Articles | Volume 12, issue 16
https://doi.org/10.5194/bg-12-4939-2015
https://doi.org/10.5194/bg-12-4939-2015
Research article
 | 
19 Aug 2015
Research article |  | 19 Aug 2015

Reconsidering the role of carbonate ion concentration in calcification by marine organisms

L. T. Bach

Abstract. Marine organisms precipitate 0.5–2.0 Gt of carbon as calcium carbonate (CaCO3) every year with a profound impact on global biogeochemical element cycles. Biotic calcification relies on calcium ions (Ca2+) and usually on bicarbonate ions (HCO3) as CaCO3 substrates and can be inhibited by high proton (H+) concentrations. The seawater concentration of carbonate ions (CO32−) and the CO32−-dependent CaCO3 saturation state (ΩCaCO3) seem to be irrelevant in this production process. Nevertheless, calcification rates and the success of calcifying organisms in the oceans often correlate surprisingly well with these two carbonate system parameters. This study addresses this dilemma through the rearrangement of carbonate system equations which revealed an important proportionality between [CO32−] or ΩCaCO3and the ratio of [HCO3] to [H+]. Due to this proportionality, calcification rates will always correlate as well with [HCO3] / [H+] as they do with [CO32−] or ΩCaCO3 when temperature, salinity, and pressure are constant. Hence, [CO32−] and ΩCaCO3 may simply be very good proxies for the control by [HCO3] / [H+], where [HCO3] serves as the inorganic carbon substrate and [H+] functions as a calcification inhibitor. If the "substrate–inhibitor ratio" (i.e., [HCO3] / [H+]) rather than [CO32−] or ΩCaCO3 controls biotic CaCO3 formation, then some of the most common paradigms in ocean acidification research need to be reviewed. For example, the absence of a latitudinal gradient in [HCO3] / [H+] in contrast to [CO32−] and ΩCaCO3 could modify the common assumption that high latitudes are affected most severely by ocean acidification.

Download
Short summary
Calcification by marine organisms reacts to changing seawater carbonate chemistry, but it is unclear which components of the carbonate system drive the observed response. This study uncovers proportionalities between different carbonate chemistry parameters. These enable us to understand why calcification often correlates well with carbonate ion concentration, and they imply that net CaCO3 formation in high latitudes is not more vulnerable to ocean acidification than formation in low latitudes.
Altmetrics
Final-revised paper
Preprint