Articles | Volume 8, issue 1
https://doi.org/10.5194/bg-8-175-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/bg-8-175-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Spatially explicit analysis of gastropod biodiversity in ancient Lake Ohrid
T. Hauffe
Department of Animal Ecology and Systematics, Justus Liebig University, Giessen, Germany
C. Albrecht
Department of Animal Ecology and Systematics, Justus Liebig University, Giessen, Germany
K. Schreiber
Department of Animal Ecology and Systematics, Justus Liebig University, Giessen, Germany
K. Birkhofer
Department of Animal Ecology and Systematics, Justus Liebig University, Giessen, Germany
S. Trajanovski
Department of Zoobenthos, Hydrobiological Institute Ohrid, Ohrid, Macedonia
T. Wilke
Department of Animal Ecology and Systematics, Justus Liebig University, Giessen, Germany
Related subject area
Biodiversity and Ecosystem Function: Freshwater
Environmental drivers of spatio-temporal dynamics in floodplain vegetation: grasslands as habitat for megafauna in Bardia National Park (Nepal)
Geodiversity influences limnological conditions and freshwater ostracode species distributions across broad spatial scales in the northern Neotropics
Arctic aquatic graminoid tundra responses to nutrient availability
Stable isotopic composition of top consumers in Arctic cryoconite holes: revealing divergent roles in a supraglacial trophic network
Experimental tests of water chemistry response to ornithological eutrophication: biological implications in Arctic freshwaters
Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?
Significance of climate and hydrochemistry on shape variation – a case study on Neotropical cytheroidean Ostracoda
Assembly processes of gastropod community change with horizontal and vertical zonation in ancient Lake Ohrid: a metacommunity speciation perspective
Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard
Unusual biogenic calcite structures in two shallow lakes, James Ross Island, Antarctica
Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes
Constant diversification rates of endemic gastropods in ancient Lake Ohrid: ecosystem resilience likely buffers environmental fluctuations
Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forested stream
Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes
Explosive demographic expansion by dreissenid bivalves as a possible result of astronomical forcing
Phytoplankton community structure in the Lena Delta (Siberia, Russia) in relation to hydrography
Lacustrine mollusc radiations in the Lake Malawi Basin: experiments in a natural laboratory for evolution
DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages
Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe
Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa
A freshwater biodiversity hotspot under pressure – assessing threats and identifying conservation needs for ancient Lake Ohrid
Stratigraphic analysis of lake level fluctuations in Lake Ohrid: an integration of high resolution hydro-acoustic data and sediment cores
Sediment core fossils in ancient Lake Ohrid: testing for faunal change since the Last Interglacial
Testing the spatial and temporal framework of speciation in an ancient lake species flock: the leech genus Dina (Hirudinea: Erpobdellidae) in Lake Ohrid
Native Dreissena freshwater mussels in the Balkans: in and out of ancient lakes
Jitse Bijlmakers, Jasper Griffioen, and Derek Karssenberg
Biogeosciences, 20, 1113–1144, https://doi.org/10.5194/bg-20-1113-2023, https://doi.org/10.5194/bg-20-1113-2023, 2023
Short summary
Short summary
At the foot of the Himalayas in Nepal, land cover time series and data of environmental drivers show changes in disturbance-dependent grasslands that serve as habitat for endangered megafauna. The changes in surface area and heterogeneity of the grassland patches are attributed to a relocation of the dominant river channel of the Karnali River and associated decline of hydromorphological disturbances and a decrease in anthropogenic disturbances after its establishment as conservation area.
Laura Macario-González, Sergio Cohuo, Philipp Hoelzmann, Liseth Pérez, Manuel Elías-Gutiérrez, Margarita Caballero, Alexis Oliva, Margarita Palmieri, María Renée Álvarez, and Antje Schwalb
Biogeosciences, 19, 5167–5185, https://doi.org/10.5194/bg-19-5167-2022, https://doi.org/10.5194/bg-19-5167-2022, 2022
Short summary
Short summary
We evaluate the relationships between geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. Geological, limnological, geochemical, and mineralogical characteristics of 76 systems reveal two main limnological regions and seven subregions. Water ionic and sediment composition are the most influential. Geodiversity strongly influences limnological conditions, which in turn influence ostracode composition and distribution.
