Articles | Volume 6, issue 8
https://doi.org/10.5194/bg-6-1405-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-6-1405-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network
M. Telszewski
School of Environmental Sciences, University of East Anglia, Norwich, UK
A. Chazottes
L'Institut Pierre-Simon Laplace/Laboratoire des Sciences du Climat et de l'Environnement, Centre National de la Recherche Scientifique – Commissariat à l'Énergie Atomique, Gif-sur-Yvette, France
U. Schuster
School of Environmental Sciences, University of East Anglia, Norwich, UK
A. J. Watson
School of Environmental Sciences, University of East Anglia, Norwich, UK
C. Moulin
L'Institut Pierre-Simon Laplace/Laboratoire des Sciences du Climat et de l'Environnement, Centre National de la Recherche Scientifique – Commissariat à l'Énergie Atomique, Gif-sur-Yvette, France
D. C. E. Bakker
School of Environmental Sciences, University of East Anglia, Norwich, UK
M. González-Dávila
Department of Marine Chemistry, Universidad de Las Palmas de Gran Canaria, Las Palmas, Gran Canaria, Spain
T. Johannessen
Geophysical Institute, University of Bergen, Bergen, Norway
A. Körtzinger
Leibniz Institute of Marine Sciences, Kiel, Germany
H. Lüger
Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
A. Olsen
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, UNIFOB AS, Bergen, Norway
Marine Chemistry, Departement of Chemistry, University of Göterborg, Göteborg, Sweden
A. Omar
Geophysical Institute, University of Bergen, Bergen, Norway
X. A. Padin
Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
A. F. Ríos
Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
T. Steinhoff
Leibniz Institute of Marine Sciences, Kiel, Germany
M. Santana-Casiano
Department of Marine Chemistry, Universidad de Las Palmas de Gran Canaria, Las Palmas, Gran Canaria, Spain
D. W. R. Wallace
Leibniz Institute of Marine Sciences, Kiel, Germany
R. Wanninkhof
Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
Viewed
Total article views: 5,003 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 30 Mar 2009)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,926 | 1,797 | 280 | 5,003 | 145 | 139 |
- HTML: 2,926
- PDF: 1,797
- XML: 280
- Total: 5,003
- BibTeX: 145
- EndNote: 139
Total article views: 3,604 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 05 Aug 2009)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,964 | 1,419 | 221 | 3,604 | 125 | 136 |
- HTML: 1,964
- PDF: 1,419
- XML: 221
- Total: 3,604
- BibTeX: 125
- EndNote: 136
Total article views: 1,399 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 30 Mar 2009)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
962 | 378 | 59 | 1,399 | 20 | 3 |
- HTML: 962
- PDF: 378
- XML: 59
- Total: 1,399
- BibTeX: 20
- EndNote: 3
Cited
82 citations as recorded by crossref.
- The Ocean Carbon States Database: a proof-of-concept application of cluster analysis in the ocean carbon cycle R. Latto & A. Romanou 10.5194/essd-10-609-2018
- CO2 partial pressure and fluxes in the Amazon River plume using in situ and remote sensing data A. Valerio et al. 10.1016/j.csr.2021.104348
- Remote Sensing Estimations of the Seawater Partial Pressure of CO₂ Using Sea Surface Roughness Derived From Synthetic Aperture Radar Y. Wang et al. 10.1109/TGRS.2024.3379984
- Rapid fCO2 rise in the northern Barents Sea and Nansen Basin Y. Ericson et al. 10.1016/j.pocean.2023.103079
- The Distribution of pCO2W and Air-Sea CO2 Fluxes Using FFNN at the Continental Shelf Areas of the Arctic Ocean I. Wrobel-Niedzwiecka et al. 10.3390/rs14020312
- Impacts of data assimilation on the global ocean carbonate system L. Visinelli et al. 10.1016/j.jmarsys.2016.02.011
- A statistical gap‐filling method to interpolate global monthly surface ocean carbon dioxide data S. Jones et al. 10.1002/2014MS000416
