Articles | Volume 13, issue 12
https://doi.org/10.5194/bg-13-3819-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-3819-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters
Wenjuan Zhu
Faculty of Life Science and Technology, Central South University of
Forestry and Technology, Changsha 410004, Hunan Province, China
Huitong National Field Station for Scientific Observation and Research of
Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China
Wenhua Xiang
CORRESPONDING AUTHOR
Faculty of Life Science and Technology, Central South University of
Forestry and Technology, Changsha 410004, Hunan Province, China
Huitong National Field Station for Scientific Observation and Research of
Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China
National Engineering Laboratory of Applied Technology for Forestry &
Ecology in Southern China, Changsha 410004, China
Qiong Pan
Changsha Environmental Protection College, Changsha 410004, China
Faculty of Life Science and Technology, Central South University of
Forestry and Technology, Changsha 410004, Hunan Province, China
Yelin Zeng
Faculty of Life Science and Technology, Central South University of
Forestry and Technology, Changsha 410004, Hunan Province, China
Shuai Ouyang
Faculty of Life Science and Technology, Central South University of
Forestry and Technology, Changsha 410004, Hunan Province, China
Huitong National Field Station for Scientific Observation and Research of
Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China
National Engineering Laboratory of Applied Technology for Forestry &
Ecology in Southern China, Changsha 410004, China
Pifeng Lei
Faculty of Life Science and Technology, Central South University of
Forestry and Technology, Changsha 410004, Hunan Province, China
Huitong National Field Station for Scientific Observation and Research of
Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China
National Engineering Laboratory of Applied Technology for Forestry &
Ecology in Southern China, Changsha 410004, China
Xiangwen Deng
Faculty of Life Science and Technology, Central South University of
Forestry and Technology, Changsha 410004, Hunan Province, China
Huitong National Field Station for Scientific Observation and Research of
Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China
National Engineering Laboratory of Applied Technology for Forestry &
Ecology in Southern China, Changsha 410004, China
Xi Fang
Faculty of Life Science and Technology, Central South University of
Forestry and Technology, Changsha 410004, Hunan Province, China
Huitong National Field Station for Scientific Observation and Research of
Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China
National Engineering Laboratory of Applied Technology for Forestry &
Ecology in Southern China, Changsha 410004, China
Changhui Peng
Institute of Environment Sciences, Department of Biological Sciences,
University of Quebec at Montreal, Montreal, QCH3C 3P8, Canada
Faculty of Life Science and Technology, Central South University of
Forestry and Technology, Changsha 410004, Hunan Province, China
Related authors
No articles found.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Hanxiong Song, Changhui Peng, Kerou Zhang, and Qiuan Zhu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-23, https://doi.org/10.5194/gmd-2021-23, 2021
Revised manuscript not accepted
Short summary
Short summary
Cropland is the major hotspot for N2O emission as affected by multiple agricultural practices. Because of the varying magnitudes of N2O emissions across observation sites and periods, it is difficult to quantify the N2O budget at a large scale. A process-based biogeochemical model, TRIPLEX-GHG, was incorporated with major agricultural practices. By comparing the modeled and measured data, we found that the TRIPLEX-GHGv2.0 is capable to provide reasonable estimations of N2O flux from cropland.
Cited articles
Alonzo, M., Bookhagen, B., McFadden, J. P., Sun, A., and Roberts, D. A.: Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometry, Remote Sens. Environ., 162, 141–153, 2015.
Aragão, L. E., Shimabukuro, Y. E., Santo, F., and Williams, M.: Landscape pattern and spatial variability of leaf area index in Eastern Amazonia, Forest Ecol. Manag., 211, 240–256, 2005.
Asner, G. P., Scurlock, J. M. O., and Hicke, J. A.: Global synthesis of leaf area index observations: implications for ecological and remote sensing studies, Global Ecol. Biogeogr., 12, 191–205, 2003.
Aston, A. R.: Rainfall interception by eight small trees, J. Hydrol., 42, 383–396, 1979.
