Articles | Volume 22, issue 22
https://doi.org/10.5194/bg-22-7425-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-7425-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bioconcentration as a key driver of Hg bioaccumulation in high-trophic-level fish
David J. Amptmeijer
CORRESPONDING AUTHOR
Matter Transport and Ecosystem Dynamics, Helmhotz-Zentrum Hereon, Geesthacht, Germany
Johannes Bieser
Matter Transport and Ecosystem Dynamics, Helmhotz-Zentrum Hereon, Geesthacht, Germany
Related authors
David Johannes Amptmeijer, Ulrike Hanz, Corinna Schrum, and Johannes Bieser
EGUsphere, https://doi.org/10.5194/egusphere-2025-5377, https://doi.org/10.5194/egusphere-2025-5377, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Sponges have unusually low methylmercury (MeHg) and high inorganic mercury (iHg) bioaccumulation compared to other macrobenthos. This pattern has been attributed to MeHg demethylation by symbiotic bacteria. Our model demonstrates an alternative explanation that dissolved organic matter (DOM) consumption by sponges can increase iHg and decrease MeHg levels. Low MeHg in sponges at the food web base may further limit MeHg bioaccumulation in higher trophic levels.
David Johannes Amptmeijer, Andrea Padilla, Sofia Modesti, Corinna Schrum, and Johannes Bieser
EGUsphere, https://doi.org/10.5194/egusphere-2025-1494, https://doi.org/10.5194/egusphere-2025-1494, 2025
Short summary
Short summary
This paper combines a literature review with a 1D coupled Hg speciation and bioaccumulation model to assess how feeding strategy influences inorganic and methylmercury levels at the food web's base. We find that filter feeders have higher MeHg concentrations, while suspension feeders show very low MeHg. These results highlight feeding strategy as a key driver in MeHg bioaccumulation variability.
David Johannes Amptmeijer, Elena Mikhavee, Ute Daewel, Johannes Bieser, and Corinna Schrum
EGUsphere, https://doi.org/10.5194/egusphere-2025-1486, https://doi.org/10.5194/egusphere-2025-1486, 2025
Short summary
Short summary
In this study, we analyze mercury bioaccumulation, including both methylated and inorganic Hg. While methylmercury is the primary toxin of concern, modeling inorganic Hg bioaccumulation reveals its role in marine mercury cycling. We find that bioaccumulation strongly influences mercury dynamics, increasing methylmercury levels. This effect is more pronounced in well-mixed coastal waters than in permanently stratified deep waters.
Johannes Bieser, David J. Amptmeijer, Ute Daewel, Joachim Kuss, Anne L. Soerensen, and Corinna Schrum
Geosci. Model Dev., 16, 2649–2688, https://doi.org/10.5194/gmd-16-2649-2023, https://doi.org/10.5194/gmd-16-2649-2023, 2023
Short summary
Short summary
MERCY is a 3D model to study mercury (Hg) cycling in the ocean. Hg is a highly harmful pollutant regulated by the UN Minamata Convention on Mercury due to widespread human emissions. These emissions eventually reach the oceans, where Hg transforms into the even more toxic and bioaccumulative pollutant methylmercury. MERCY predicts the fate of Hg in the ocean and its buildup in the food chain. It is the first model to consider Hg accumulation in fish, a major source of Hg exposure for humans.
David Johannes Amptmeijer, Ulrike Hanz, Corinna Schrum, and Johannes Bieser
EGUsphere, https://doi.org/10.5194/egusphere-2025-5377, https://doi.org/10.5194/egusphere-2025-5377, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Sponges have unusually low methylmercury (MeHg) and high inorganic mercury (iHg) bioaccumulation compared to other macrobenthos. This pattern has been attributed to MeHg demethylation by symbiotic bacteria. Our model demonstrates an alternative explanation that dissolved organic matter (DOM) consumption by sponges can increase iHg and decrease MeHg levels. Low MeHg in sponges at the food web base may further limit MeHg bioaccumulation in higher trophic levels.