- Dynamics of air–sea CO<sub>2</sub> fluxes in the northwestern European shelf based on voluntary observing ship and satellite observations P. Marrec et al. 10.5194/bg-12-5371-2015
- Spatial reconstruction of long-term (2003–2020) sea surface pCO2 in the South China Sea using a machine-learning-based regression method aided by empirical orthogonal function analysis Z. Wang et al. 10.5194/essd-15-1711-2023
- Mapping of the air–sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal to interannual variability S. Yasunaka et al. 10.1016/j.polar.2016.03.006
- Climate impacts on the structures of the North Pacific air-sea CO<sub>2</sub> flux variability V. Valsala et al. 10.5194/bg-9-477-2012
- A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink P. Landschützer et al. 10.5194/bg-10-7793-2013
- Air–sea CO<sub>2</sub> flux in the Pacific Ocean for the period 1990–2009 M. Ishii et al. 10.5194/bg-11-709-2014
- Hierarchical and dynamic seascapes: A quantitative framework for scaling pelagic biogeochemistry and ecology M. Kavanaugh et al. 10.1016/j.pocean.2013.10.013
- Advancements in Carbon Dioxide Modeling: An Algorithm Incorporating In-Situ and Satellite Data for Improved Understanding of pCO Dynamics in the Bay of Bengal I. Shaik et al. 10.1109/ACCESS.2023.3338005
- Estimating mixed layer nitrate in the North Atlantic Ocean T. Steinhoff et al. 10.5194/bg-7-795-2010
- Estimating spatial and temporal variation in ocean surface pCO2 in the Gulf of Mexico using remote sensing and machine learning techniques Z. Fu et al. 10.1016/j.scitotenv.2020.140965
- A comparative assessment of the uncertainties of global surface ocean CO<sub>2</sub> estimates using a machine-learning ensemble (CSIR-ML6 version 2019a) – have we hit the wall? L. Gregor et al. 10.5194/gmd-12-5113-2019
- Distribution of phytoplankton functional types in high-nitrate, low-chlorophyll waters in a new diagnostic ecological indicator model A. Palacz et al. 10.5194/bg-10-7553-2013
- Technical note: Evaluation of three machine learning models for surface ocean CO<sub>2</sub> mapping J. Zeng et al. 10.5194/os-13-303-2017
- Using satellite data to estimate partial pressure of CO2 in the Baltic Sea G. Parard et al. 10.1002/2015JG003064
- Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global‐scale applications R. Sauzède et al. 10.1002/2014JC010355
- Satellite estimation of coastal pCO2 and air-sea flux of carbon dioxide in the northern Gulf of Mexico S. Lohrenz et al. 10.1016/j.rse.2017.12.039
- Annual and seasonal fCO2 and air–sea CO2 fluxes in the Barents Sea S. Lauvset et al. 10.1016/j.jmarsys.2012.12.011
- A Multiparametric Nonlinear Regression Approach for the Estimation of Global Surface Ocean pCO2 Using Satellite Oceanographic Data K. Krishna et al. 10.1109/JSTARS.2020.3026363
- Neural network-based estimates of Southern Ocean net community production from in situ O<sub>2</sub> / Ar and satellite observation: a methodological study C. Chang et al. 10.5194/bg-11-3279-2014
- Satellite-derived CO2fugacity in surface seawater of the tropical Atlantic Ocean using a feedforward neural network H. Moussa et al. 10.1080/01431161.2015.1131872
- Spatiotemporal reconstruction of global ocean surface pCO2 based on optimized random forest H. Wu et al. 10.1016/j.scitotenv.2023.169209
- Satellite-derived CO2 flux in the surface seawater of the Austral Ocean south of Australia M. Benallal et al. 10.1080/01431161.2017.1286054
- The Gulf of Alaska coastal ocean as an atmospheric CO2 sink W. Evans & J. Mathis 10.1016/j.csr.2013.06.013
- Reconstruction of global surface ocean <i>p</i>CO<sub>2</sub> using region-specific predictors based on a stepwise FFNN regression algorithm G. Zhong et al. 10.5194/bg-19-845-2022
- Remote silicate supply regulates spring phytoplankton bloom magnitude in the Gulf of Maine Z. Zang et al. 10.1002/lol2.10245
