl, B. D., Olofsson, J., and Clemmensen, K. E.: Contrasting plant–soil–microbial feedbacks stabilize vegetation types and uncouple topsoil C and N stocks across a subarctic–alpine landscape, New Phytologist, 238, 2621–2633, https://doi.org/10.1111/nph.18679, 2023.
Chapin, F. S. I., Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J., and Laundre, J. A.: Responses of Arctic Tundra to Experimental and Observed Changes in Climate, Ecology, 76, 694–711, 1995.
Clemmensen, K. E., Durling, M. B., Michelsen, A., Hallin, S., Finlay, R. D., and Lindahl, B. D.: A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen, Ecol. Lett., 24, 1193–1204, https://doi.org/10.1111/ele.13735, 2021.
Clemmensen, K. E., Michelsen, A., Finlay, R. D., and Lindahl, B. D.: The balance between accumulation and loss of soil organic matter in subarctic forest is related to ratios of saprotrophic, ecto- and ericoid mycorrhizal fungal guilds, Fungal Ecol., 71, 101359, https://doi.org/10.1016/j.funeco.2024.101359, 2024.
Dahlke, H. E., Lyon, S. W., Stedinger, J. R., Rosqvist, G., and Jansson, P.: Contrasting trends in floods for two sub-arctic catchments in northern Sweden – does glacier presence matter?, Hydrol. Earth Syst. Sci., 16, 2123–2141, https://doi.org/10.5194/hess-16-2123-2012, 2012.
Dee, L. E., Cowles, J., Isbell, F., Pau, S., Gaines, S. D., and Reich, P. B.: When Do Ecosystem Services Depend on Rare Species?, Trends Ecol. Evol., 34, 746–758, https://doi.org/10.1016/j.tree.2019.03.010, 2019.
Di, H. J., Cameron, K. C., Shen, J. P., Winefield, C. S., O'Callaghan, M., Bowatte, S., and He, J. Z.: Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions, FEMS Microbiol. Ecol., 72, 386–394, https://doi.org/10.1111/j.1574-6941.2010.00861.x, 2010.
Dijkstra, F. A., Carrillo, Y., Pendall, E., and Morgan, J. A.: Rhizosphere priming: A nutrient perspective, Front. Microbiol., 4, 1–8, https://doi.org/10.3389/fmicb.2013.00216, 2013.
Dobbert, S., Pape, R., and Löffler, J.: On Growth Patterns and Mechanisms in Arctic-Alpine Shrubs, Erdkunde, 76, 199–226, https://doi.org/10.3112/erdkunde.2022.03.04, 2022.
Eagar, A. C., Mushinski, R. M., Horning, A. L., Smemo, K. A., Phillips, R. P., and Blackwood, C. B.: Arbuscular Mycorrhizal Tree Communities Have Greater Soil Fungal Diversity and Relative Abundances of Saprotrophs and Pathogens than Ectomycorrhizal Tree Communities, Appl. Environ. Microbiol., 88, https://doi.org/10.1128/AEM.01782-21, 2022.
Eisenhauer, N., Hines, J., Maestre, F. T., and Rillig, M. C.: Reconsidering functional redundancy in biodiversity research, npj Biodiversity, 2, https://doi.org/10.1038/s44185-023-00015-5, 2023.
Elrys, A. S., Wang, J., Metwally, M. A. S., Cheng, Y., Zhang, J. B., Cai, Z. C., Chang, S. X., and Müller, C.: Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen stoichiometry and total nitrogen, Glob. Chang. Biol., 27, 6512–6524, https://doi.org/10.1111/gcb.15883, 2021.
Erguder, T. H., Boon, N., Wittebolle, L., Marzorati, M., and Verstraete, W.: Environmental factors shaping the ecological niches of ammonia-oxidizing archaea, FEMS Microbiol. Rev., 33, 855–869, https://doi.org/10.1111/j.1574-6976.2009.00179.x, 2009.
Fanin, N., Kardol, P., Farrell, M., Kempel, A., Ciobanu, M., Nilsson, M. C., Gundale, M. J., and Wardle, D. A.: Effects of plant functional group removal on structure and function of soil communities across contrasting ecosystems, Ecol. Lett., 22, 1095–1103, https://doi.org/10.1111/ele.13266, 2019.
Fanin, N., Clemmensen, K. E., Lindahl, B. D., Farrell, M., Nilsson, M. C., Gundale, M. J., Kardol, P., and Wardle, D. A.: Ericoid shrubs shape fungal communities and suppress organic matter decomposition in boreal forests, New Phytologist, 236, 684–697, https://doi.org/10.1111/nph.18353, 2022.
Fisk, M. C., Schmidt, S. K., and Seastedt, T. R.: Topographic Patterns of above- and Belowground Production and Nitrogen Cycling in Alpine Tundra, Ecology, 79, 2253–2266, 1998.
Fuchs, M., Kuhry, P., and Hugelius, G.: Low below-ground organic carbon storage in a subarctic Alpine permafrost environment, The Cryosphere, 9, 427–438, https://doi.org/10.5194/tc-9-427-2015, 2015.
Gan, D., Zeng, H., and Zhu, B.: The rhizosphere effect on soil gross nitrogen mineralization: A meta-analysis, Soil Ecology Letters, 4, 144–154, https://doi.org/10.1007/s42832-021-0098-y, 2022.
Gaston, K. J.: Common ecology, Bioscience, 61, 354–362, https://doi.org/10.1525/bio.2011.61.5.4, 2011.
Gil, J., Marushchak, M. E., Rütting, T., Baggs, E. M., Pérez, T., Novakovskiy, A., Trubnikova, T., Kaverin, D., Martikainen, P. J., and Biasi, C.: Sources of nitrous oxide and the fate of mineral nitrogen in subarctic permafrost peat soils, Biogeosciences, 19, 2683–2698, https://doi.org/10.5194/bg-19-2683-2022, 2022.
Giesler, R., Högberg, M., and Högberg, P.: Soil chemistry and plants in Fennoscandian boreal forest as exemplified by a local gradient, Ecology, 79, 119–137, https://doi.org/10.1890/0012-9658(1998)079[0119:SCAPIF]2.0.CO;2, 1998.