Koketso M. Molepo, Johannes Bieser, Alkuin M. Koenig, Ian M. Hedgecock, Ralf Ebinghaus, Aurélien Dommergue, Olivier Magand, Hélène Angot, Oleg Travnikov, Lynwill Martin, Casper Labuschagne, Katie Read, and Yann Bertrand
Atmos. Chem. Phys., 25, 9645–9668, https://doi.org/10.5194/acp-25-9645-2025, https://doi.org/10.5194/acp-25-9645-2025, 2025
Short summary
Short summary
Mercury exchange between the ocean and atmosphere is poorly understood due to limited in situ data. Here, using atmospheric mercury observations from ground-based monitoring stations along with air mass trajectories, we found that atmospheric Hg levels increase with air mass ocean exposure time, matching predictions for ocean Hg emissions. This finding indicates that ocean emissions directly influence atmospheric Hg levels and enables us to estimate these emissions on a global scale.
Hiram Abif Meza-Landero, Julia Bruckert, Ronny Petrick, Pascal Simon, Heike Vogel, Volker Matthias, Johannes Bieser, and Martin Ramacher
EGUsphere, https://doi.org/10.5194/egusphere-2025-2289, https://doi.org/10.5194/egusphere-2025-2289, 2025
Short summary
Short summary
To understand how persistent hazardous industrial chemicals travel through the air and are deposited back on Earth's surface, we created a new computer model that combines meteorology and chemistry in clouds and clean air. Using the most recent global emissions data, this model represents the trajectory and changes of these chemicals, matching patterns in many areas and overlooking others. The work seeks to improve global monitoring and modeling of hazardous chemicals.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
David Johannes Amptmeijer, Andrea Padilla, Sofia Modesti, Corinna Schrum, and Johannes Bieser
EGUsphere, https://doi.org/10.5194/egusphere-2025-1494, https://doi.org/10.5194/egusphere-2025-1494, 2025
Short summary
Short summary
This paper combines a literature review with a 1D coupled Hg speciation and bioaccumulation model to assess how feeding strategy influences inorganic and methylmercury levels at the food web's base. We find that filter feeders have higher MeHg concentrations, while suspension feeders show very low MeHg. These results highlight feeding strategy as a key driver in MeHg bioaccumulation variability.
David Johannes Amptmeijer, Elena Mikhavee, Ute Daewel, Johannes Bieser, and Corinna Schrum
EGUsphere, https://doi.org/10.5194/egusphere-2025-1486, https://doi.org/10.5194/egusphere-2025-1486, 2025
Short summary
Short summary
In this study, we analyze mercury bioaccumulation, including both methylated and inorganic Hg. While methylmercury is the primary toxin of concern, modeling inorganic Hg bioaccumulation reveals its role in marine mercury cycling. We find that bioaccumulation strongly influences mercury dynamics, increasing methylmercury levels. This effect is more pronounced in well-mixed coastal waters than in permanently stratified deep waters.
Pascal Simon, Martin Otto Paul Ramacher, Stefan Hagemann, Volker Matthias, Hanna Joerss, and Johannes Bieser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-236, https://doi.org/10.5194/essd-2024-236, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Per- and Polyfluorinated Alkyl Substances (PFAS) constitute a group of often toxic, persistent, and bioaccumulative substances. We constructed a global Emissions model and inventory based on multiple datasets for 23 widely used PFAS. The model computes temporally and spatially resolved model ready emissions distinguishing between emissions to air and emissions to water covering the time span from 1950 up until 2020 on an annual basis to be used for chemistry transport modelling.
