Articles | Volume 22, issue 23
https://doi.org/10.5194/bg-22-7769-2025
https://doi.org/10.5194/bg-22-7769-2025
Research article
 | 
08 Dec 2025
Research article |  | 08 Dec 2025

Benthic macrofaunal carbon fluxes and environmental drivers of spatial variability in a large coastal-plain estuary

Seyi Ajayi, Raymond Najjar, Emily Rivest, Ryan Woodland, Marjorie A. M. Friedrichs, Pierre St-Laurent, and Spencer Davis

Related authors

Acidification, warming, and nutrient management are projected to cause reductions in shell and tissue weights of oysters in a coastal plain estuary
Catherine R. Czajka, Marjorie A. M. Friedrichs, Emily B. Rivest, Pierre St-Laurent, Mark J. Brush, and Fei Da
Biogeosciences, 22, 3181–3206, https://doi.org/10.5194/bg-22-3181-2025,https://doi.org/10.5194/bg-22-3181-2025, 2025
Short summary
Impacts and uncertainties of climate-induced changes in watershed inputs on estuarine hypoxia
Kyle E. Hinson, Marjorie A. M. Friedrichs, Raymond G. Najjar, Maria Herrmann, Zihao Bian, Gopal Bhatt, Pierre St-Laurent, Hanqin Tian, and Gary Shenk
Biogeosciences, 20, 1937–1961, https://doi.org/10.5194/bg-20-1937-2023,https://doi.org/10.5194/bg-20-1937-2023, 2023
Short summary
Reviews and syntheses: Spatial and temporal patterns in seagrass metabolic fluxes
Melissa Ward, Tye L. Kindinger, Heidi K. Hirsh, Tessa M. Hill, Brittany M. Jellison, Sarah Lummis, Emily B. Rivest, George G. Waldbusser, Brian Gaylord, and Kristy J. Kroeker
Biogeosciences, 19, 689–699, https://doi.org/10.5194/bg-19-689-2022,https://doi.org/10.5194/bg-19-689-2022, 2022
Short summary

Cited articles

Akoglu, H.: User's guide to correlation coefficients, Turk. J. Emerg. Med., 18, 91–93, https://doi.org/10.1016/j.tjem.2018.08.001, 2018. 
Anon: Chesapeake Bay Program analytical segmentation scheme: Revisions, decisions and rationales, 1983–2003, https://d38c6ppuviqmfp.cloudfront.net/content/publications/cbp_13272.pdf (last access: 3 December 2025), 2004. 
Beckwith, S. T., Byrne, R. H., and Hallock, P.: Riverine calcium end-members improve coastal saturation state calculations and reveal regionally variable calcification potential, Front. Mar. Sci., 6, https://doi.org/10.3389/fmars.2019.00169, 2019. 
Birchenough, S. N. R., Reiss, H., Degraer, S., Mieszkowska, N., Borja, Á., Buhl-Mortensen, L., Braeckman, U., Craeymeersch, J., De Mesel, I., Kerckhof, F., Kröncke, I., Parra, S., Rabaut, M., Schröder, A., Van Colen, C., Van Hoey, G., Vincx, M., and Wätjen, K.: Climate change and marine benthos: A review of existing research and future directions in the North Atlantic, Wiley Interdiscip. Rev. Clim. Change, 6, 203–223, https://doi.org/10.1002/wcc.330, 2015. 
Borja, A., Dauer, D. M., Díaz, R., Llansó, R. J., Muxika, I., Rodríguez, J. G., and Schaffner, L.: Assessing estuarine benthic quality conditions in Chesapeake Bay: A comparison of three indices, Ecol. Indic., 8, 395–403, https://doi.org/10.1016/j.ecolind.2007.05.003, 2008. 
Download
Short summary
Even though bottom-dwelling animals in coastal waters are well studied, their impact on carbon cycling is unclear. We analyzed thousands of bivalves in Chesapeake Bay to understand what shapes their distribution and role in carbon movement. Bivalves were most abundant in shallow, low-salinity waters with moderate oxygen and high nitrate. They use 18–45 % of available carbon in the Upper Bay, and their carbon dioxide output exceeds what escapes into the air, highlighting their ecosystem impact.
Share
Altmetrics
Final-revised paper
Preprint