Gill, A. L., Grinder, R. M., See, C. R., Chapin, F. S., DeLancey, L. C., Fisk, M. C., Groffman, P. M., Harms, T., Hobbie, S. E., Knoepp, J. D., Knops, J. M. H., Mack, M., Reich, P. B., and Keiser, A. D.: Soil carbon availability decouples net nitrogen mineralization and net nitrification across United States Long Term Ecological Research sites, Biogeochemistry, 162, 13–24, https://doi.org/10.1007/s10533-022-01011-w, 2023.
Govindarajulu, M., Pfeffer, P. E., Jin, H., Abubaker, J., Douds, D. D., Allen, J. W., Bücking, H., Lammers, P. J., and Shachar-Hill, Y.: Nitrogen transfer in the arbuscular mycorrhizal symbiosis, Nature, 435, 819–823, https://doi.org/10.1038/nature03610, 2005.
Grime, J. P.: Benefits of plant diversity to ecosystems: immediate, filter and founder effects, Journal of Ecology, 86, 902–910, 1998.
Gubry-Rangin, C., Nicol, G. W., and Prosser, J. I.: Archaea rather than bacteria control nitrification in two agricultural acidic soils, FEMS Microbiol. Ecol., 74, 566–574, https://doi.org/10.1111/j.1574-6941.2010.00971.x, 2010.
Guo, Z., Ma, X. S., and Ni, S. Q.: Journey of the swift nitrogen transformation: Unveiling comammox from discovery to deep understanding, Chemosphere, 358, 142093, https://doi.org/10.1016/j.chemosphere.2024.142093, 2024.
Han, P., Tang, X., Koch, H., Dong, X., Hou, L., Wang, D., Zhao, Q., Li, Z., Liu, M., Lücker, S., and Shi, G.: Unveiling unique microbial nitrogen cycling and nitrification driver in coastal Antarctica, Nat. Commun., 15, https://doi.org/10.1038/s41467-024-47392-4, 2024.
Hansen, A. A., Herbert, R. A., Mikkelsen, K., Jensen, L. L., Kristoffersen, T., Tiedje, J. M., Lomstein, B. A., and Finster, K. W.: Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway, Environmental Microbiology, 9, 2870–2884, 2007.
Hartig, F.: DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models, R package version 0.4.7, https://CRAN.R-project.org/package=DHARMa (last access: 28 August 2025), 2024.
Hawkins, H. J., Cargill, R. I. M., Van Nuland, M. E., Hagen, S. C., Field, K. J., Sheldrake, M., Soudzilovskaia, N. A., and Kiers, E. T.: Mycorrhizal mycelium as a global carbon pool, Current Biology, 33, R560–R573, https://doi.org/10.1016/j.cub.2023.02.027, 2023.
Hayashi, K., Shimomura, Y., Morimoto, S., Uchida, M., Nakatsubo, T., and Hayatsu, M.: Characteristics of ammonia oxidation potentials and ammonia oxidizers in mineral soil under Salix polaris–moss vegetation in Ny-Ålesund, Svalbard, Polar Biol., 39, 725–741, https://doi.org/10.1007/s00300-015-1829-2, 2016.
Hicks, L. C., Leizeaga, A., Rousk, K., Michelsen, A., and Rousk, J.: Simulated rhizosphere deposits induce microbial N-mining that may accelerate shrubification in the subarctic, Ecology, 101, 1–14, https://doi.org/10.1002/ecy.3094, 2020a.
Hicks, L. C., Rousk, K., Rinnan, R., and Rousk, J.: Soil Microbial Responses to 28 Years of Nutrient Fertilization in a Subarctic Heath, Ecosystems, 23, 1107–1119, https://doi.org/10.1007/s10021-019-00458-7, 2020b.
Hicks, L. C., Yuan, M., Brangarí, A., Rousk, K., and Rousk, J.: Increased Above- and Belowground Plant Input Can Both Trigger Microbial Nitrogen Mining in Subarctic Tundra Soils, Ecosystems, 25, 105–121, https://doi.org/10.1007/s10021-021-00642-8, 2022.
Hobbie, E. A. and Högberg, P.: Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics, New Phytologist, 196, 367–382, https://doi.org/10.1111/j.1469-8137.2012.04300.x, 2012.
Hobbie, E. A. and Ouimette, A. P.: Controls of nitrogen isotope patterns in soil profiles, Biogeochemistry, 95, 355–371, https://doi.org/10.1007/s10533-009-9328-6, 2009.
Hobbie, J. E. and Hobbie, E.: 15N in Symbiotic Fungi and Plants Estimates Nitrogen and Carbon Flux Rates in Arctic Tundra, Ecology, 87, 816–822, 2006.
Hobbie, J. E., Hobbie, E. A., Drossman, H., Conte, M., Weber, J. C., Shamhart, J., and Weinrobe, M.: Mycorrhizal fungi supply nitrogen to host plants in Arctic tundra and boreal forests:15N is the key signal, Can. J. Microbiol., 55, 84–94, https://doi.org/10.1139/W08-127, 2009.
Hodge, A. and Storer, K.: Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems, Plant Soil, 386, 1–19, https://doi.org/10.1007/s11104-014-2162-1, 2015.
Hollister, R. D., May, J. L., Kremers, K. S., Tweedie, C. E., Oberbauer, S. F., Liebig, J. A., Botting, T. F., Barrett, R. T., and Gregory, J. L.: Warming experiments elucidate the drivers of observed directional changes in tundra vegetation, Ecol. Evol., 5, 1881–1895, https://doi.org/10.1002/ece3.1499, 2015.
Holmlund, P.: Mass Balance of Storglaciären during the 20th Century, Geografiska Annaler. Series A, 439–447 pp., 1987.
Holz, M., Aurangojeb, M., Kasimir, Boeckx, P., Kuzyakov, Y., Klemedtsson, L., and Rütting, T.: Gross Nitrogen Dynamics in the Mycorrhizosphere of an Organic Forest Soil, Ecosystems, 19, 284–295, https://doi.org/10.1007/s10021-015-9931-4, 2016.
Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A. J., Vandermeer, J., and Wardle, D. A.: Effects of biodiversity on ecosystem functioning: A consensus of current knowledge, Ecol. Monogr., 75, 3–35, https://doi.org/10.1890/04-0922, 2005.
Hu, H. W., Xu, Z. H., and He, J. Z.: Ammonia-Oxidizing Archaea Play a Predominant Role in Acid Soil Nitrification, 1st edn., Elsevier Inc., 261–302 pp., https://doi.org/10.1016/B978-0-12-800137-0.00006-6, 2014.
Huang, M., Zhang, Y., Yu, Q., Qian, S., Shi, Y., Zhang, N., Michelsen, A., Zhang, J., Müller, C., Li, S., Zhang, R., Shen, Q., and Zou, J.: Bacillus velezensis SQR9-induced ammonia-oxidizing bacteria stimulate gross nitrification rates in acidic soils, Applied Soil Ecology, 201, 105503, https://doi.org/10.1016/j.apsoil.2024.105503, 2024.
Isobe, K., Oka, H., Watanabe, T., Tateno, R., Urakawa, R., Liang, C., Senoo, K., and Shibata, H.: High soil microbial activity in the winter season enhances nitrogen cycling in a cool-temperate deciduous forest, Soil Biol. Biochem., 124, 90–100, https://doi.org/10.1016/j.soilbio.2018.05.028, 2018.
Jain, M., Flynn, D. F. B., Prager, C. M., Hart, G. M., Devan, C. M., Ahrestani, F. S., Palmer, M. I., Bunker, D. E., Knops, J. M. H., Jouseau, C. F., and Naeem, S.: The importance of rare species: A trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies, Ecol. Evol., 4, 104–112, https://doi.org/10.1002/ece3.915, 2014.
Jin, P., Liu, M., Xu, X., Sun, Y., Kuzyakov, Y., and Gunina, A.: Gross mineralization and nitrification in degraded alpine grassland soil, Rhizosphere, 27, 100778, https://doi.org/10.1016/j.rhisph.2023.100778, 2023.
Jones, C. M. and Hallin, S.: Geospatial variation in co-occurrence networks of nitrifying microbial guilds, Mol. Ecol., 28, 293–306, https://doi.org/10.1111/mec.14893, 2019.
Jung, M. Y., Sedlacek, C. J., Kits, K. D., Mueller, A. J., Rhee, S. K., Hink, L., Nicol, G. W., Bayer, B., Lehtovirta-Morley, L., Wright, C., de la Torre, J. R., Herbold, C. W., Pjevac, P., Daims, H., and Wagner, M.: Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities, ISME Journal, 16, 272–283, https://doi.org/10.1038/s41396-021-01064-z, 2022.
Karkman, A., Mattila, K., Tamminen, M., and Virta, M.: Cold temperature decreases bacterial species richness in nitrogen-removing bioreactors treating inorganic mine waters, Biotechnol. Bioeng., 108, 2876–2883, https://doi.org/10.1002/bit.23267, 2011.
Kassambara, A.: ggpubr: “ggplot2” based publication ready plots, R package version 0.6.0, https://cran.r-project.org/package=ggpubr (last access: 7 May 2025), 2023a.
Kassambara, A.: rstatix: Pipe-Friendly Framework for Basic Statistical Tests, R package version 0.7.2, https://CRAN.R-project.org/package=rstatix (last access: 7 May 2025), 2023b.
Ke, X., Angel, R., Lu, Y., and Conrad, R.: Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil, Environ. Microbiol., 15, 2275–2292, https://doi.org/10.1111/1462-2920.12098, 2013.
Keiser, A. D., Knoepp, J. D., and Bradford, M. A.: Disturbance Decouples Biogeochemical Cycles Across Forests of the Southeastern US, Ecosystems, 19, 50–61, https://doi.org/10.1007/s10021-015-9917-2, 2016.
Kielland, K.: Landscape patterns of fkee amino acids in arctic tundra soils, 85–98, 1995.
Kilpeläinen, J., Vestberg, M., Repo, T., and Lehto, T.: Arbuscular and ectomycorrhizal root colonisation and plant nutrition in soils exposed to freezing temperatures, Soil Biol. Biochem., 99, 85–93, https://doi.org/10.1016/j.soilbio.2016.04.025, 2016.
Kirchhoff, L., Gavazov, K., Blume-Werry, G., Krab, E. J., Lett, S., Pedersen, E. P., Peter, M., Pfister, S., Väisänen, M., and Monteux, S.: Microbial community composition unaffected by mycorrhizal plant removal in sub-arctic tundra, Fungal Ecol., 69, https://doi.org/10.1016/j.funeco.2024.101342, 2024.
Kirkham, D. and Bartholomew, W.: Equations for following nutrient transformations in soil, utilizing tracer data, Soil Science Society of America Journal, 18, 33–34, 1954.
Knops, J. M. H., Bradley, K. L., and Wedin, D. A.: Mechanisms of plant species impacts on ecosystem nitrogen cycling, Ecol. Lett., 5, 454–466, https://doi.org/10.1046/j.1461-0248.2002.00332.x, 2002.
Kohler, A., Kuo, A., Nagy, L. G., Morin, E., Barry, K. W., Buscot, F., Canbäck, B., Choi, C., Cichocki, N., Clum, A., Colpaert, J., Copeland, A., Costa, M. D., Doré, J., Floudas, D., Gay, G., Girlanda, M., Henrissat, B., Herrmann, S., Hess, J., Högberg, N., Johansson, T., Khouja, H. R., Labutti, K., Lahrmann, U., Levasseur, A., Lindquist, E. A., Lipzen, A., Marmeisse, R., Martino, E., Murat, C., Ngan, C. Y., Nehls, U., Plett, J. M., Pringle, A., Ohm, R. A., Perotto, S., Peter, M., Riley, R., Rineau, F., Ruytinx, J., Salamov, A., Shah, F., Sun, H., Tarkka, M., Tritt, A., Veneault-Fourrey, C., Zuccaro, A., Tunlid, A., Grigoriev, I. V., Hibbett, D. S., and Martin, F.: Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists, Nat. Genet., 47, 410–415, https://doi.org/10.1038/ng.3223, 2015.