Austin, M. P.: Spatial prediction of species distribution: an interface between ecological theory and statistical modelling, Ecol. Model., 157, 101–118, 2002.
Bequet, R., Campioli, M., Kint, V., Muys, B., Bogaert, J., and Ceulemans, R.: Spatial variability of leaf area index in homogeneous forests relates to local variation in tree characteristics, Forest Sci., 58, 633–640, 2012.
Biudes, M. S., Machado, N. G., Danelichen, V. H. M., Souza, M. C., Vourlitis, G. L., and Nogueira, J. S.: Ground and remote sensing-based measurements of leaf area index in a transitional forest and seasonal flooded forest in Brazil, Int. J. Biometeorol., 58, 1181–1193, 2014.
Bivand, R. S., Pebesma, E. J., and Gómez-Rubio, V.: Applied spatial data analysis with R, Springer, New York, USA, 2013.
Bréda, N. J. J.: Ground-based measurements of leaf area index: a review of methods, instruments and current controversies, J. Exp. Bot., 54, 2403–2417, 2003.
Breshears, D. D. and Barnes, F. J.: Interrelationships between plant functional types and soil moisture heterogeneity for semiarid landscapes within the grassland/forest continuum: a unified conceptual model, Landscape Ecol., 14, 465–478, 1999.
Brooks, J. R., Meinzer, F. C., Warren, J. M., Domeo, J. C., and Coulombe, R.: Hydraulic redistribution in a Douglas-fir forest: lessons from system manipulation, Plant Cell Environ., 29, 138–150, 2006.
Brut, A., Rüdiger, C., Lafont, S., Roujean, J.-L., Calvet, J.-C., Jarlan, L., Gibelin, A.-L., Albergel, C., Le Moigne, P., Soussana, J.-F., Klumpp, K., Guyon, D., Wigneron, J.-P., and Ceschia, E.: Modelling LAI at a regional scale with ISBA-A-gs: comparison with satellite-derived LAI over southwestern France, Biogeosciences, 6, 1389–1404, https://doi.org/10.5194/bg-6-1389-2009, 2009.
Chen, J. M.: Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands, Agr. Forest Meteorol., 80, 135–163, 1996.
Chen, J. M., Rich, P. M., Gower, S. T., Norman, J. M., and Plummer, S.: Leaf area index of boreal forests: theory, techniques, and measurements, J. Geophys. Res., 102, 29429–29443, 1997.
Choler, P., Sea, W., Briggs, P., Raupach, M., and Leuning, R.: A simple ecohydrological model captures essentials of seasonal leaf dynamics in semi-arid tropical grasslands, Biogeosciences, 7, 907–920, https://doi.org/10.5194/bg-7-907-2010, 2010.
Chiang, L. H., Pell, R. J., and Seasholtz, M. B.: Exploring process data with the use of robust outlier detection algorithms, J. Process Contr., 13, 437–449, 2003.
Clark, D. B., Olivas, P. C., Oberbauer, S. F., Clark, D. A., and Ryan, M. G.: First direct landscape-scale measurement of tropical rain forest leaf area index: a key driver of global primary productivity, Ecol. Lett., 11, 163–172, 2008.
Clark, M.: Generalized additive models: getting started with additive models in R, Center for Social Research, University of North Dame, Notre Dame, IN, USA, 31 pp., 2013.
Crockford, R. H. and Richardson, D. P.: Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate, Hydrol. Process., 14, 2903–2920, 2000.
Coops, N. C., Smith, M. L., Jacobsen, K. L., Martin, M., and Ollinger, S.: Estimation of plant and leaf area index using three techniques in a mature native eucalypt canopy, Austral Ecol., 29, 332–341, 2004.
Dai, F. Q., Zhou, Q. G., Lv, Z. Q., Wang, X. M., and Liu, G. C.: Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau, Ecol. Indic., 45, 184–194, 2014.
Demarez, V., Duthoit, S., Baret, F., Weiss, M., and Dedieu, G.: Estimation of leaf area and clumping indexes of crops with hemispherical photographs, Agr. Forest Meteorol., 148, 644–655, 2008.