- Space-Time Sea Surface pCO2 Estimation in the North Atlantic Based on CatBoost H. Sun et al. 10.3390/rs13142805
- Limacina retroversa's response to combined effects of ocean acidification and sea water freshening C. Manno et al. 10.1016/j.ecss.2012.07.019
- Rapid change of the Arctic climate system and its global influences - Overview of GRENE Arctic climate change research project (2011–2016) T. Yamanouchi & K. Takata 10.1016/j.polar.2020.100548
- Monthly dynamics of carbon dioxide exchange across the sea surface of the Arctic Ocean in response to changes in gas transfer velocity and partial pressure of CO 2 in 2010 I. Wrobel 10.1016/j.oceano.2017.05.001
- LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean <i>p</i>CO<sub>2</sub> over the global ocean A. Denvil-Sommer et al. 10.5194/gmd-12-2091-2019
- A machine learning approach to estimate surface ocean pCO2 from satellite measurements S. Chen et al. 10.1016/j.rse.2019.04.019
- Spatiotemporal variation in summer net community production in the Amundsen Sea Polynya: A self-organizing map analysis approach K. Park et al. 10.1016/j.csr.2019.07.001
- Global ocean carbon uptake: magnitude, variability and trends R. Wanninkhof et al. 10.5194/bg-10-1983-2013
- Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system P. Ciais et al. 10.5194/bg-11-3547-2014
- Interannual sea–air CO<sub>2</sub> flux variability from an observation-driven ocean mixed-layer scheme C. Rödenbeck et al. 10.5194/bg-11-4599-2014
- Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific B. Hales et al. 10.1016/j.pocean.2012.03.001
- Estimating marine carbon uptake in the northeast Pacific using a neural network approach P. Duke et al. 10.5194/bg-20-3919-2023
- Impact of sampling depth on CO$$_{2}$$ flux estimates C. Azevedo et al. 10.1038/s41598-024-69177-x
- Global surface-ocean <i>p</i><sup>CO<sub>2</sub></sup> and sea–air CO<sub>2</sub> flux variability from an observation-driven ocean mixed-layer scheme C. Rödenbeck et al. 10.5194/os-9-193-2013
- Reconstruction of super-resolution ocean <i>p</i>CO<sub>2</sub> and air–sea fluxes of CO<sub>2</sub> from satellite imagery in the southeastern Atlantic I. Hernández-Carrasco et al. 10.5194/bg-12-5229-2015
- Remote sensing the sea surface CO<sub>2</sub> of the Baltic Sea using the SOMLO methodology G. Parard et al. 10.5194/bg-12-3369-2015
- Synthetic Aperture Radar for Geosciences L. Meng et al. 10.1029/2023RG000821
- A novel method for diagnosing seasonal to inter-annual surface ocean carbon dynamics from bottle data using neural networks T. Sasse et al. 10.5194/bg-10-4319-2013
- Space Observation of Carbon Dioxide Partial Pressure at Ocean Surface W. Liu & X. Xie 10.1109/JSTARS.2017.2766138
- A Global Surface Ocean fCO2 Climatology Based on a Feed-Forward Neural Network J. Zeng et al. 10.1175/JTECH-D-13-00137.1
- Recent variability of the global ocean carbon sink P. Landschützer et al. 10.1002/2014GB004853
- Estimating surface pCO2 in the northern Gulf of Mexico: Which remote sensing model to use? S. Chen et al. 10.1016/j.csr.2017.10.013
- The history of chemical concepts and field studies of CO2 in seawater: A tribute to Kurt Buch (1881–1967) B. Schneider & W. Matthäus 10.1016/j.marchem.2022.104204
- Mapping of sea surface nutrients in the North Pacific: Basin-wide distribution and seasonal to interannual variability S. Yasunaka et al. 10.1002/2014JC010318
- A neural network‐based method for merging ocean color and Argo data to extend surface bio‐optical properties to depth: Retrieval of the particulate backscattering coefficient R. Sauzède et al. 10.1002/2015JC011408
- Arctic Ocean CO<sub>2</sub> uptake: an improved multiyear estimate of the air–sea CO<sub>2</sub> flux incorporating chlorophyll <i>a</i> concentrations S. Yasunaka et al. 10.5194/bg-15-1643-2018
