Articles | Volume 13, issue 11
https://doi.org/10.5194/bg-13-3397-2016
https://doi.org/10.5194/bg-13-3397-2016
Research article
 | Highlight paper
 | 
13 Jun 2016
Research article | Highlight paper |  | 13 Jun 2016

Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the Community Earth System Model

Stuart Riddick, Daniel Ward, Peter Hess, Natalie Mahowald, Raia Massad, and Elisabeth Holland

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (03 Jan 2016) by Albrecht Neftel
AR by Peter Hess on behalf of the Authors (13 Apr 2016)  Author's response   Manuscript 
ED: Publish subject to minor revisions (Editor review) (23 Apr 2016) by Albrecht Neftel
AR by Peter Hess on behalf of the Authors (06 May 2016)  Author's response   Manuscript 
ED: Publish as is (12 May 2016) by Albrecht Neftel
AR by Peter Hess on behalf of the Authors (22 May 2016)
Download
Short summary
Future increases are predicted in the amount of nitrogen produced as manure or used as synthetic fertilizer in agriculture. However, the impact of climate on the subsequent fate of this nitrogen has not been evaluated. Here we describe, analyze and evaluate the FAN (flows of agricultural nitrogen) process model that simulates the the climate-dependent flows of nitrogen from agriculture. The FAN model is suitable for use within a global terrestrial climate model.
Altmetrics
Final-revised paper
Preprint