Johannes Bieser, David J. Amptmeijer, Ute Daewel, Joachim Kuss, Anne L. Soerensen, and Corinna Schrum
Geosci. Model Dev., 16, 2649–2688, https://doi.org/10.5194/gmd-16-2649-2023, https://doi.org/10.5194/gmd-16-2649-2023, 2023
Short summary
Short summary
MERCY is a 3D model to study mercury (Hg) cycling in the ocean. Hg is a highly harmful pollutant regulated by the UN Minamata Convention on Mercury due to widespread human emissions. These emissions eventually reach the oceans, where Hg transforms into the even more toxic and bioaccumulative pollutant methylmercury. MERCY predicts the fate of Hg in the ocean and its buildup in the food chain. It is the first model to consider Hg accumulation in fish, a major source of Hg exposure for humans.
Danilo Custódio, Katrine Aspmo Pfaffhuber, T. Gerard Spain, Fidel F. Pankratov, Iana Strigunova, Koketso Molepo, Henrik Skov, Johannes Bieser, and Ralf Ebinghaus
Atmos. Chem. Phys., 22, 3827–3840, https://doi.org/10.5194/acp-22-3827-2022, https://doi.org/10.5194/acp-22-3827-2022, 2022
Short summary
Short summary
As a poison in the air that we breathe and the food that we eat, mercury is a human health concern for society as a whole. In that regard, this work deals with monitoring and modelling mercury in the environment, improving wherewithal, identifying the strength of the different components at play, and interpreting information to support the efforts that seek to safeguard public health.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Cited articles
Amptmeijer, D. and Bieser, J.: mercury-bioaccumulation-thesis, Zenodo [code], https://doi.org/10.5281/zenodo.17372353, 2025. a
Arnold, A. P., Canty', A. J., and Canty, A. J.: Methylmercury(II) sulfhydryl interactions. Potentiometric determination of the formation constants for complexation of methylmercury(II) by sulfhydryl containing amino acids and related molecules, including glutathione, Canadian Journal of Chemistry, 61, 1428–1434, https://doi.org/10.1139/V83-250, 1983. a
Bolding, K., Bruggeman, J., Burchard, H., and Umlauf, L.: General Ocean Turbulence Model – GOTM, Zenodo [code], https://doi.org/10.5281/ZENODO.4896611, 2021. a
Bresnan, E., Hay, S., Hughes, S. L., Fraser, S., Rasmussen, J., Webster, L., Slesser, G., Dunn, J., and Heath, M. R.: Seasonal and interannual variation in the phytoplankton community in the north east of Scotland, Journal of Sea Research, 61, 17–25, https://doi.org/10.1016/J.SEARES.2008.05.007, 2009. a
Brocza, F. M., Rafaj, P., Sander, R., Wagner, F., and Jones, J. M.: Global scenarios of anthropogenic mercury emissions, Atmos. Chem. Phys., 24, 7385–7404, https://doi.org/10.5194/acp-24-7385-2024, 2024. a
Bruggeman, J. and Bolding, K.: A general framework for aquatic biogeochemical models, Environmental Modelling & Software, 61, 249–265, https://doi.org/10.1016/J.ENVSOFT.2014.04.002, 2014. a
Chen, Q., Wu, Q., Cui, Y., and Wang, S.: Global seafood production practices and trade patterns contribute to disparities in exposure to methylmercury, Nature Food, 6, 491–502, https://doi.org/10.1038/s43016-025-01136-9, 2025. a
Conley, D. J., Börck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B. G., Hietanen, S., Kortekaas, M., Kuosa, H., Meier, H. E., Müller-Karulis, B., Nordberg, K., Norkko, A., Nürnberg, G., Pitkänen, H., Rabalais, N. N., Rosenberg, R., Savchuk, O. P., Slomp, C. P., Voss, M., Wulff, F., and Zillén, L.: Hypoxia-related processes in the Baltic Sea, Environmental Science and Technology, 43, 3412–3420, https://doi.org/10.1021/ES802762A, 2009. a