- Water clarity monitoring in complex coastal environments: Leveraging seagrass light requirement toward more functional satellite ocean color algorithms M. Xu et al. 10.1016/j.rse.2022.113418
- Remote estimation of surface pCO2 on the West Florida Shelf S. Chen et al. 10.1016/j.csr.2016.09.004
- Testing the reconstruction of modelled particulate organic carbon from surface ecosystem components using PlankTOM12 and machine learning A. Denvil-Sommer et al. 10.5194/gmd-16-2995-2023
- The use of machine learning algorithms to design a generalized simplified denitrification model F. Oehler et al. 10.5194/bg-7-3311-2010
- Estimation of Fugacity of Carbon Dioxide in the East Sea Using In Situ Measurements and Geostationary Ocean Color Imager Satellite Data E. Jang et al. 10.3390/rs9080821
- A Machine Learning Approach to Estimate Surface Chlorophyll a Concentrations in Global Oceans From Satellite Measurements C. Hu et al. 10.1109/TGRS.2020.3016473
- The quiet crossing of ocean tipping points C. Heinze et al. 10.1073/pnas.2008478118
- Estimating summer sea surface pCO2 on a river-dominated continental shelf using a satellite-based semi-mechanistic model C. Le et al. 10.1016/j.rse.2019.02.023
- Applications of Machine Learning in Chemical and Biological Oceanography B. Sadaiappan et al. 10.1021/acsomega.2c06441
- A uniform, quality controlled Surface Ocean CO<sub>2</sub> Atlas (SOCAT) B. Pfeil et al. 10.5194/essd-5-125-2013
- Surface ocean p CO2 seasonality and sea-air CO2 flux estimates for the North American east coast S. Signorini et al. 10.1002/jgrc.20369
- Estimation of Subsurface Temperature Anomaly in the North Atlantic Using a Self-Organizing Map Neural Network X. Wu et al. 10.1175/JTECH-D-12-00013.1
- Research ReportDiurnal global ocean surface pCO2 and air–sea CO2 flux reconstructed from spaceborne LiDAR data S. Zhang et al. 10.1093/pnasnexus/pgad432
- Sea Surface pCO<sub>2</sub> and Its Variability in the Ulleung Basin, East Sea Constrained by a Neural Network Model S. PARK et al. 10.7850/jkso.2016.21.1.1
- Surface water fCO2 algorithms for the high-latitude Pacific sector of the Southern Ocean M. Chierici et al. 10.1016/j.rse.2011.12.020
- Po River plume pattern variability investigated from model data F. Falcieri et al. 10.1016/j.csr.2013.11.001
- Variations in the summer oceanic <i>p</i>CO<sub>2</sub> and carbon sink in Prydz Bay using the self-organizing map analysis approach S. Xu et al. 10.5194/bg-16-797-2019
- Estimating temporal and spatial variation of ocean surface <i>p</i>CO<sub>2</sub> in the North Pacific using a self-organizing map neural network technique S. Nakaoka et al. 10.5194/bg-10-6093-2013
- Ocean-Atmosphere CO2 Fluxes in the North Atlantic Subtropical Gyre: Association with Biochemical and Physical Factors during Spring M. Burgos et al. 10.3390/jmse3030891
- Determination and uncertainty of spring net community production estimated from O2/Ar measurements in the northern East China Sea and southern Yellow Sea I. Lee et al. 10.1016/j.csr.2021.104570
- Remote Sensing Supported Sea Surface pCO2 Estimation and Variable Analysis in the Baltic Sea S. Zhang et al. 10.3390/rs13020259
- Investigating the complex relationship between in situ Southern Ocean $$pCO_{2}$$ p C O 2 and its ocean physics and biogeochemical drivers using a nonparametric regression approach W. Pretorius et al. 10.1007/s10651-014-0276-5
- A performance evaluation of remotely sensed sea surface salinity products in combination with other surface measurements in reconstructing three-dimensional salinity fields J. Chen et al. 10.1007/s13131-017-1079-y
- Temporal evolution of near‐surface chlorophyll over cyclonic eddy lifecycles in the southeastern Pacific J. Huang et al. 10.1002/2017JC012915
80 citations as recorded by crossref.
- The Ocean Carbon States Database: a proof-of-concept application of cluster analysis in the ocean carbon cycle R. Latto & A. Romanou 10.5194/essd-10-609-2018
- CO2 partial pressure and fluxes in the Amazon River plume using in situ and remote sensing data A. Valerio et al. 10.1016/j.csr.2021.104348
- Remote Sensing Estimations of the Seawater Partial Pressure of CO₂ Using Sea Surface Roughness Derived From Synthetic Aperture Radar Y. Wang et al. 10.1109/TGRS.2024.3379984
- Rapid fCO2 rise in the northern Barents Sea and Nansen Basin Y. Ericson et al. 10.1016/j.pocean.2023.103079
- The Distribution of pCO2W and Air-Sea CO2 Fluxes Using FFNN at the Continental Shelf Areas of the Arctic Ocean I. Wrobel-Niedzwiecka et al. 10.3390/rs14020312
- Impacts of data assimilation on the global ocean carbonate system L. Visinelli et al. 10.1016/j.jmarsys.2016.02.011
- A statistical gap‐filling method to interpolate global monthly surface ocean carbon dioxide data S. Jones et al. 10.1002/2014MS000416
- Dynamics of air–sea CO<sub>2</sub> fluxes in the northwestern European shelf based on voluntary observing ship and satellite observations P. Marrec et al. 10.5194/bg-12-5371-2015
- Spatial reconstruction of long-term (2003–2020) sea surface pCO2 in the South China Sea using a machine-learning-based regression method aided by empirical orthogonal function analysis Z. Wang et al. 10.5194/essd-15-1711-2023
- Mapping of the air–sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal to interannual variability S. Yasunaka et al. 10.1016/j.polar.2016.03.006
- Climate impacts on the structures of the North Pacific air-sea CO<sub>2</sub> flux variability V. Valsala et al. 10.5194/bg-9-477-2012
- A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink P. Landschützer et al. 10.5194/bg-10-7793-2013
- Air–sea CO<sub>2</sub> flux in the Pacific Ocean for the period 1990–2009 M. Ishii et al. 10.5194/bg-11-709-2014
- Hierarchical and dynamic seascapes: A quantitative framework for scaling pelagic biogeochemistry and ecology M. Kavanaugh et al. 10.1016/j.pocean.2013.10.013
- Advancements in Carbon Dioxide Modeling: An Algorithm Incorporating In-Situ and Satellite Data for Improved Understanding of pCO Dynamics in the Bay of Bengal I. Shaik et al. 10.1109/ACCESS.2023.3338005
- Estimating mixed layer nitrate in the North Atlantic Ocean T. Steinhoff et al. 10.5194/bg-7-795-2010
- Estimating spatial and temporal variation in ocean surface pCO2 in the Gulf of Mexico using remote sensing and machine learning techniques Z. Fu et al. 10.1016/j.scitotenv.2020.140965
- A comparative assessment of the uncertainties of global surface ocean CO<sub>2</sub> estimates using a machine-learning ensemble (CSIR-ML6 version 2019a) – have we hit the wall? L. Gregor et al. 10.5194/gmd-12-5113-2019
- Distribution of phytoplankton functional types in high-nitrate, low-chlorophyll waters in a new diagnostic ecological indicator model A. Palacz et al. 10.5194/bg-10-7553-2013
- Technical note: Evaluation of three machine learning models for surface ocean CO<sub>2</sub> mapping J. Zeng et al. 10.5194/os-13-303-2017
- Using satellite data to estimate partial pressure of CO2 in the Baltic Sea G. Parard et al. 10.1002/2015JG003064
- Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global‐scale applications R. Sauzède et al. 10.1002/2014JC010355
- Satellite estimation of coastal pCO2 and air-sea flux of carbon dioxide in the northern Gulf of Mexico S. Lohrenz et al. 10.1016/j.rse.2017.12.039
- Annual and seasonal fCO2 and air–sea CO2 fluxes in the Barents Sea S. Lauvset et al. 10.1016/j.jmarsys.2012.12.011
- A Multiparametric Nonlinear Regression Approach for the Estimation of Global Surface Ocean pCO2 Using Satellite Oceanographic Data K. Krishna et al. 10.1109/JSTARS.2020.3026363
- Neural network-based estimates of Southern Ocean net community production from in situ O<sub>2</sub> / Ar and satellite observation: a methodological study C. Chang et al. 10.5194/bg-11-3279-2014
- Satellite-derived CO2fugacity in surface seawater of the tropical Atlantic Ocean using a feedforward neural network H. Moussa et al. 10.1080/01431161.2015.1131872