Dong, X. H., Bennion, H. E., Maberly, S. C., Sayer, C. D., Simpson, G. L., and Battarbee, R. W.: Nutrients exert a stronger control than climate on recent diatiom communities in Esthwaite Water: Evidence from monitoring and palaeolimnological records, Freshwater Biol., 57, 2044–2056, 2012.
Dovey, S. B. and Toit, B. D.: Calibration of LAI-2000 canopy analyser with leaf area index in a young eucalypt stand, Trees, 20, 273–277, 2006.
Duffera, M., White, J. G., and Weisz, R.: Spatial variability of Southeastern U. S. Coastal Plain soil physical properties: implication for site-specific management, Geoderma, 137, 327–339, 2007.
Ewers, B. E. and Pendall, E.: Spatial patterns in leaf area and plant functional type cover across chronosequences of sagebrush ecosystems, Plant Ecol., 194, 67–83, 2007.
Elbasiouny, H., Abowaly, M., Abu_Alkheir, A., and Gad, A. A.: Spatial variation of soil carbon and nitrogen pools by using ordinary Kriging method in an area of north Nile Delta, Egypt, Catena, 113, 70–78, 2014.
Facchi, A., Baroni, G., Boschetti, M., and Gandolfi, C.: Comparing optical and direct methods for leaf area index determination in a maize crop, J. Agr. Eng., 1, 27–34, 2010.
Global Climate Observing System (GCOS): Systematic Observation Requirements for Satellite-Based Products for Climate Supplemental details to the satellite-based component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update), WMO/TD: 138, http://www.wmo.int/ pages/prog/gcos/Publications/gcos-154.pdf (last access: 13 November 2012), 2006.
Gonsamo, A. and Chen, J. M.: Continuous observation of leaf area index at Fluxnet – Cananda sites, Agr. Forest Meteorol., 189, 168–174, 2014.
Guisan, A., Edwards Jr., T. C., and Hastie, T.: Generalized linear and generalized additive model in studies of species distributions: Setting the scene, Ecol. Model., 157, 89–100, 2002.
Guo, J., Yu, L. H., Fang, X., Xiang, W. H., Deng, X. W., and Lu, X.: Litter production and turnover in four types of subtropical forests in China, Acta Ecol. Sinica, 35, 4668–4677, 2015 (in Chinese with English abstract).
Hardwick, S. R., Toumi, R., Pfeifer, M., Turner, E. C., Nilus, R., and Ewers, R. M.: The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate, Agr. Forest Meteorol., 201, 187–195, 2015.
Huang, D., Knyazikhin, Y., Wang, W., Deering, D. W., Stenberg, P., Shabanov, N., Tan, B., and Myneni, R. B.: Stochastic transport theory for investigating the three-dimensional canopy structure from space measurements, Remote Sens. Environ., 112, 35–50, 2008.
Huang, M. and Ji, J. J.: The spatio-temporal distribution of LAI in China-the comparison with mechanism model and remote sensing inversion, Acta Ecol. Sinica, 30, 3057–3064, 2010 (in Chinese with English abstract).
Iio, A., Hikosaka, K., Anten, N. P. R., Nakagawa, Y., and Ito, A.: Global dependence of field-observed leaf area index in woody species on climate: a systematic review, Global Ecol. Biogeogr., 23, 274–285, 2014.
IUSS Working Group WRB: World Reference Base for Soil Resource 2006, in: World Soil Resources Reports No. 103, 2nd Edn., FAO, Rome, 2006.
James, G., Witten, D., Hastie, T., and Tibshirani, R.: An introduction to statistical learning with applications in R, Springer, New York, 2013.
Kross, A., McNairn, H., Lapen, D., Sunohara, M., and Champagne, C.: Assessment of RapidEYE vegetation indices for estimation of leaf area index and biomass in corn and soybean crops, Int. J. Appl. Earth Obs., 34, 235–248, 2015.
Lang, A. R. G. and Xiang, Y.: Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies, Agr. Forest Meteorol., 35, 229–243, 1986.