Christian G. Andresen and Vanessa L. Lougheed
Biogeosciences, 18, 2649–2662, https://doi.org/10.5194/bg-18-2649-2021, https://doi.org/10.5194/bg-18-2649-2021, 2021
Short summary
Short summary
Aquatic tundra plants dominate productivity and methane fluxes in the Arctic coastal plain. We assessed how environmental nutrient availability influences production of biomass and greenness of aquatic tundra. We found phosphorous to be the main nutrient limiting biomass productivity and greenness in Arctic aquatic grasses. This study highlights the importance of nutrient pools and mobilization between terrestrial–aquatic systems and their influence on regional carbon and energy feedbacks.
Tereza Novotná Jaroměřská, Jakub Trubač, Krzysztof Zawierucha, Lenka Vondrovicová, Miloslav Devetter, and Jakub D. Žárský
Biogeosciences, 18, 1543–1557, https://doi.org/10.5194/bg-18-1543-2021, https://doi.org/10.5194/bg-18-1543-2021, 2021
Short summary
Short summary
Cryoconite holes are ponds on the glacier surface that play an important role in glacier nutrient pathways. This paper presents the first description of the carbon and nitrogen isotopic composition of cryoconite consumers (tardigrades and rotifers) and their potential food. We showed that consumers differ in nitrogen isotopes and carbon isotopes vary between taxa and between glaciers. The study contributes to improving knowledge about cryoconite hole functioning and cryoconite trophic networks.
Heather L. Mariash, Milla Rautio, Mark Mallory, and Paul A. Smith
Biogeosciences, 16, 4719–4730, https://doi.org/10.5194/bg-16-4719-2019, https://doi.org/10.5194/bg-16-4719-2019, 2019
Short summary
Short summary
Across North America and Europe, goose populations have increased exponentially in response to agricultural intensification. By using an experimental approach, we empirically demonstrated that geese act as bio-vectors, making terrestrial nutrients more bioavailable to freshwater systems. The study revealed that the nutrient loading from goose faeces has the potential to change phytoplankton community composition, with a shift toward an increased presence of cyanobacteria.
Gwenaël Abril and Alberto V. Borges
Biogeosciences, 16, 769–784, https://doi.org/10.5194/bg-16-769-2019, https://doi.org/10.5194/bg-16-769-2019, 2019
Short summary
Short summary
Based on classical concepts in ecology, and a literature survey, we highlight the importance of flooded land as a preferential source of atmospheric carbon to aquatic systems at the global scale. Studies in terrestrial and aquatic ecosystems could be reconciled by considering the occurrence of an efficient wetland CO2 pump to river systems. New methodological approaches coupling hydrology and ecology are also necessary to improve scientific knowledge on carbon fluxes at the land–water interface.
Claudia Wrozyna, Thomas A. Neubauer, Juliane Meyer, Maria Ines F. Ramos, and Werner E. Piller
Biogeosciences, 15, 5489–5502, https://doi.org/10.5194/bg-15-5489-2018, https://doi.org/10.5194/bg-15-5489-2018, 2018
Short summary
Short summary
How environmental change affects a species' phenotype is crucial for taxonomy and biodiversity assessments and for their application as paleoecological indicators. Morphometric data of a Neotropical ostracod species, as well as several climatic and hydrochemical variables, were used to investigate the link between morphology and environmental conditions. Temperature seasonality, annual precipitation, and chloride and sulphate concentrations were identified as drivers for ostracod ecophenotypy.
Torsten Hauffe, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 2901–2911, https://doi.org/10.5194/bg-13-2901-2016, https://doi.org/10.5194/bg-13-2901-2016, 2016
T. R. Vonnahme, M. Devetter, J. D. Žárský, M. Šabacká, and J. Elster
Biogeosciences, 13, 659–674, https://doi.org/10.5194/bg-13-659-2016, https://doi.org/10.5194/bg-13-659-2016, 2016
Short summary
Short summary
The diversity of microalgae and cyanobacteria in cryoconites on three high-Arctic glaciers was investigated. Possible bottom-up controls via nutrient limitation, wind dispersal, and hydrological stability were measured. Grazer populations were quantified to estimate the effect of top-down controls. Nutrient limitation appeared to be the most important control on the diversity and competition outcomes of microalgae and cyanobacteria.