Daewel, U., Schrum, C., and Macdonald, J. I.: Towards end-to-end (E2E) modelling in a consistent NPZD-F modelling framework (ECOSMO E2E_v1.0): application to the North Sea and Baltic Sea, Geosci. Model Dev., 12, 1765–1789, https://doi.org/10.5194/gmd-12-1765-2019, 2019. a, b, c
Doll, J. C. and Jacquemin, S. J.: Bayesian Model Selection in Fisheries Management and Ecology, Journal of Fish and Wildlife Management, 10, 691–707, https://doi.org/10.3996/042019-JFWM-024, 2019. a
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic Ocean Tides, Journal of Atmospheric and Oceanic Technology, 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. a
Emeis, K. C., van Beusekom, J., Callies, U., Ebinghaus, R., Kannen, A., Kraus, G., Kröncke, I., Lenhart, H., Lorkowski, I., Matthias, V., Möllmann, C., Pätsch, J., Scharfe, M., Thomas, H., Weisse, R., and Zorita, E.: The North Sea – A shelf sea in the Anthropocene, Journal of Marine Systems, 141, 18–33, https://doi.org/10.1016/J.JMARSYS.2014.03.012, 2015. a
Fitzgerald, W. F., Lamborg, C. H., and Hammerschmidt, C. R.: Marine Biogeochemical Cycling of Mercury, Chemical Reviews, 107. https://doi.org/10.1021/cr050353m, 2007. a
Garcia, H. E., Boyer, T. P., Baranova, O. K., Locarnini, R. A., Mishonov, A. V., Grodsky, A., Paver, C. R., Weathers, K. W., Smolyar, I. V., Reagan, J. R., Seidov, D., and Zweng, M. W.: World Ocean Atlas 2018: Product Documentation, edited by: Mishonov, A., https://doi.org/10.25923/tzyw-rp36, 2019. a
Garcia-Arevalo, I., Berard, J.-B., Bieser, J., Le Faucheur, S., Hubert, C., Lacour, T., Thomas, B., Cossa, D., and Knoery, J.: Mercury Accumulation Pathways in a Model Marine Microalgae: Sorption, Uptake, and Partition Kinetics, ACS ES&T Water, 4, https://doi.org/10.1021/acsestwater.3c00795, 2024. a, b
GEBCO Bathymetric Compilation Group: The GEBCO_2020 Grid – a continuous terrain model of the global oceans and land, Tech. rep., https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9, 2020. a
Gosnell, K. J. and Mason, R. P.: Mercury and methylmercury incidence and bioaccumulation in plankton from the central Pacific Ocean, Marine Chemistry, 177, 772–780, https://doi.org/10.1016/J.MARCHEM.2015.07.005, 2015. a
Hall, B. D., Bodaly, R. A., Fudge, R. J., Rudd, J. W., and Rosenberg, D. M.: Food as the dominant pathway of methylmercury uptake by fish, Water, Air, and Soil Pollution, 100, 13–24, https://doi.org/10.1023/A:1018071406537/METRICS, 1997. a, b
Harding, G., Dalziel, J., and Vass, P.: Bioaccumulation of methylmercury within the marine food web of the outer Bay of Fundy, Gulf of Maine, PLoS ONE, 13, https://doi.org/10.1371/JOURNAL.PONE.0197220, 2018. a
Heip, C., Basford, D., Craeymeersch, J. A., Dewarumez, J.-m., Dorjes, J., de Wilde, P., Duineveld, G., Eleftheriou, A., J Herman, P. M., Niermann, U., Kingston, P., Kiinitzer, A., Rachor, E., Rumohr, H., Soetaert, K., Soltwedel Heip, T., Wilde, d., Heip A Craeymeersch, C. J., Soetaert, a., Laboratory, M., and Kiinitzer, S. A.: Trends in biomass, density and diversity of North Sea macrofauna, ICESJ Mar. Sci, 49, 13–22, https://doi.org/10.1093/icesjms/49.1.13, 1992. a, b
Kahru, M. and Elmgren, R.: Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea, Biogeosciences, 11, 3619–3633, https://doi.org/10.5194/bg-11-3619-2014, 2014. a
Kuss, J., Wasmund, N., Nausch, n., and Labrenz, M.: Mercury Emission by the Baltic Sea: A Consequence of Cyanobacterial Activity, Photochemistry, And Low-Light Mercury Transformation, Environ. Sci. Technol, 2022, 16, https://doi.org/10.1021/acs.est.5b02204, 2015. a
Lavoie, R. A., Jardine, T. D., Chumchal, M. M., Kidd, K. A., and Campbell, L. M.: Biomagnification of Mercury in Aquatic Food Webs: A Worldwide Meta-Analysis, Environmental Science & Technology, 47, https://doi.org/10.1021/es403103t, 2013. a, b, c, d
Lee, C. S. and Fisher, N. S.: Bioaccumulation of methylmercury in a marine copepod, Environmental toxicology and chemistry, 36, 1287, https://doi.org/10.1002/ETC.3660, 2017. a
Li, M. L., Gillies, E. J., Briner, R., Hoover, C. A., Sora, K. J., Loseto, L. L., Walters, W. J., Cheung, W. W., and Giang, A.: Investigating the dynamics of methylmercury bioaccumulation in the Beaufort Sea shelf food web: a modeling perspective, Environmental Science: Processes & Impacts, 24, 1010–1025, https://doi.org/10.1039/D2EM00108J, 2022. a, b, c
Mason, R. P., Reinfelder, J. R., and Morel, F. M.: Bioaccumulation of mercury and methylmercury, Water, Air, and Soil Pollution, 80, 915–921, https://doi.org/10.1007/BF01189744, 1995. a
Mason, R. P., Reinfelder, J. R., and Morel, F. M.: Uptake, toxicity, and trophic transfer of mercury in a coastal diatom, Environmental Science and Technology, 30, 1835–1845, https://doi.org/10.1021/es950373d, 1996. a
Mason, R. P., Choi, A. L., Fitzgerald, W. F., Hammerschmidt, C. R., Lamborg, C. H., Soerensen, A. L., and Sunderland, E. M.: Mercury biogeochemical cycling in the ocean and policy implications, Environmental research, 119, 101–117, https://doi.org/10.1016/j.envres.2012.03.013, 2012. a
Morel, F. M. M., Kraepiel, A. M. L., and Amyot, M.: The Chemical Cycle and Bioaccumulation of Mercury, Source: Annual Review of Ecology and Systematics, 29, 543–566, https://www.jstor.org/stable/221718?seq=1&cid=pdf- (last access: 19 November 2025), 1998. a
Nilsen, M., Pedersen, T., Nilssen, E. M., and Fredriksen, S.: Trophic studies in a high-latitude fjord ecosystem – a comparison of stable isotope analyses (δ13C and δ15N) and trophic-level estimates from a mass-balance model, Canadian Journal of Fisheries and Aquatic Sciences, 65, 2791–2806, https://doi.org/10.1139/F08-180, 2008. a, b
Pickhardt, P. C. and Fisher, N. S.: Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies, Environmental Science and Technology, 41, 125–131, https://doi.org/10.1021/es060966w, 2007. a
Pickhardt, P. C., Stepanova, M., and Fisher, N. S.: Contrasting uptake routes and tissue distributions of inorganic and methylmercury in mosquitofish (Gambusia affinis) and redear sunfish (Lepomis microlophus), Environmental Toxicology and Chemistry, 25, 2132–2142, https://doi.org/10.1897/05-595R.1, 2006. a, b
Rosati, G., Canu, D., Lazzari, P., and Solidoro, C.: Assessing the spatial and temporal variability of methylmercury biogeochemistry and bioaccumulation in the Mediterranean Sea with a coupled 3D model, Biogeosciences, 19, 3663–3682, https://doi.org/10.5194/bg-19-3663-2022, 2022. a, b, c
Sarà, G. and Sarà, R.: Feeding habits and trophic levels of bluefin tuna Thunnus thynnus of different size classes in the Mediterranean Sea, Journal of Applied Ichthyology, 23, 122–127, https://doi.org/10.1111/J.1439-0426.2006.00829.X, 2007. a, b
Schartup, A. T., Qureshi, A., Dassuncao, C., Thackray, C. P., Harding, G., and Sunderland, E. M.: A Model for Methylmercury Uptake and Trophic Transfer by Marine Plankton, Environ. Sci. Technol, 52, 18, https://doi.org/10.1021/acs.est.7b03821, 2018. a, b, c, d
Seixas, T. G., Moreira, I., Siciliano, S., Malm, O., and Kehrig, H. A.: Differences in methylmercury and inorganic mercury biomagnification in a tropical marine food web, Bulletin of Environmental Contamination and Toxicology, 92, 274–278, https://doi.org/10.1007/S00128-014-1208-7/FIGURES/2, 2014. a
Tesán-Onrubia, J. A., Heimbürger-Boavida, L. E., Dufour, A., Harmelin-Vivien, M., García-Arévalo, I., Knoery, J., Thomas, B., Carlotti, F., Tedetti, M., and Bănaru, D.: Bioconcentration, bioaccumulation and biomagnification of mercury in plankton of the Mediterranean Sea, Marine Pollution Bulletin, 194, 115439, https://doi.org/10.1016/J.MARPOLBUL.2023.115439, 2023. a
Thurow, F.: Estimation of the total fish biomass in the Baltic Sea during the 20th century, ICES Journal of Marine Science, 54, 444–461, https://doi.org/10.1006/jmsc.1996.0195, 1997. a
Tsui, M. T. and Wang, W. X.: Uptake and Elimination Routes of Inorganic Mercury and Methylmercury in Daphnia magna, Environmental Science and Technology, 38, 808–816, https://doi.org/10.1021/es034638x, 2004. a, b
West, J., Gindorf, S., and Jonsson, S.: Photochemical Degradation of Dimethylmercury in Natural Waters, Environmental Science and Technology, 56, 5920–5928, https://doi.org/10.1021/acs.est.1c08443, 2022. a
WHO: 10 chemicals of public health concern, https://www.who.int/news-room/photo-story/photo-story-detail/10-chemicals-of-public-health-concern (last access: 19 November 2025), 2020. a
Wu, P., Kainz, M. J., Bravo, A. G., Åkerblom, S., Sonesten, L., and Bishop, K.: The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: A meta-analysis, Science of the Total Environment, 646, 357–367, https://doi.org/10.1016/j.scitotenv.2018.07.328, 2019. a, b
Zellner, A. and Siow, A.: Posterior odds ratios for selected regression hypotheses, Trabajos de Estadistica Y de Investigacion Operativa 31, 585–603, https://doi.org/10.1007/BF02888369, 1980. a
Zhang, Y., Soerensen, A. L., Schartup, A. T., Sunderland, E. M., and Paulson, J. A.: A Global Model for Methylmercury Formation and Uptake at the Base of Marine Food Webs, Global Biogeochemical Cycles, 34, https://doi.org/10.1029/2019GB006348, 2020. a
Short summary
The mercury (Hg) form of most concern is monomethylmercury (MMHg⁺) due to its neurotoxicity and ability to bioaccumulate in seafood. Bioaccumulation in seafood occurs via bioconcentration (direct uptake) and biomagnification (trophic transfer). Our study separates these processes, showing that bioconcentration increases MMHg⁺ in high trophic level fish by 15 % per level, contributing 28–49 % of MMHg⁺ in Atlantic cod. These findings can be used to inform efficient Hg modeling strategies.
The mercury (Hg) form of most concern is monomethylmercury (MMHg⁺) due to its neurotoxicity...
Altmetrics
Final-revised paper
Preprint