Kytöviita, M. M.: Asymmetric symbiont adaptation to Arctic conditions could explain why high Arctic plants are non-mycorrhizal, FEMS Microbiol Ecol., 53, 27–32, https://doi.org/10.1016/j.femsec.2004.09.014, 2005.
Laffite, A., Florio, A., Andrianarisoa, K. S., Creuze des Chatelliers, C., Schloter-Hai, B., Ndaw, S. M., Periot, C., Schloter, M., Zeller, B., Poly, F., and Le Roux, X.: Biological inhibition of soil nitrification by forest tree species affects Nitrobacter populations, Environ. Microbiol., 22, 1141–1153, https://doi.org/10.1111/1462-2920.14905, 2020.
Lamb, E. G., Han, S., Lanoil, B. D., Henry, G. H. R., Brummell, M. E., Banerjee, S., and Siciliano, S. D.: A High Arctic soil ecosystem resists long-term environmental manipulations, Glob. Chang. Biol., 17, 3187–3194, https://doi.org/10.1111/j.1365-2486.2011.02431.x, 2011.
Lenth, R.: emmeans: Estimated Marginal Means, aka Least-Squares Means, R package version 1.10.0, https://CRAN.R-project.org/package=emmeans (last access: 7 May 2025), 2024.
Leuzinger, S. and Rewald, B.: The Who or the How? Species vs. Ecosystem Function Priorities in Conservation Ecology, Front. Plant Sci., 12, https://doi.org/10.3389/fpls.2021.758413, 2021.
Li, X., Xu, M., Li, X., Christie, P., Wagg, C., and Zhang, J.: Linkages between changes in plant and mycorrhizal fungal community composition at high versus low elevation in alpine ecosystems, Environ. Microbiol. Rep., 12, 229–240, https://doi.org/10.1111/1758-2229.12827, 2020a.
Li, Z., Zeng, Z., Tian, D., Wang, J., Fu, Z., Zhang, F., Zhang, R., Chen, W., Luo, Y., and Niu, S.: Global patterns and controlling factors of soil nitrification rate, Glob. Chang. Biol., 26, 4147–4157, https://doi.org/10.1111/gcb.15119, 2020b.
Liu, X. Y., Koba, K., Koyama, L. A., Hobbie, S. E., Weiss, M. S., Inagaki, Y., Shaver, G. R., Giblin, A. E., Hobara, S., Nadelhoffer, K. J., Sommerkorn, M., Rastetter, E. B., Kling, G. W., Laundre, J. A., Yano, Y., Makabe, A., Yano, M., and Liu, C. Q.: Nitrate is an important nitrogen source for Arctic tundra plants, P. Natl. Acad. Sci. USA, 115, 3398–3403, https://doi.org/10.1073/pnas.1715382115, 2018.
Lüdecke, D.: sjPlot: Data Visualization for Statistics in Social Science, R package version 2.8.15, https://cran.r-project.org/package=sjPlot (last access: 7 May 2025), 2023.
Lyons, K. G. and Schwartz, M. W.: Rare species loss alters ecosystem function – Invasion resistance, Ecol. Lett., 4, 358–365, https://doi.org/10.1046/j.1461-0248.2001.00235.x, 2001.
Lyons, K. G., Brigham, C. A., Traut, B. H., and Schwartz, M. W.: Rare species and ecosystem functioning, Conservation Biology, 19, 1019–1024, https://doi.org/10.1111/j.1523-1739.2005.00106.x, 2005.
MacGillivray, C. W., Grime, J. P., and Team, T. I. S. P. (ISP): Testing Predictions of the Resistance and Resilience of Vegetation Subjected to Extreme Events, Funct. Ecol., 9, 640, https://doi.org/10.2307/2390156, 1995.
McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., Benecha, H. K., Dornelas, M., Enquist, B. J., Green, J. L., He, F., Hurlbert, A. H., Magurran, A. E., Marquet, P. A., Maurer, B. A., Ostling, A., Soykan, C. U., Ugland, K. I., and White, E. P.: Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework, Ecol. Lett., 10, 995–1015, https://doi.org/10.1111/j.1461-0248.2007.01094.x, 2007.
McLaren, J. R., Buckeridge, K. M., van de Weg, M. J., Shaver, G. R., Schimel, J. P., and Gough, L.: Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition, Ecology, 98, 1361–1376, https://doi.org/10.1002/ecy.1790, 2017.
Mekonnen, Z. A., Riley, W. J., Berner, L. T., Bouskill, N. J., Torn, M. S., Iwahana, G., Breen, A. L., Myers-Smith, I. H., Criado, M. G., Liu, Y., Euskirchen, E. S., Goetz, S. J., Mack, M. C., and Grant, R. F.: Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance, Environmental Research Letters, 16, https://doi.org/10.1088/1748-9326/abf28b, 2021.
Michelsen, A., Schmidt, I. K., Jonasson, S., Quarmby, C., and Sleep, D.: Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen, Oecologia, 105, 53–63, https://doi.org/10.1007/BF00328791, 1996.
Michelsen, A., Quarmby, C., Sleep, D., and Jonasson, S.: Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots, Oecologia, 115, 406–418, https://doi.org/10.1007/s004420050535, 1998.
Miyauchi, S., Kiss, E., Kuo, A., Drula, E., Kohler, A., Sánchez-García, M., Morin, E., Andreopoulos, B., Barry, K. W., Bonito, G., Buée, M., Carver, A., Chen, C., Cichocki, N., Clum, A., Culley, D., Crous, P. W., Fauchery, L., Girlanda, M., Hayes, R. D., Kéri, Z., LaButti, K., Lipzen, A., Lombard, V., Magnuson, J., Maillard, F., Murat, C., Nolan, M., Ohm, R. A., Pangilinan, J., Pereira, M. de F., Perotto, S., Peter, M., Pfister, S., Riley, R., Sitrit, Y., Stielow, J. B., Szöllősi, G., Žifčáková, L., Štursová, M., Spatafora, J. W., Tedersoo, L., Vaario, L. M., Yamada, A., Yan, M., Wang, P., Xu, J., Bruns, T., Baldrian, P., Vilgalys, R., Dunand, C., Henrissat, B., Grigoriev, I. V., Hibbett, D., Nagy, L. G., and Martin, F. M.: Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits, Nat. Commun., 11, 1–17, https://doi.org/10.1038/s41467-020-18795-w, 2020.
Mod, H. K. and Luoto, M.: Arctic shrubification mediates the impacts of warming climate on changes to tundra vegetation, Environmental Research Letters, 11, https://doi.org/10.1088/1748-9326/11/12/124028, 2016.
Molau, U.: Long-term impacts of observed and induced climate change on tussock tundra near its southern limit in northern Sweden, Plant Ecol. Divers., 3, 29–34, https://doi.org/10.1080/17550874.2010.487548, 2010.
Molau, U. and Mølgaard, P.: ITEX Manual, 2nd edn., Archives des Maladies Professionnelles et de l'Environnement, https://doi.org/10.1016/j.admp.2012.03.463, 1996.
Moreau, D., Pivato, B., Bru, D., Busset, H., Deau, F., Faivre, C., Matejicek, A., Strbik, F., Philippot, L., and Mougel, C.: Plant traits related to nitrogen uptake influence plant-microbe competition, Ecology, 96, 2300–2310, 2015.
Moreau, D., Bardgett, R. D., Finlay, R. D., Jones, D. L., and Philippot, L.: A plant perspective on nitrogen cycling in the rhizosphere, Funct. Ecol., 33, 540–552, https://doi.org/10.1111/1365-2435.13303, 2019.
Mouillot, D., Bellwood, D. R., Baraloto, C., Chave, J., Galzin, R., Harmelin-Vivien, M., Kulbicki, M., Lavergne, S., Lavorel, S., Mouquet, N., Paine, C. E. T., Renaud, J., and Thuiller, W.: Rare Species Support Vulnerable Functions in High-Diversity Ecosystems, PLoS Biol., 11, https://doi.org/10.1371/journal.pbio.1001569, 2013.
Müller, C., Rütting, T., Kattge, R. J., Laughlin, R. J., and Stevens, R. J.: Estimation of parameters in complex 15 N tracing models by Monte Carlo sampling, Soil Biol. Biochem., 39, 715–726, https://doi.org/10.1016/j.soilbio.2006.09.021, 2007.
Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K. D., MacIas-Fauria, M., Sass-Klaassen, U., Lévesque, E., Boudreau, S., Ropars, P., Hermanutz, L., Trant, A., Collier, L. S., Weijers, S., Rozema, J., Rayback, S. A., Schmidt, N. M., Schaepman-Strub, G., Wipf, S., Rixen, C., Ménard, C. B., Venn, S., Goetz, S., Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J., Grogan, P., Epstein, H. E., and Hik, D. S.: Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities, Environmental Research Letters, 6, https://doi.org/10.1088/1748-9326/6/4/045509, 2011.
Netherway, T., Bengtsson, J., Krab, E. J., and Bahram, M.: Biotic interactions with mycorrhizal systems as extended nutrient acquisition strategies shaping forest soil communities and functions, Basic Appl. Ecol., 50, 25–42, https://doi.org/10.1016/j.baae.2020.10.002, 2021.
Niklaus, P. A., Wardle, D. A., and Tate, K. R.: Effects of plant species diversity and composition on nitrogen cycling and the trace gas balance of soils, Plant Soil, 282, 83–98, https://doi.org/10.1007/s11104-005-5230-8, 2006.
Nowka, B., Daims, H., and Spieck, E.: Comparison of oxidation kinetics of nitrite-oxidizing bacteria: Nitrite availability as a key factor in niche differentiation, Appl. Environ. Microbiol., 81, 745–753, https://doi.org/10.1128/AEM.02734-14, 2015.
Orellana, L. H., Hatt, J. K., Iyer, R., Chourey, K., Hettich, R. L., Spain, J. C., Yang, W. H., Chee-Sanford, J. C., Sanford, R. A., Löffler, F. E., and Konstantinidis, K. T.: Comparing DNA, RNA and protein levels for measuring microbial dynamics in soil microcosms amended with nitrogen fertilizer, 9, 17630, https://doi.org/10.1038/s41598-019-53679-0, 2019.
Orwin, K. H., Kirschbaum, M. U. F., St John, M. G., and Dickie, I. A.: Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: A model-based assessment, Ecol. Lett., 14, 493–502, https://doi.org/10.1111/j.1461-0248.2011.01611.x, 2011.
Oshiki, M., Satoh, H., and Okabe, S.: Ecology and physiology of anaerobic ammonium oxidizing bacteria, Environ. Microbiol., 18, 2784–2796, https://doi.org/10.1111/1462-2920.13134, 2016.
Palomo, A., Pedersen, A. G., Fowler, S. J., Dechesne, A., Sicheritz-Pontén, T., and Smets, B. F.: Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira, ISME Journal, 12, 1779–1793, https://doi.org/10.1038/s41396-018-0083-3, 2018.
Paré, M. C. and Bedard-Haughn, A.: Landscape-scale N mineralization and greenhouse gas emissions in Canadian Cryosols, Geoderma, 189–190, 469–479, https://doi.org/10.1016/j.geoderma.2012.06.002, 2012.
Parker, T. C., Sanderman, J., Holden, R. D., Blume-Werry, G., Sjögersten, S., Large, D., Castro-Díaz, M., Street, L. E., Subke, J. A., and Wookey, P. A.: Exploring drivers of litter decomposition in a greening Arctic: results from a transplant experiment across a treeline, Ecology, 99, 2284–2294, https://doi.org/10.1002/ecy.2442, 2018.
Parker, T. C., Thurston, A. M., Raundrup, K., Subke, J. A., Wookey, P. A., and Hartley, I. P.: Shrub expansion in the Arctic may induce large-scale carbon losses due to changes in plant-soil interactions, Plant Soil, 463, 643–651, https://doi.org/10.1007/s11104-021-04919-8, 2021.
