Articles | Volume 22, issue 22
https://doi.org/10.5194/bg-22-7425-2025
https://doi.org/10.5194/bg-22-7425-2025
Research article
 | 
28 Nov 2025
Research article |  | 28 Nov 2025

Bioconcentration as a key driver of Hg bioaccumulation in high-trophic-level fish

David J. Amptmeijer and Johannes Bieser

Related authors

DOM consumption and demethylation as potential drivers of low MeHg in Mediterranean Sea sponges and benthic fish: a modelling perspective
David Johannes Amptmeijer, Ulrike Hanz, Corinna Schrum, and Johannes Bieser
EGUsphere, https://doi.org/10.5194/egusphere-2025-5377,https://doi.org/10.5194/egusphere-2025-5377, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Feeding strategy as a key driver of the bioaccumulation of MeHg in megabenthos
David Johannes Amptmeijer, Andrea Padilla, Sofia Modesti, Corinna Schrum, and Johannes Bieser
EGUsphere, https://doi.org/10.5194/egusphere-2025-1494,https://doi.org/10.5194/egusphere-2025-1494, 2025
Short summary
Bioaccumulation as a driver of high MeHg in the North and Baltic Seas
David Johannes Amptmeijer, Elena Mikhavee, Ute Daewel, Johannes Bieser, and Corinna Schrum
EGUsphere, https://doi.org/10.5194/egusphere-2025-1486,https://doi.org/10.5194/egusphere-2025-1486, 2025
Short summary
The 3D biogeochemical marine mercury cycling model MERCY v2.0 – linking atmospheric Hg to methylmercury in fish
Johannes Bieser, David J. Amptmeijer, Ute Daewel, Joachim Kuss, Anne L. Soerensen, and Corinna Schrum
Geosci. Model Dev., 16, 2649–2688, https://doi.org/10.5194/gmd-16-2649-2023,https://doi.org/10.5194/gmd-16-2649-2023, 2023
Short summary

Cited articles

Amptmeijer, D. and Bieser, J.: mercury-bioaccumulation-thesis, Zenodo [code], https://doi.org/10.5281/zenodo.17372353, 2025. a
Amptmeijer, D. J., Mikhavee, E., Daewel, U., Bieser, J., and Schrum, C.: Bioaccumulation as a driver of high MeHg in the North and Baltic Seas, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2025-1486, 2025. a, b, c, d, e, f, g, h, i, j, k, l
Arnold, A. P., Canty', A. J., and Canty, A. J.: Methylmercury(II) sulfhydryl interactions. Potentiometric determination of the formation constants for complexation of methylmercury(II) by sulfhydryl containing amino acids and related molecules, including glutathione, Canadian Journal of Chemistry, 61, 1428–1434, https://doi.org/10.1139/V83-250, 1983. a
Bieser, J., Amptmeijer, D. J., Daewel, U., Kuss, J., Soerensen, A. L., and Schrum, C.: The 3D biogeochemical marine mercury cycling model MERCY v2.0 – linking atmospheric Hg to methylmercury in fish, Geosci. Model Dev., 16, 2649–2688, https://doi.org/10.5194/gmd-16-2649-2023, 2023. a, b, c, d, e
Bolding, K., Bruggeman, J., Burchard, H., and Umlauf, L.: General Ocean Turbulence Model – GOTM, Zenodo [code], https://doi.org/10.5281/ZENODO.4896611, 2021. a
Download
Short summary
The mercury (Hg) form of most concern is monomethylmercury (MMHg⁺) due to its neurotoxicity and ability to bioaccumulate in seafood. Bioaccumulation in seafood occurs via bioconcentration (direct uptake) and biomagnification (trophic transfer). Our study separates these processes, showing that bioconcentration increases MMHg⁺ in high trophic level fish by 15 % per level, contributing 28–49 % of MMHg⁺ in Atlantic cod. These findings can be used to inform efficient Hg modeling strategies.
Share
Altmetrics
Final-revised paper
Preprint