Articles | Volume 12, issue 4
https://doi.org/10.5194/bg-12-977-2015
https://doi.org/10.5194/bg-12-977-2015
Research article
 | 
17 Feb 2015
Research article |  | 17 Feb 2015

Frozen ponds: production and storage of methane during the Arctic winter in a lowland tundra landscape in northern Siberia, Lena River delta

M. Langer, S. Westermann, K. Walter Anthony, K. Wischnewski, and J. Boike

Related authors

Permafrost thaw and release of inorganic nitrogen from polygonal tundra soils in eastern Siberia
Fabian Beermann, Moritz Langer, Sebastian Wetterich, Jens Strauss, Julia Boike, Claudia Fiencke, Lutz Schirrmeister, Eva-Maria Pfeiffer, and Lars Kutzbach
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-117,https://doi.org/10.5194/bg-2016-117, 2016
Revised manuscript not accepted
Short summary
Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia – observations and modeling (Lena River Delta, Siberia)
J. Boike, C. Georgi, G. Kirilin, S. Muster, K. Abramova, I. Fedorova, A. Chetverova, M. Grigoriev, N. Bornemann, and M. Langer
Biogeosciences, 12, 5941–5965, https://doi.org/10.5194/bg-12-5941-2015,https://doi.org/10.5194/bg-12-5941-2015, 2015
Short summary
Impact of model developments on present and future simulations of permafrost in a global land-surface model
S. E. Chadburn, E. J. Burke, R. L. H. Essery, J. Boike, M. Langer, M. Heikenfeld, P. M. Cox, and P. Friedlingstein
The Cryosphere, 9, 1505–1521, https://doi.org/10.5194/tc-9-1505-2015,https://doi.org/10.5194/tc-9-1505-2015, 2015
Short summary
Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes
A. Ekici, S. Chadburn, N. Chaudhary, L. H. Hajdu, A. Marmy, S. Peng, J. Boike, E. Burke, A. D. Friend, C. Hauck, G. Krinner, M. Langer, P. A. Miller, and C. Beer
The Cryosphere, 9, 1343–1361, https://doi.org/10.5194/tc-9-1343-2015,https://doi.org/10.5194/tc-9-1343-2015, 2015
Short summary
An improved representation of physical permafrost dynamics in the JULES land-surface model
S. Chadburn, E. Burke, R. Essery, J. Boike, M. Langer, M. Heikenfeld, P. Cox, and P. Friedlingstein
Geosci. Model Dev., 8, 1493–1508, https://doi.org/10.5194/gmd-8-1493-2015,https://doi.org/10.5194/gmd-8-1493-2015, 2015
Short summary

Related subject area

Biogeochemistry: Greenhouse Gases
Interferences caused by the biogeochemical methane cycle in peats during the assessment of abandoned oil wells
Sebastian F. A. Jordan, Stefan Schloemer, Martin Krüger, Tanja Heffner, Marcus A. Horn, and Martin Blumenberg
Biogeosciences, 22, 809–830, https://doi.org/10.5194/bg-22-809-2025,https://doi.org/10.5194/bg-22-809-2025, 2025
Short summary
Carbon sequestration in different urban vegetation types in Southern Finland
Laura Thölix, Leif Backman, Minttu Havu, Esko Karvinen, Jesse Soininen, Justine Trémeau, Olli Nevalainen, Joyson Ahongshangbam, Leena Järvi, and Liisa Kulmala
Biogeosciences, 22, 725–749, https://doi.org/10.5194/bg-22-725-2025,https://doi.org/10.5194/bg-22-725-2025, 2025
Short summary
Proglacial methane emissions driven by meltwater and groundwater flushing in a high-Arctic glacial catchment
Gabrielle E. Kleber, Leonard Magerl, Alexandra V. Turchyn, Stefan Schloemer, Mark Trimmer, Yizhu Zhu, and Andrew Hodson
Biogeosciences, 22, 659–674, https://doi.org/10.5194/bg-22-659-2025,https://doi.org/10.5194/bg-22-659-2025, 2025
Short summary
Seasonal and interannual variability in CO2 fluxes in southern Africa seen by GOSAT
Eva-Marie Metz, Sanam Noreen Vardag, Sourish Basu, Martin Jung, and André Butz
Biogeosciences, 22, 555–584, https://doi.org/10.5194/bg-22-555-2025,https://doi.org/10.5194/bg-22-555-2025, 2025
Short summary
Air temperature and precipitation constraining the modelled wetland methane emissions in a boreal region in northern Europe
Tuula Aalto, Aki Tsuruta, Jarmo Mäkelä, Jurek Müller, Maria Tenkanen, Eleanor Burke, Sarah Chadburn, Yao Gao, Vilma Mannisenaho, Thomas Kleinen, Hanna Lee, Antti Leppänen, Tiina Markkanen, Stefano Materia, Paul A. Miller, Daniele Peano, Olli Peltola, Benjamin Poulter, Maarit Raivonen, Marielle Saunois, David Wårlind, and Sönke Zaehle
Biogeosciences, 22, 323–340, https://doi.org/10.5194/bg-22-323-2025,https://doi.org/10.5194/bg-22-323-2025, 2025
Short summary

Cited articles

Abnizova, A., Siemens, J., Langer, M., and Boike, J.: Small ponds with major impact: The relevance of ponds and lakes in permafrost landscapes to carbon dioxide emissions, Global Biogeochem. Cy., 26, GB2041, https://doi.org/10.1029/2011GB004237, 2012.
Anderson, G.: Error propagation by the Monte Carlo method in geochemical calculations, Geochim. Cosmochim. Ac., 40, 1533–1538, https://doi.org/10.1016/0016-7037(76)90092-2, 1976.
Boereboom, T., Depoorter, M., Coppens, S., and Tison, J.-L.: Gas properties of winter lake ice in Northern Sweden: implication for carbon gas release, Biogeosciences, 9, 827–838, https://doi.org/10.5194/bg-9-827-2012, 2012.
Boike, J., Langer, M., Lantuit, H., Muster, S., Roth, K., Sachs, T., Overduin, P., Westermann, S., and McGuire, A.: Permafrost – Physical Aspects, Carbon Cycling, Databases and Uncertainties, 159–185, Springer Netherlands, https://doi.org/10.1007/978-94-007-4159-1_8, 2012.
Boike, J., Kattenstroth, B., Abramova, K., Bornemann, N., Chetverova, A., Fedorova, I., Fröb, K., Grigoriev, M., Grüber, M., Kutzbach, L., Langer, M., Minke, M., Muster, S., Piel, K., Pfeiffer, E.-M., Stoof, G., Westermann, S., Wischnewski, K., Wille, C., and Hubberten, H.-W.: Baseline characteristics of climate, permafrost and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998–2011), Biogeosciences, 10, 2105–2128, https://doi.org/10.5194/bg-10-2105-2013, 2013.
Download
Short summary
Methane production rates of Arctic ponds during the freezing period within a typical tundra landscape in northern Siberia are presented. Production rates were inferred by inverse modeling based on measured methane concentrations in the ice cover. Results revealed marked differences in early winter methane production among ponds showing different stages of shore degradation. This suggests that shore erosion can increase methane production of Arctic ponds by 2 to 3 orders of magnitude.
Share
Altmetrics
Final-revised paper
Preprint