Payton, M. E., Miller, A. E., and Raun, W. R.: Testing statistical hypotheses using standard error bars and confidence intervals, Commun. Soil Sci. Plant Anal., 31, 547–551, https://doi.org/10.1080/00103620009370458, 2000.
Payton, M. E., Greenstone, M. H., and Schenker, N.: Overlapping confidence intervals or standard error intervals: What do they mean in terms of statistical significance?, Journal of Insect Science, 3, https://doi.org/10.1093/jis/3.1.34, 2003.
Pellitier, P. T. and Zak, D. R.: Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters, New Phytologist, 217, 68–73, https://doi.org/10.1111/nph.14598, 2018.
Pessi, I. S., Rutanen, A., and Hultman, J.: Candidatus Nitrosopolaris, a genus of putative ammonia-oxidizing archaea with a polar/alpine distribution, FEMS Microbes, 3, 1–11, https://doi.org/10.1093/femsmc/xtac019, 2022.
Phillips, R. P., Brzostek, E., and Midgley, M. G.: The mycorrhizal-associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests, New Phytologist, 199, 41–51, https://doi.org/10.1111/nph.12221, 2013.
Posit team: RStudio: Integrated Development Environment for R, Posit Software, PBC, Boston, MA, version 2024.12.0.467, http://www.posit.co/ (last access: 28 August 2025), 2024.
Prosser, J. I. and Nicol, G. W.: Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation, Trends Microbiol, 20, 523–531, https://doi.org/10.1016/j.tim.2012.08.001, 2012.
Ramm, E., Liu, C., Ambus, P., Butterbach-Bahl, K., Hu, B., Martikainen, P. J., Marushchak, M. E., Mueller, C. W., Rennenberg, H., Schloter, M., Siljanen, H. M. P., Voigt, C., Werner, C., Biasi, C., and Dannenmann, M.: A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils-changing the paradigm, Environmental Research Letters, 17, https://doi.org/10.1088/1748-9326/ac417e, 2022.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, version 4.4.2, https://www.r-project.org/ (last access: 28 August 2025), 2024.
Read, D. J.: Mycorrhizas in ecosystems, Experientia, 47, 376–391, https://doi.org/10.1016/0006-2952(93)90100-B, 1991.
Read, D. J. and Perez-Moreno, J.: Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance?, New Phytologist, 157, 475–492, https://doi.org/10.1046/j.1469-8137.2003.00704.x, 2003.
Revelle, W.: psych: Procedures for Psychological, Psychometric, and Personality Research, Northwestern University, Evanston, Illinois. R package version 2.4.1, https://CRAN.R-project.org/package=psych (last access: 28 August 2025), 2024.
Ribbons, R. R., Levy-Booth, D. J., Masse, J., Grayston, S. J., McDonald, M. A., Vesterdal, L., and Prescott, C. E.: Linking microbial communities, functional genes and nitrogen-cycling processes in forest floors under four tree species, Soil Biol. Biochem., 103, 181–191, https://doi.org/10.1016/j.soilbio.2016.07.024, 2016.
Richardson, S. J., Williams, P. A., Mason, N. W. H., Buxton, R., Courtney, S. P., Rance, B. D., Clarkson, B. R., Hoare, R. J. B., John, M. G. S., and Wiser, S. K.: Rare species drive local trait diversity in two geographically disjunct examples of a naturally rare alpine ecosystem in New Zealand, Journal of Vegetation Science, 23, 626–639, https://doi.org/10.1111/j.1654-1103.2012.01396.x, 2012.
Riley, W. J., Mekonnen, Z. A., Tang, J., Zhu, Q., Bouskill, N. J., and Grant, R. F.: Non-growing season plant nutrient uptake controls Arctic tundra vegetation composition under future climate, Environmental Research Letters, 16, 0–109, https://doi.org/10.1088/1748-9326/ac0e63, 2021.
Robertson, G. P. and Groffman, P. M.: Nitrogen transformations, 4th edn., Academic Press, 421–446 pp., https://doi.org/10.1016/b978-0-12-415955-6.00014-1, 2015.
Rocca, J. D., Hall, E. K., Lennon, J. T., Evans, S. E., Waldrop, M. P., Cotner, J. B., Nemergut, D. R., Graham, E. B., and Wallenstein, M. D.: Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed, ISME Journal, 9, 1693–1699, https://doi.org/10.1038/ismej.2014.252, 2015.
Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R., and Fierer, N.: Soil bacterial and fungal communities across a pH gradient in an arable soil, ISME Journal, 4, 1340–1351, https://doi.org/10.1038/ismej.2010.58, 2010.
Rozmoš, M., Bukovská, P., Hršelová, H., Kotianová, M., Dudáš, M., Gančarčíková, K., and Jansa, J.: Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist, ISME Journal, 16, 676–685, https://doi.org/10.1038/s41396-021-01112-8, 2022.
Ruotsalainen, A. L. and Kytöviita, M. M.: Mycorrhiza does not alter low temperature impact on Gnaphalium norvegicum, Oecologia, 140, 226–233, https://doi.org/10.1007/s00442-004-1586-3, 2004.
Rütting, T. and Müller, C.: 15N tracing models with a Monte Carlo optimization procedure provide new insights on gross N transformations in soils, Soil Biol. Biochem., 39, 2351–2361, https://doi.org/10.1016/j.soilbio.2007.04.006, 2007.
Rütting, T., Huygens, D., Staelens, J., Müller, C., and Boeckx, P.: Advances in 15 N-tracing experiments: new labelling and data analysis approaches, Biochem Soc Trans, 39, 279–283, https://doi.org/10.1042/BST0390279, 2011.
Säterberg, T., Jonsson, T., Yearsley, J., Berg, S., and Ebenman, B.: A potential role for rare species in ecosystem dynamics, Sci. Rep., 9, 11107, https://doi.org/10.1038/s41598-019-47541-6, 2019.
Savolainen, T. and Kytöviita, M. M.: Mycorrhizal symbiosis changes host nitrogen source use, Plant Soil, 471, 643–654, https://doi.org/10.1007/s11104-021-05257-5, 2022.
Schimel, J. P. and Bennett, J.: Nitrogen mineralization: Challenges of a changing paradigm, Ecology, 85, 591–602, 2004.
Schimel, J. P. and Chapin, F. S.: Tundra Plant Uptake of Amino Acid and NH Nitrogen in Situ: Plants Complete Well for Amino Acid N, Ecology, 77, 2142–2147, https://doi.org/10.2307/2265708, 1996.
Shaver, G. R., Syndonia Bret-Harte, M., Jones, M. H., Johnstone, J., Gough, L., Laundre, J., and Stuart Chapin, F.: Species composition interacts with fertilizer to control long-term change in tundra productivity, Ecology, 82, 3163–3181, https://doi.org/10.1890/0012-9658(2001)082[3163:SCIWFT]2.0.CO;2, 2001.
Shaw, M. R. and Harte, J.: Response of nitrogen cycling to simulated climate change: Differential responses along a subalpine ecotone, Glob. Chang. Biol., 7, 193–210, https://doi.org/10.1046/j.1365-2486.2001.00390.x, 2001.
Silva, R. G., Jorgensen, E. E., Holub, S. M., and Gonsoulin, M. E.: Relationships between culturable soil microbial populations and gross nitrogen transformation processes in a clay loam soil across ecosystems, Nutr. Cycl. Agroecosyst., 71, 259–270, https://doi.org/10.1007/s10705-004-6378-y, 2005.
Sistla, S. A., Moore, J. C., Simpson, R. T., Gough, L., Shaver, G. R., and Schimel, J. P.: Long-term warming restructures Arctic tundra without changing net soil carbon storage, Nature, 497, 615–618, https://doi.org/10.1038/nature12129, 2013.
Smith, M. D. and Knapp, A. K.: Dominant species maintain ecosystem function with non-random species loss, Ecol. Lett., 6, 509–517, https://doi.org/10.1046/j.1461-0248.2003.00454.x, 2003.
Soliveres, S., Manning, P., Prati, D., Gossner, M. M., Alt, F., Arndt, H., Baumgartner, V., Binkenstein, J., Birkhofer, K., Blaser, S., Blüthgen, N., Boch, S., Böhm, S., Börschig, C., Buscot, F., Diekötter, T., Heinze, J., Hölzel, N., Jung, K., Klaus, V. H., Klein, A. M., Kleinebecker, T., Klemmer, S., Krauss, J., Lange, M., Morris, E. K., Müller, J., Oelmann, Y., Overmann, J., Pašalić, E., Renner, S. C., Rillig, M. C., Schaefer, H. M., Schloter, M., Schmitt, B., Schöning, I., Schrumpf, M., Sikorski, J., Socher, S. A., Solly, E. F., Sonnemann, I., Sorkau, E., Steckel, J., Steffan-Dewenter, I., Stempfhuber, B., Tschapka, M., Türke, M., Venter, P., Weiner, C. N., Weisser, W. W., Werner, M., Westphal, C., Wilcke, W., Wolters, V., Wubet, T., Wurst, S., Fischer, M., and Allan, E.: Locally rare species influence grassland ecosystem multifunctionality, Philosophical Transactions of the Royal Society B, 371, https://doi.org/10.1098/rstb.2015.0269, 2016.
Soudzilovskaia, N. A., Vaessen, S., van't Zelfde, M., and Raes, N.: Global patterns of mycorrhizal distribution and their environmental drivers, in: Biogeography of mycorrhizal symbiosis, edited by: Tedersoo, L., Ecological Studies, vol 230, Springer, Cham, 223–235, https://doi.org/10.1007/978-3-319-56363-3_11, 2017.
Stange, C. F., Spott, O., Apelt, B., and Russow, R. W. B.: Automated and rapid online determination of 15N abundance and concentration of ammonium, nitrite, or nitrate in aqueous samples by the SPINMAS technique, Isotopes Environ. Health Stud., 43, 227–236, https://doi.org/10.1080/10256010701550658, 2007.
Steidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., Nabuurs, G., de-Miguel, S., Zhou, M., Picard, N., Herault, B., Zhao, X., Zhang, C., Routh, D., Peay, K. G., and GFBI consortium: Climatic controls of decomposition drive the global biogeography of forest-tree symbioses, Nature, 569, 404–408, https://doi.org/10.1038/s41586-019-1128-0, 2019.
Steltzer, H. and Bowman, W. D.: Differential influence of plant species on soil nitrogen transformations within moist meadow alpine tundra, Ecosystems, 1, 464–474, https://doi.org/10.1007/s100219900042, 1998.
Stempfhuber, B., Richter-Heitmann, T., Regan, K. M., Kölbl, A., Wüst, P. K., Marhan, S., Sikorski, J., Overmann, J., Friedrich, M. W., Kandeler, E., and Schloter, M.: Spatial interaction of archaeal ammonia-oxidizers and nitrite-oxidizing bacteria in an unfertilized grassland soil, Front. Microbiol., 6, 1–15, https://doi.org/10.3389/fmicb.2015.01567, 2016.
Stow, D. A., Hope, A., McGuire, D., Verbyla, D., Gamon, J., Huemmrich, F., Houston, S., Racine, C., Sturm, M., Tape, K., Hinzman, L., Yoshikawa, K., Tweedie, C., Noyle, B., Silapaswan, C., Douglas, D., Griffith, B., Jia, G., Epstein, H., Walker, D., Daeschner, S., Petersen, A., Zhou, L., and Myneni, R.: Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems, Remote Sens. Environ., 89, 281–308, https://doi.org/10.1016/j.rse.2003.10.018, 2004.
Sturm, M., Racine, C., Tape, K., Cronin, T. W., Caldwell, R. L., and Marshall, J.: Increasing shrub abundance in the Arctic, Nature, 411, 2001–2002, 2001.
Sun, D., Kotianová, M., Rozmoš, M., Hršelová, H., Bukovská, P., and Jansa, J.: Arbuscular mycorrhizal hyphae selectively suppress soil ammonia oxidizers – but probably not by production of biological nitrification inhibitors, Plant Soil, 491, 627–643, https://doi.org/10.1007/s11104-023-06144-x, 2023.
Tang, R., Li, S., Lang, X., Huang, X., and Su, J.: Rare species contribute greater to ecosystem multifunctionality in a subtropical forest than common species due to their functional diversity, For. Ecol. Manage., 538, 120981, https://doi.org/10.1016/j.foreco.2023.120981, 2023.
Tape, K., Sturm, M., and Racine, C.: The evidence for shrub expansion in Northern Alaska and the Pan-Arctic, Glob. Chang. Biol., 12, 686–702, https://doi.org/10.1111/j.1365-2486.2006.01128.x, 2006.
Taylor, A. E. and Mellbye, B. L.: Differential Responses of the Catalytic Efficiency of Ammonia and Nitrite Oxidation to Changes in Temperature, Front. Microbiol., 13, 1–16, https://doi.org/10.3389/fmicb.2022.817986, 2022.
Tedersoo, L., Bahram, M., and Zobel, M.: How mycorrhizal associations drive plant population and community biology, Science, 367, https://doi.org/10.1126/science.aba1223, 2020.
Tietema, A. and Wessel, W. W.: Gross nitrogen transformations in the organic layer of acid forest ecosystems subjected to increased atmospheric nitrogen input, Soil Biol. Biochem., 24, 943–950, https://doi.org/10.1016/0038-0717(92)90021-O, 1992.
Tunlid, A., Floudas, D., Op De Beeck, M., Wang, T., and Persson, P.: Decomposition of soil organic matter by ectomycorrhizal fungi: Mechanisms and consequences for organic nitrogen uptake and soil carbon stabilization, Frontiers in Forests and Global Change, 5, 1–9, https://doi.org/10.3389/ffgc.2022.934409, 2022.
Tybirk, K., Nilsson, M. C., Michelsen, A., Kristensen, H. L., Sheytsova, A., Strandberg, M. T., Johansson, M., Nielsen, K. E., Riis-Nielsen, T., Strandberg, B., and Johnsen, I.: Nordic Empetrum dominated ecosystems: Function and susceptibility to environmental changes, Ambio, 29, 90–97, https://doi.org/10.1579/0044-7447-29.2.90, 2000.
Van der Krift, T. A. J. and Berendse, F.: The effect of plant species on soil nitrogen mineralization, Journal of Ecology, 89, 555–561, https://doi.org/10.1046/j.0022-0477.2001.00580.x, 2001.
Wang, B., Funakoshi, D. M., Dalpé, Y., and Hamel, C.: Phosphorus-32 absorption and translocation to host plants by arbuscular mycorrhizal fungi at low root-zone temperature, Mycorrhiza, 12, 93–96, https://doi.org/10.1007/s00572-001-0150-9, 2002.
Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., Van Der Putten, W. H., and Wall, D. H.: Ecological linkages between aboveground and belowground biota, Science, 304, 1629–1633, https://doi.org/10.1126/science.1094875, 2004.
Welker, L., Ward, E. B., Bradford, M. A., and Ferraro, K. M.: Plant functional type shapes nitrogen availability in a regenerating forest, Plant Soil, 499, 587–603, https://doi.org/10.1007/s11104-024-06483-3, 2024.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H.: Welcome to the tidyverse, J. Open Source Softw., 4, 1686, https://doi.org/10.21105/joss.01686, 2019.
Wilks, J. C. and Slonczewski, J. L.: pH of the cytoplasm and periplasm of Escherichia coli: Rapid measurement by green fluorescent protein fluorimetry, J. Bacteriol., 189, 5601–5607, https://doi.org/10.1128/JB.00615-07, 2007.
Wright, C. L. and Lehtovirta-Morley, L. E.: Nitrification and beyond: metabolic versatility of ammonia oxidising archaea, ISME Journal, 17, 1358–1368, https://doi.org/10.1038/s41396-023-01467-0, 2023.
Wurzburger, N. and Brookshire, E. N. J.: Experimental evidence that mycorrhizal nitrogen strategies affect soil carbon, Ecology, 98, 1491–1497, 2017.
Wurzburger, N. and Hendrick, R. L.: Plant litter chemistry and mycorrhizal roots promote a nitrogen feedback in a temperate forest, Journal of Ecology, 97, 528–536, https://doi.org/10.1111/j.1365-2745.2009.01487.x, 2009.
Xie, Y.: knitr: A General-Purpose Package for Dynamic Report Generation in R, R package version 1.45, https://yihui.org/knitr/ (last access: 7 May 2025), 2023.
Yang, X., Yu, X., He, Q., Deng, T., Guan, X., Lian, Y., Xu, K., Shu, L., Wang, C., Yan, Q., Yang, Y., Wu, B., and He, Z.: Niche differentiation among comammox (Nitrospira inopinata) and other metabolically distinct nitrifiers, Front. Microbiol., 13, https://doi.org/10.3389/fmicb.2022.956860, 2022.
Zhan, Q., Chen, L., Wu, H., Ouyang, S., Zeng, Y., Deng, X., Hu, Y., and Xiang, W.: Microbial gene abundance mirrors soil nitrogen mineralization intensity across an age gradient in Chinese-fir plantations, Eur. J. Soil Biol., 119, 103570, https://doi.org/10.1016/j.ejsobi.2023.103570, 2023.
Zhu, H.: kableExtra: Construct Complex Table with 'kable' and Pipe Syntax, R package version 1.4.0, https://cran.r-project.org/package=kableExtra (last access: 7 May 2025), 2024.
Short summary
This study explores how different types of fungi and plant species affect nitrogen cycling in Arctic soils. By removing certain plants, we found that fungi associated with shrubs speed up nitrogen processes more than those with grasses. Dominant plant species enhance nitrogen recycling, while rare species increase nitrogen loss. These findings help predict how Arctic ecosystems respond to climate change, highlighting the importance of fungi and plant diversity in regulating ecosystem processes.
This study explores how different types of fungi and plant species affect nitrogen cycling in...
Altmetrics
Final-revised paper
Preprint