J. Elster, L. Nedbalová, R. Vodrážka, K. Láska, J. Haloda, and J. Komárek
Biogeosciences, 13, 535–549, https://doi.org/10.5194/bg-13-535-2016, https://doi.org/10.5194/bg-13-535-2016, 2016
J. Comte, C. Lovejoy, S. Crevecoeur, and W. F. Vincent
Biogeosciences, 13, 175–190, https://doi.org/10.5194/bg-13-175-2016, https://doi.org/10.5194/bg-13-175-2016, 2016
Short summary
Short summary
Thaw ponds and lakes varied in their bacterial community structure. A small number of taxa occurred in high abundance and dominated many of the communities. Nevertheless, there were taxonomic differences among different valleys implying some degree of habitat selection. Association networks were composed of a limited number of highly connected OTUs. These "keystone species" were not merely the abundant taxa, whose loss would greatly alter the structure and functioning of these aquatic ecosystem.
K. Föller, B. Stelbrink, T. Hauffe, C. Albrecht, and T. Wilke
Biogeosciences, 12, 7209–7222, https://doi.org/10.5194/bg-12-7209-2015, https://doi.org/10.5194/bg-12-7209-2015, 2015
Short summary
Short summary
Based on our molecular data and performed analyses we found that the gastropods studied represent a comparatively old group that most likely evolved with a constant rate of diversification. However, preliminary data of the SCOPSCO deep-drilling program indicate signatures of environmental/climatic perturbations in Lake Ohrid. We therefore propose that the constant rate observed has been caused by a potential lack of catastrophic environmental events and/or a high ecosystem resilience.
S. Bernal, A. Lupon, M. Ribot, F. Sabater, and E. Martí
Biogeosciences, 12, 1941–1954, https://doi.org/10.5194/bg-12-1941-2015, https://doi.org/10.5194/bg-12-1941-2015, 2015
Short summary
Short summary
Terrestrial inputs are considered the major driver of longitudinal patterns of nutrient concentration. Yet we show that longitudinal trends result from hydrological mixing with terrestrial inputs and in-stream processes. We challenge the idea that nutrient concentrations decrease downstream when in-stream net uptake is high. Conversely, in-stream processes can strongly affect stream nutrient chemistry and fluxes even in the absence of consistent longitudinal trends in nutrient concentration.
P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, V. E. Villafañe, and E. W. Helbling
Biogeosciences, 12, 697–712, https://doi.org/10.5194/bg-12-697-2015, https://doi.org/10.5194/bg-12-697-2015, 2015
Short summary
Short summary
Under UVR and stratification,the commensalistic algae-bacteria interaction was strengthened in the high-UVR lake, where excretion of organic carbon rates exceeded the bacterial carbon demand,but did not occur in the low-UVR lake.The greater UVR damage to algae and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates these lakes would be especially vulnerable to UVR. These results have implications for the C cycle in lakes of the Mediterranean region.
M. Harzhauser, O. Mandic, A. K. Kern, W. E. Piller, T. A. Neubauer, C. Albrecht, and T. Wilke
Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, https://doi.org/10.5194/bg-10-8423-2013, 2013
A. C. Kraberg, E. Druzhkova, B. Heim, M. J. G. Loeder, and K. H. Wiltshire
Biogeosciences, 10, 7263–7277, https://doi.org/10.5194/bg-10-7263-2013, https://doi.org/10.5194/bg-10-7263-2013, 2013
D. Van Damme and A. Gautier
Biogeosciences, 10, 5767–5778, https://doi.org/10.5194/bg-10-5767-2013, https://doi.org/10.5194/bg-10-5767-2013, 2013
I. Domaizon, O. Savichtcheva, D. Debroas, F. Arnaud, C. Villar, C. Pignol, B. Alric, and M. E. Perga
Biogeosciences, 10, 3817–3838, https://doi.org/10.5194/bg-10-3817-2013, https://doi.org/10.5194/bg-10-3817-2013, 2013
E. W. Helbling, P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, M. Villar-Argaiz, and V. E. Villafañe