Lee, K. S., Cohen, W. B., Kennedy, R. E., Maiersperger, T. K., and Gower, S. T.: Hyperspectral versus multispectral data for estimating leaf area index in four different biomes, Remote Sens. Environ., 91, 508–520, 2004.
Lei, X. D., Wang, W. F., and Peng, C. H.: Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada, Can. J. Forest Res., 39, 1835–1847, 2009.
Liu, X. L., Zhao, K. L., Xu, J. M., Zhang, M. H., Si, B., and Wang, F.: Spatial variability of soil organic matter and nutrients in paddy fields at various scales in southeast China, Environ. Geol., 53, 1139–1147, 2008.
Liu, Y. B., Ju, W. M., Chen, J. M., Zhu G. L., Xing, B. L., Zhu, J. F., and He, M. Z.: Spatial and temporal variations of forest LAI in China during 2000–2010, Chinese Sci. Bull., 57, 2846–2856, 2012.
Liu, Z. L., Jin, G. Z., Chen, J. M., and Qi, Y. J.: Evaluating optical measurements of leaf area index against litter collection in a mixed broadleaved-Korean pine forest in China, Trees, 29, 59–73, 2015a.
Liu, Z. L., Wang, C. K., Chen, J. M., Wang X. C., and Jin, G. Z.: Empirical models for tracing seasonal changes in leaf area index in deciduous broadleaf forests by digital hemispherical photography, Forest Ecol. Manag., 351, 67–77, 2015b.
Lopes, D., Nunes, L., Walford, N., Aranha, J., Sette Jr., C., Viana, H., and Hernandez, C.: A simplified methodology for the correction of Leaf Area Index (LAI) measurements obtained by ceptometer with reference to Pinus Portuguese forests, iForest–Biogeosci. Forest., 7, 186–192, 2015.
Lopez-Granados, F., Jurado-Exposito, M., Alamo, S., and Garcia-Torres, L.: Leaf nutrient spatial variability and site-specific fertilization maps within olive (Olea europaea L.) orchards, Eur. J. Agron., 21, 209–222, 2004.
Macfarlane, C., Hoffman, M., Eamus, D., Kerp, N., Higginson, S., McMurtrie, R., and Adams, M.: Estimation of leaf area index in eucalypt forest using digital photography, Agr. Forest Meteorol., 143, 176–188, 2007.
Manninen, T., Korhonen, L., Voipio, P., Lahtinen, P., and Stenberg, P.: Leaf area index (LAI) estimation of boreal forest using wide potics airborne winter photos, Remote Sens., 1, 1380–1394, 2009.
Mason, P. J., Manton, M., Harrison, D. E., Belward, A., Thomas, A. R., and Dawson, A.: The second report on the adequacy of the global observing systems for climate in support of the UNFCCC. GCOS-82, WMO/TD No. 1143, United Nations Environment Programme, International Council for Science, World Meteorological Organization: Geneva, Switzerland, 2003, p. 74, 2003.
Mcdowell, N. G., Adams, H. D., Bailey, J. D., and Kolb, T. E.: The role of stand density on growth efficiency, leaf area index, and resin flow in southwestern ponderosa pine forests, Can. J. Forest Res., 37, 343–355, 2007.
Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl, M., Morisette, J. T., Votava, P., Nemani, R. R., and Running, S. W.: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data, Remote Sens. Environ., 83, 214-231, 2002.
Naithani, K. J., Ewers, B. E., and Pendall, E.: Sap flux-scaled transpiration and stomatal conductance response to soil and atmospheric drought in a semi-arid sagebrush ecosystem, J. Hydrol., 25, 176–185, 2012.
Naithani, K. J., Baldwin, D. C., Gaines, K. P., Lin, H., and Eissenstat, D. M.: Spatial distribution of tree species governs the spatio-temporal interaction of leaf area index and soil moisture across a forested landscape, PLoS One, 8, e58704, https://doi.org/10.1371/journal.pone.0058704, 2013.
Niinemets, Ü.: A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance, Ecol. