Articles | Volume 22, issue 22
https://doi.org/10.5194/bg-22-7149-2025
https://doi.org/10.5194/bg-22-7149-2025
Research article
 | 
24 Nov 2025
Research article |  | 24 Nov 2025

Mineral formation during shipboard ocean alkalinity enhancement experiments in the North Atlantic

Mohammed S. Hashim, Lukas Marx, Frieder Klein, Chloe L. Dean, Emily Burdige, Matthew Hayden, Daniel C. McCorkle, and Adam V. Subhas

Related authors

Zinc stimulation of phytoplankton in a low-carbon-dioxide, coastal Antarctic environment: evidence for the Zn hypothesis
Riss M. Kell, Adam V. Subhas, Nicole L. Schanke, Lauren E. Lees, Rebecca J. Chmiel, Deepa Rao, Margaret M. Brisbin, Dawn M. Moran, Matthew R. McIlvin, Francesco Bolinesi, Olga Mangoni, Raffaella Casotti, Cecilia Balestra, Tristan J. Horner, Robert B. Dunbar, Andrew E. Allen, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 22, 5877–5896, https://doi.org/10.5194/bg-22-5877-2025,https://doi.org/10.5194/bg-22-5877-2025, 2025
Short summary
A tracer study for the development of in-water monitoring, reporting, and verification (MRV) of ship-based ocean alkalinity enhancement
Adam V. Subhas, Jennie E. Rheuban, Zhaohui Aleck Wang, Daniel C. McCorkle, Anna P. M. Michel, Lukas Marx, Chloe L. Dean, Kate Morkeski, Matthew G. Hayden, Mary Burkitt-Gray, Francis Elder, Yiming Guo, Heather H. Kim, and Ke Chen
Biogeosciences, 22, 5511–5534, https://doi.org/10.5194/bg-22-5511-2025,https://doi.org/10.5194/bg-22-5511-2025, 2025
Short summary
Magnesium isotope fractionation processes during seafloor serpentinization and implications for serpentinite subduction
Sune G. Nielsen, Frieder Klein, Horst R. Marschall, Philip A. E. Pogge von Strandmann, and Maureen Auro
Solid Earth, 15, 1143–1154, https://doi.org/10.5194/se-15-1143-2024,https://doi.org/10.5194/se-15-1143-2024, 2024
Short summary
Natural analogs to ocean alkalinity enhancement
Adam V. Subhas, Nadine Lehmann, and Rosalind E. M. Rickaby
State Planet, 2-oae2023, 8, https://doi.org/10.5194/sp-2-oae2023-8-2023,https://doi.org/10.5194/sp-2-oae2023-8-2023, 2023
Short summary
Data reporting and sharing for ocean alkalinity enhancement research
Li-Qing Jiang, Adam V. Subhas, Daniela Basso, Katja Fennel, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 13, https://doi.org/10.5194/sp-2-oae2023-13-2023,https://doi.org/10.5194/sp-2-oae2023-13-2023, 2023
Short summary

Cited articles

Alexandersson, T.: Intragranular Growth of Marine Aragonite and Mg-Calcite: Evidence of Precipitation from Supersaturated Seawater, Journal of Sedimentary Research, 42, https://doi.org/10.1306/74D72581-2B21-11D7-8648000102C1865D, 1972. 
Bach, L. T., Ferderer, A. J., LaRoche, J., and Schulz, K. G.: Technical note: Ocean Alkalinity Enhancement Pelagic Impact Intercomparison Project (OAEPIIP), Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024, 2024. 
Berner, R. A.: The role of magnesium in the crystal growth of calcite and aragonite from sea water, Geochimica et Cosmochimica Acta, 39, 489–504, https://doi.org/10.1016/0016-7037(75)90102-7, 1975. 
Bethke, C. M.: Geochemical Reaction Modeling, Oxford University Press, New York, https://doi.org/10.1093/oso/9780195094756.002.0001, 1996. 
Bischoff, J. L.: Kinetics of calcite nucleation: Magnesium ion inhibition and ionic strength catalysis, J. Geophys. Res., 73, 3315–3322, https://doi.org/10.1029/JB073i010p03315, 1968. 
Download
Short summary
Ocean alkalinity enhancement (OAE) is a CO2 removal approach that involves the addition of alkaline substances to seawater that would allow it to absorb more atmospheric CO2. Increasing seawater alkalinity, however, can trigger mineral precipitation that decreases OAE efficiency. We conducted experiments to constrain the thermodynamics and kinetics of mineral precipitation.
Share
Altmetrics
Final-revised paper
Preprint