Biogeosciences, 10, 1037–1050, https://doi.org/10.5194/bg-10-1037-2013, https://doi.org/10.5194/bg-10-1037-2013, 2013
C. H. Hsieh, Y. Sakai, S. Ban, K. Ishikawa, T. Ishikawa, S. Ichise, N. Yamamura, and M. Kumagai
Biogeosciences, 8, 1383–1399, https://doi.org/10.5194/bg-8-1383-2011, https://doi.org/10.5194/bg-8-1383-2011, 2011
G. Kostoski, C. Albrecht, S. Trajanovski, and T. Wilke
Biogeosciences, 7, 3999–4015, https://doi.org/10.5194/bg-7-3999-2010, https://doi.org/10.5194/bg-7-3999-2010, 2010
K. Lindhorst, H. Vogel, S. Krastel, B. Wagner, A. Hilgers, A. Zander, T. Schwenk, M. Wessels, and G. Daut
Biogeosciences, 7, 3531–3548, https://doi.org/10.5194/bg-7-3531-2010, https://doi.org/10.5194/bg-7-3531-2010, 2010
C. Albrecht, H. Vogel, T. Hauffe, and T. Wilke
Biogeosciences, 7, 3435–3446, https://doi.org/10.5194/bg-7-3435-2010, https://doi.org/10.5194/bg-7-3435-2010, 2010
S. Trajanovski, C. Albrecht, K. Schreiber, R. Schultheiß, T. Stadler, M. Benke, and T. Wilke
Biogeosciences, 7, 3387–3402, https://doi.org/10.5194/bg-7-3387-2010, https://doi.org/10.5194/bg-7-3387-2010, 2010
T. Wilke, R. Schultheiß, C. Albrecht, N. Bornmann, S. Trajanovski, and T. Kevrekidis
Biogeosciences, 7, 3051–3065, https://doi.org/10.5194/bg-7-3051-2010, https://doi.org/10.5194/bg-7-3051-2010, 2010
Cited articles
Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Balderas, S. C., Bussing, W., Stiassny, M. L. J., Skelton, P., Allen, G. R., Unmack, P., Naseka, A., Ng, R., Sindorf, N., Robertson, J., Armijo, G., Higgins, J. H., Heibel, T. J., Wikramanayake, E., Olson, D., López, H. L., Reis, R. E., Lundberg, J. G., Pérez, M. H. S., and Petry, P.: Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation, Bioscience, 58(5), 403–414, 2008.
Albert, C. H., Yoccoz, N. G., Edwards Jr., T. C., Graham, C. H., Zimmermann, N, E., and Thuiller, W.: Sampling in ecology and evolution – bridging the gap between theory and practice, Ecography, 33, 1028–1037, 2010.
Albrecht, C. and Wilke, T.: Ancient Lake Ohrid: biodiversity and evolution, Hydrobiologia, 615, 103–140, 2008.
Albrecht, C., Trajanovski, S., Kuhn, K., Streit, B., and Wilke, T.: Rapid evolution of an ancient lake species flock: Freshwater limpets (Gastropoda: Ancylidae) in the Balkan Lake Ohrid, Org. Divers. Evol., 6, 294–307, 2006.
Albrecht, C., Wolff, C., Glöer, P., and Wilke, T.: Concurrent evolution of ancient sister lakes and sister species: the freshwater gastropod genus Radix in lakes Ohrid and Prespa, Hydrobiologia, 615, 157–167, 2008.
Albrecht, C., Hauffe, T., Schreiber, K., Trajanovski, S., and Wilke, T.: Mollusc biodiversity and endemism in the potential ancient lake Trichonis, Greece, Malacologia, 51(2), 357–375, 2009.
Albrecht, C., Vogel, H., Hauffe, T., and Wilke, T.: Sediment core fossils in ancient Lake Ohrid: testing for faunal change since the Last Interglacial, Biogeosciences, 7, 3435–3446, https://doi.org/10.5194/bg-7-3435-2010, 2010.
Anderson, M. J.: A new method for non-parametric multivariate analysis of variance, Austral Ecol., 26, 32–46, 2001.
Baddeley, A. and Turner, R.: Spatstat: an R package for analyzing spatial point patterns, J. Stat. Softw., 12(6), 1–42, ISSN 1548-7660, www.jstatsoft.org, 2005.
Belmecheri, S., Namiotko, T., Robert, C., von Grafenstein, U., and Danielopol, D. L: Climate controlled ostracod preservation in Lake Ohrid (Albania, Macedonia), Palaeogeogr. Palaeocl., 277, 236–245, 2009.
Blanchet, F. G, Legendre, P., and Borcard, D.: Forward selection of explanatory variables, Ecology, 89(9), 2623–2632, 2008.
Bodon, M., Manganelli, G., and Giusti, F.: A survey of the European valvatiform hydrobiid genera with special reference to Hauffenia Pollonera, 1898 (Gastropoda: Hydrobiidae), Malacologia, 43(1–2), 103–215, 2001.
Borcard, D. and Legendre, P.: All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices, Ecol. Model., 153, 1826–1832, 2002.
Boss, K. J.: On the evolution of gastropods in ancient lakes, in: Pulmonates, vol. 2a, Systematics, Evolution and Ecology, edited by: Fretter, V. and Peake, J., Academic Press, London, New York, San Francisco, 385–428, 1978.
Buckley, L. B. and Jetz, W.: Linking global turnover of species and environment, P. Natl. Acad. Sci. USA, 105(46), 17836–17841, https://doi.org/10.073/pnas.0803524105, 2008.
Cohen, A. S.: Extinction in ancient lakes: Biodiversity crises and conservation 40 years after J. L. Brooks, Arch. Hydrobiol., 44, 451–479, 1994.
Cohen, A. S., Stone, J. R., Beuning, K. R. M., Park, L. E., Reintal, P. N., Dettman, D., Scholz, C. A., Johnson, T. C., King J. W., Talbot, M. R., Brown, E. T., and Ivory, S. J.: Ecological consequences of early Late Pleistocene megadroughts in tropical Africa, P. Natl. Acad. Sci. USA, 104, 16422–16427, https://doi.org/10.1073/pnas.0703873104, 2007.
Cooper, N. and Purvis, A.: Body size evolution in mammals: complexity in tempo and mode, Am. Nat., 175(6), 727–738, 2010.
Dejoux, C.: The benthic populations: distribution and seasonal variations, in: Lake Titicaca a synthesis of limnological knowledge, edited by: Dejoux, C. and Iltis, A., Kluwer Academic Publishers, The Netherlands, 383–401, 1992.
Diniz-Filho, J. A. F. and Bini, L. M.: Modelling geographical patterns in species richness using eigenvector-based spatial filters, Global Ecol. Biogeogr., 14, 177–185, 2005.
European Soil Portal: European Commission Joint Research Centre, Institute for Environment and Sustainability, http://eusoils.jrc.ec.europa.eu, last access: 25 October 2008.
Gaston, K. J.: Global patterns of biodiversity, Nature, 405, 220–227, 2000.
Gaston, K. J. and Spicer J. I.: Biodiversity: an introduction, 2nd edn., Blackwell Science Ltd, Malden, 191 pp., 2005.
Genner, M. J., Michel, E., Erpenbeck, D., de Voogd, N., Witte, F., and Pointier, J. P.: Camouflaged invasion of Lake Malawi by an oriental gastropod, Mol. Ecol., 13, 2135–2141, https://doi.org/10.1111/j.1365-294x.2004.02222.x, 2004.
Glaubrecht, M. and von Rintelen, T.: The species flocks of lacustrine gastropods: Tylomelania on Sulawesi as models in speciation and adaptive radiation, Hydrobiologia, 615, 181–199, 2008.
Gotelli, N. J. and McGill, B. J.: Null versus neutral models: what's the difference?, Ecography, 29, 793–800, https://doi.org/10.1111/j.2006.0906-7590.04714.x, 2006.
Gotelli, N. J. and Ulrich, W.: The empirical Bayes approach as a tool to identify non-random species associations, Oecologia, 162, 463–477, https://doi.org/10.1007/s00442-009-1474-y, 2010.
Grigorovich, I. A., Therriaul, T., and Maclsaac, H. J.: History of aquatic invertebrate invasions in the Caspian Sea, Biol. Invasions, 5, 103–115, 2002.
Hadžišće, S.: II. Beitrag zur Kenntnis der Gastropodenfauna des Ohridsees. Beschreibung der bis jetzt unbekannten Schnecken und Beispiele der Speciation bei den Gastropoden des Ohridsees, Recueil des Traveaux, Station Hydrobiologique Ohrid, 4, 57–107, 1956.
Harzhauser, M. and Mandic, O.: Neogene lake systems of Central and South-Eastern Europe: faunal diversity, gradients and interrelations, Palaeogeogr. Palaeocl., 260, 417–434, 2008.
Hauswald, A. K., Albrecht, C., and Wilke, T.: Testing two contrasting evolutionary patterns in ancient lakes: species flock versus species scatter in valvatid gastropods of Lake Ohrid, Hydrobiologia, 615, 169–179, 2008.
Herder, F., Nolte, A. W., Pfaender, J., Schwarzer, J., Hadiaty, R. K., and Schliewen, K.: Adaptive radiation and hybridization in Wallace's dreamponds: evidence from sailfin silversides in the Malili Lakes of Sulawesi, P. Roy. Soc. Lond. B Bio., 273, 2209–2217, https://doi.org/10.1098/rspb.2006.3558, 2006.
Hof, C., Brändle, M., and Brandl, R.: Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types, Global Ecol. Biogeogr., 17, 539–546, 2008.
Hoffmann, N., Reicherter, K., Fernández-Steeger, T., and Grützner, C.: Evolution of ancient Lake Ohrid: a tectonic perspective, Biogeosciences, 7, 3377–3386, https://doi.org/10.5194/bg-7-3377-2010, 2010.
Holtvoeth, J., Vogel, H., Wagner, B., and Wolff, G. A.: Lipid biomarkers in Holocene and glacial sediments from ancient Lake Ohrid (Macedonia, Albania), Biogeosciences, 7, 3473–3489, https://doi.org/10.5194/bg-7-3473-2010, 2010.
Hubendick, B. and Radoman, P.: Studies on the Gyraulus species of Lake Ochrid, Morphology, Ark. Zool., 12(16), 223–243, 1959.
Kashiwaya, K., Sakai, H., Ryugo, M., Horii, M., and Kawai, T.: Long-term climato-limnological cycles found in a 3.5-million-year continental record, J. Paleolimnol., 25(3), 271–278, https://doi.org/10.1023/A:1011122808544, 2001.
Kershner, M. W. and Lodge, D. M.: Effects of substrate architecture on aquatic gastropod-substrate associations, J. N. Am. Benthol. Soc., 9(4), 319–326, 1990.
Kostoski, G., Albrecht, C., Trajanovski, S., and Wilke, T.: A freshwater biodiversity hotspot under pressure - assessing threats and identifying conservation needs for ancient Lake Ohrid, Biogeosciences, 7, 3999–4015, https://doi.org/10.5194/bg-7-3999-2010, 2010.
Kruskal, J. B. and Wish, M.: Multidimensional scaling, Sage Publications, Beverly Hills, California, 93 pp., 1978.
Kunz, M.: Karst springs of Lake Ohrid, Master thesis, Swiss Federal Institute of Technology (ETH), Zürich, 2006.
Legendre, P. and Anderson, M. J.: Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments, Ecol. Monogr., 69, 1–24, 1999.
Legendre, P., Borcard, D., and Peres-Neto, P. R.: Analyzing beta diversity: partitioning the spatial variation of community composition data, Ecol. Monogr., 75, 435–450, 2005.
Lindhorst, K., Vogel, H., Krastel, S., Wagner, B., Hilgers, A., Zander, A., Schwenk, T., Wessels, M., and Daut, G.: Stratigraphic analysis of lake level fluctuations in Lake Ohrid: an integration of high resolution hydro-acoustic data and sediment cores, Biogeosciences, 7, 3531–3548, https://doi.org/10.5194/bg-7-3531-2010, 2010.
Marková, S., Šanda, R., Crivelli, A., Shumka, S., Wilson, I. F., Vukić, J., Berrebi, P., and Kotlík, P.: Nuclear and mitochondrial DNA sequence data reveal the evolutionary history of Barbus (Cyprinidae) in the ancient lake systems of the Balkans, Mol. Phylogenet. Evol., 55(2), 488–500, https://doi.org/10.1016/j.ympev.2010.01.030, 2010.
Martens, K.: Speciation in ancient lakes (review), Trends Ecol. Evol. (Amst), 12, 177–182, 1997.
Matzinger, A., Jordanoski, M., Veljanoska-Sarafiloska, E., Sturm, M., Müller, B., and Wüest, A.: Is Lake Prespa jeopardizing the ecosystem of ancient Lake Ohrid?, Hydrobiologia, 553, 89–109, 2006a.
Matzinger, A., Spirkovski, Z., Patceva, S., and Wüest, A.: Sensitivity of ancient Lake Ohrid to local anthropogenic impacts and global warming, J. Great Lakes Res., 32, 158–179, 2006b.
Michel, E.: Why snails radiate: a review of gastropod evolution in long-lived lakes, both recent and fossil, in: Speciation in Ancient Lakes, edited by: Martens, K., Godderis, B., and Coulter, G., Arch. Hydrobiol., 44, 285–317, 1994.
Mikulič, F. and Pljakic, M. A.: Die Merkmale der Qualitativen Distribution der endemischen Candonaarten im Ohridsee, Ekologija, 5(1), 101–115, 1970.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., O'Hara, R. G., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H.: vegan: Community Ecology Package, R package version 1.18-20., http://R-Forge.R-project.org/projects/vegan/, last access: 4 January 2011.
Parr, T. D., Tait, R. D., Maxon, C. L., Newton III, F. C., and Hardin J. L.: A descriptive account of benthic macrofauna and sediment from an area of planned petroleum exploration in the southern Caspian Sea, Estuar. Coast. Schelf S., 71, 170–180, 2007.
Peres-Neto, P. R., Legendre, P., Dray, S., and Borcard, D.: Variation partitioning of species data matrices: estimation and comparison of fractions, Ecology, 87, 2614–2625, 2006.
Poli\'{n}ski, V.: Limnološka ispitivanja Balkanskog Poluostrva I. Reliktna fauna gasteropoda Ohridskog Jezera, Glas Srpska Kraljevske Akademije, Belgrade, 137, 129–182, 1929.
Popovska, C. and Bonacci, O.: Basic data on the hydrology of Lakes Ohrid, Hydrol. Process., 21, 658–664, 2007.
Prendergast, J. R., Quinn, R. M., Lawton, J. H., Eversham, B. C., and Gibbons, D. W.: Rare species, the coincidence of diversity hotspots and conservation strategies, Nature, 365, 335–337, 1993.
R Development Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, http://www.r-project.org, 2009.
Radoman, P.: Hydrobioidea a superfamily of Prosobranchia (Gastropoda), I Systematics, Serbian Acadamy of Sciences and Arts, Belgrade, 256 pp., 1983.
Radoman, P: Hydrobioidea a superfamily of Prosobranchia (Gastropoda), II Origin, Zoogeography, Evolution in the Balkans and Asia Minor, Monographs Institute of Zoology1, Beograd, 180 pp., 1985.
Reid, D. F. and Orlova, M. I.: Geological and evolutionary underpinnings for the success of Ponto-Caspian species invasions in the Baltic Sea and North American Great Lakes, Can. J. Aquat. Sci., 59, 1144–1158, 2002.
Rohde, R. A. and Muller, R.: Cycles in fossil diversity, Nature, 434, 208–210, 2005.
Scholz, C. A.: East African megadroughts between 135 and 75 thousand years ago and bearing on early-modern human origins, P. Natl. Acad. Sci. USA, 104, 16416–16421, https://doi.org/10.1073/pnas.070387410, 2007.
Schulthei{ß}, R., Albrecht, C., Bö{ß}neck, U., and Wilke, T.: The neglected side of speciation in ancient lakes: phylogeography of an inconspicuous mollusk taxon in lakes Ohrid and Prespa, Hydrobiologia, 615, 141–156, 2008.
Schulthei{ß}, R., Van Bocxlaer, B., Wilke, T., and Albrecht, C.: Old fossils-young species: evolutionary history of an old endemic gastropod assemblage in Lake Malawi, P. Roy. Soc. B-Biol. Sci., 276, 2837–2846, https://doi.org/10.1098/rsb.2009.0467, 2009.
Schulthei{ß}, R., Wilke, T., Jørgensen, A., and Albrecht, C.: The birth of an endemic species flock: demographic history of the Bellamya group (Gastropoda, Viviparidae) in Lake Malawi, Biol. J. Linn. Soc., 102, 130–143, 2011.
Sell, J., Wysocka, A., Kostoski, G., and Trajanovski, S.: Genetic diversification of the endemic Ochridogammarus complex in Lake Ohrid explored with mtDNA sequencing, 1st Symposium for Protection of Natural Lakes in Republic of Macedonia, Ohrid, 72–73, 2007.
Smith, T. W. and Lundholm, J. T.: Variation partitioning as a tool to distinguish between nich and neutral processes, Ecography, 33, 648–655, https://doi.org/10.1111/j.1600-0587.2009.06105.x, 2010.
Sitnikova, T. Y.: Endemic gastropod distribution in Baikal, Hydrobiologia, 568(S), 207–211, 2006.
Stanković, S.: The Balkan Lake Ohrid and its living world, Monographiae biologicae, Vol. IX., edited by: Junk, W., Bodenheimer, F. S., and Weisbach, W. W., Den Haag, 358 pp., 1960.
Stone, L. and Roberts, A.: The checkerboard score and species distributions, Oecologia, 85, 74–79, 1990.
Strayer, D. L.: Challenges for freshwater invertebrate conservation, J. N. Am. Benthol. Soc., 25(2), 271–287, 2006.
Tocko, M. and Sapkarev, J.: Annual variations of the important zoobenthic populations in Lake Ohrid, Angew. Limnol., 20(2), 1090–1095, 1978.
Trajanovski, S., Albrecht, C., Schreiber, K., Schulthei{ß}, R., Stadler, T., Benke, M., and Wilke, T.: Testing the spatial and temporal framework of speciation in an ancient lake species flock: the leech genus Dina (Hirudinea: Erpobdellidae) in Lake Ohrid, Biogeosciences, 7, 3387–3402, https://doi.org/10.5194/bg-7-3387-2010, 2010.
Ulrich, W.: Pairs – a FORTRAN program for studying pair-wise species associations in ecological matrices, www.uni.torun.pl/ ulrichw, last access: 2 November 2010, 2008.
UNEP: Convention on biological diversity, UNEP, Nairobi, Kenya, 1992.
Van Bocxlaer, B., Van Damme, D., and Feibel, C. S.: Gradual versus punctuated equilibrium evolution in the Turkana Basin molluscs: evolutionary events or biological invasions?, Evolution, 62(3), 511–520, 2008.
Vogel, H., Wessels, M., Albrecht, C., Stich, H.-B., and Wagner, B.: Spatial variability of recent sedimentation in Lake Ohrid (Albania/Macedonia), Biogeosciences, 7, 3333–3342, https://doi.org/10.5194/bg-7-3333-2010, 2010.
Watzin, M. C., Puka, V., and Naumoski, T. B.: Lake Ohrid and its watershed, state of the environment report, Lake Ohrid Conservation Project, Tirana, Albania and Ohrid, Macedonia, edited by: Guseska, D., Hydrobiological Institute Ohrid, 134 pp., 2002.
Weir, J. T.: Divergent timing and patterns of species accumulation in lowland and highland neotropical birds, Evolution, 60(4), 842–855, 2006.
Whittaker, R. J.: Evolution and measurement of species diversity, Taxon, 21(2/3), 213–251, 1972.
Wilke, T. and Albrecht, C.: How to stop the creeping biodiversity crisis in Lake Ohrid? Suggestions for sustainable conservation strategies of biodiversity hotspots, in: Proceedings of the I Symposium for protection of the natural lakes in Republic of Macedonia, Ohrid, Republic of Macedonia, 31 May–3 June 2007, 44–45, 2007.
Wilke, T., Schulthei{ß}, R., and Albrecht, C.: As time goes by: a simple fool's guide to molecular clock approaches in invertebrates, Am. Malacol. Bull., 27, 25–45, 2009.
Wilke, T., Schulthei{ß}, R., Albrecht, C., Bornmann, N., Trajanovski, S., and Kevrekidis, T.: Native Dreissena freshwater mussels in the Balkans: in and out of ancient lakes, Biogeosciences, 7, 3051–3065, https://doi.org/10.5194/bg-7-3051-2010, 2010.
Williams, P., Gibbons, D., Margules, C., Rebelo, A., Humphries, C., and Pressey, R.: A comparison of richness hotspots, rarity hotspots and complementary areas for conserving diversity using British birds, Conserv. Biol., 10, 155–174, 1996.
Williamson, P. G.: Palaeontological documentation of speciation in Cenozoic molluscs from the Turkana Basin, Nature, 293, 437–443, 1981.
Wilson, A. B., Glaubrecht, M., and Meyer, A.: Ancient lakes as evolutionary reservoirs: Evidence from the thalassoid gastropods of Lake Tanganyika, P. Roy. Soc. Lond. B Bio., 271, 529–536, https://doi.org/10.1098/rspb.2003.2624, 2004.
Wysocka, A., Kostoski, G., Kilikowska, A., Wróbel, B., and Sell, J.: The Proasellus (Crustacea, Isopoda) species group, endemic to the Balkan Lake Ohrid: a case of ecological diversification?, Fund. Appl. Limnol., 172(4), 301–313, 2008.
Altmetrics
Final-revised paper
Preprint