- Spatiotemporal reconstruction of global ocean surface pCO2 based on optimized random forest H. Wu et al. 10.1016/j.scitotenv.2023.169209
- Satellite-derived CO2 flux in the surface seawater of the Austral Ocean south of Australia M. Benallal et al. 10.1080/01431161.2017.1286054
- The Gulf of Alaska coastal ocean as an atmospheric CO2 sink W. Evans & J. Mathis 10.1016/j.csr.2013.06.013
- Reconstruction of global surface ocean <i>p</i>CO<sub>2</sub> using region-specific predictors based on a stepwise FFNN regression algorithm G. Zhong et al. 10.5194/bg-19-845-2022
- Remote silicate supply regulates spring phytoplankton bloom magnitude in the Gulf of Maine Z. Zang et al. 10.1002/lol2.10245
- Space-Time Sea Surface pCO2 Estimation in the North Atlantic Based on CatBoost H. Sun et al. 10.3390/rs13142805
- Limacina retroversa's response to combined effects of ocean acidification and sea water freshening C. Manno et al. 10.1016/j.ecss.2012.07.019
- Rapid change of the Arctic climate system and its global influences - Overview of GRENE Arctic climate change research project (2011–2016) T. Yamanouchi & K. Takata 10.1016/j.polar.2020.100548
- Monthly dynamics of carbon dioxide exchange across the sea surface of the Arctic Ocean in response to changes in gas transfer velocity and partial pressure of CO 2 in 2010 I. Wrobel 10.1016/j.oceano.2017.05.001
- LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean <i>p</i>CO<sub>2</sub> over the global ocean A. Denvil-Sommer et al. 10.5194/gmd-12-2091-2019
- A machine learning approach to estimate surface ocean pCO2 from satellite measurements S. Chen et al. 10.1016/j.rse.2019.04.019
- Spatiotemporal variation in summer net community production in the Amundsen Sea Polynya: A self-organizing map analysis approach K. Park et al. 10.1016/j.csr.2019.07.001
- Global ocean carbon uptake: magnitude, variability and trends R. Wanninkhof et al. 10.5194/bg-10-1983-2013
- Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system P. Ciais et al. 10.5194/bg-11-3547-2014
- Interannual sea–air CO<sub>2</sub> flux variability from an observation-driven ocean mixed-layer scheme C. Rödenbeck et al. 10.5194/bg-11-4599-2014
- Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific B. Hales et al. 10.1016/j.pocean.2012.03.001
- Estimating marine carbon uptake in the northeast Pacific using a neural network approach P. Duke et al. 10.5194/bg-20-3919-2023
- Impact of sampling depth on CO$$_{2}$$ flux estimates C. Azevedo et al. 10.1038/s41598-024-69177-x
- Global surface-ocean <i>p</i><sup>CO<sub>2</sub></sup> and sea–air CO<sub>2</sub> flux variability from an observation-driven ocean mixed-layer scheme C. Rödenbeck et al. 10.5194/os-9-193-2013
- Reconstruction of super-resolution ocean <i>p</i>CO<sub>2</sub> and air–sea fluxes of CO<sub>2</sub> from satellite imagery in the southeastern Atlantic I. Hernández-Carrasco et al. 10.5194/bg-12-5229-2015
- Remote sensing the sea surface CO<sub>2</sub> of the Baltic Sea using the SOMLO methodology G. Parard et al. 10.5194/bg-12-3369-2015
- Synthetic Aperture Radar for Geosciences L. Meng et al. 10.1029/2023RG000821
- A novel method for diagnosing seasonal to inter-annual surface ocean carbon dynamics from bottle data using neural networks T. Sasse et al. 10.5194/bg-10-4319-2013
- Space Observation of Carbon Dioxide Partial Pressure at Ocean Surface W. Liu & X. Xie 10.1109/JSTARS.2017.2766138
- A Global Surface Ocean fCO2 Climatology Based on a Feed-Forward Neural Network J. Zeng et al. 10.1175/JTECH-D-13-00137.1
- Recent variability of the global ocean carbon sink P. Landschützer et al. 10.1002/2014GB004853
- Estimating surface pCO2 in the northern Gulf of Mexico: Which remote sensing model to use? S. Chen et al. 10.1016/j.csr.2017.10.013
- The history of chemical concepts and field studies of CO2 in seawater: A tribute to Kurt Buch (1881–1967) B. Schneider & W. Matthäus 10.1016/j.marchem.2022.104204
- Mapping of sea surface nutrients in the North Pacific: Basin-wide distribution and seasonal to interannual variability S. Yasunaka et al. 10.1002/2014JC010318
- A neural network‐based method for merging ocean color and Argo data to extend surface bio‐optical properties to depth: Retrieval of the particulate backscattering coefficient R. Sauzède et al. 10.1002/2015JC011408
- Arctic Ocean CO<sub>2</sub> uptake: an improved multiyear estimate of the air–sea CO<sub>2</sub> flux incorporating chlorophyll <i>a</i> concentrations S. Yasunaka et al. 10.5194/bg-15-1643-2018
- Water clarity monitoring in complex coastal environments: Leveraging seagrass light requirement toward more functional satellite ocean color algorithms M. Xu et al. 10.1016/j.rse.2022.113418
- Remote estimation of surface pCO2 on the West Florida Shelf S. Chen et al. 10.1016/j.csr.2016.09.004
- Testing the reconstruction of modelled particulate organic carbon from surface ecosystem components using PlankTOM12 and machine learning A. Denvil-Sommer et al. 10.5194/gmd-16-2995-2023
- The use of machine learning algorithms to design a generalized simplified denitrification model F. Oehler et al. 10.5194/bg-7-3311-2010
- Estimation of Fugacity of Carbon Dioxide in the East Sea Using In Situ Measurements and Geostationary Ocean Color Imager Satellite Data E. Jang et al. 10.3390/rs9080821
- A Machine Learning Approach to Estimate Surface Chlorophyll a Concentrations in Global Oceans From Satellite Measurements C. Hu et al. 10.1109/TGRS.2020.3016473
- The quiet crossing of ocean tipping points C. Heinze et al. 10.1073/pnas.2008478118
- Estimating summer sea surface pCO2 on a river-dominated continental shelf using a satellite-based semi-mechanistic model C. Le et al. 10.1016/j.rse.2019.02.023
- Applications of Machine Learning in Chemical and Biological Oceanography B. Sadaiappan et al. 10.1021/acsomega.2c06441
- A uniform, quality controlled Surface Ocean CO<sub>2</sub> Atlas (SOCAT) B. Pfeil et al. 10.5194/essd-5-125-2013
- Surface ocean p CO2 seasonality and sea-air CO2 flux estimates for the North American east coast S. Signorini et al. 10.1002/jgrc.20369
- Estimation of Subsurface Temperature Anomaly in the North Atlantic Using a Self-Organizing Map Neural Network X. Wu et al. 10.1175/JTECH-D-12-00013.1
- Research ReportDiurnal global ocean surface pCO2 and air–sea CO2 flux reconstructed from spaceborne LiDAR data S. Zhang et al. 10.1093/pnasnexus/pgad432
- Sea Surface pCO<sub>2</sub> and Its Variability in the Ulleung Basin, East Sea Constrained by a Neural Network Model S. PARK et al. 10.7850/jkso.2016.21.1.1
- Surface water fCO2 algorithms for the high-latitude Pacific sector of the Southern Ocean M. Chierici et al. 10.1016/j.rse.2011.12.020
- Po River plume pattern variability investigated from model data F. Falcieri et al. 10.1016/j.csr.2013.11.001
- Variations in the summer oceanic <i>p</i>CO<sub>2</sub> and carbon sink in Prydz Bay using the self-organizing map analysis approach S. Xu et al. 10.5194/bg-16-797-2019
- Estimating temporal and spatial variation of ocean surface <i>p</i>CO<sub>2</sub> in the North Pacific using a self-organizing map neural network technique S. Nakaoka et al. 10.5194/bg-10-6093-2013
- Ocean-Atmosphere CO2 Fluxes in the North Atlantic Subtropical Gyre: Association with Biochemical and Physical Factors during Spring M. Burgos et al. 10.3390/jmse3030891
- Determination and uncertainty of spring net community production estimated from O2/Ar measurements in the northern East China Sea and southern Yellow Sea I. Lee et al. 10.1016/j.csr.2021.104570
- Remote Sensing Supported Sea Surface pCO2 Estimation and Variable Analysis in the Baltic Sea S. Zhang et al. 10.3390/rs13020259
- Investigating the complex relationship between in situ Southern Ocean $$pCO_{2}$$ p C O 2 and its ocean physics and biogeochemical drivers using a nonparametric regression approach W. Pretorius et al. 10.1007/s10651-014-0276-5
2 citations as recorded by crossref.
- A performance evaluation of remotely sensed sea surface salinity products in combination with other surface measurements in reconstructing three-dimensional salinity fields J. Chen et al. 10.1007/s13131-017-1079-y
- Temporal evolution of near‐surface chlorophyll over cyclonic eddy lifecycles in the southeastern Pacific J. Huang et al. 10.1002/2017JC012915
Saved (final revised paper)
Saved (preprint)
Latest update: 21 Oct 2024
Altmetrics
Final-revised paper
Preprint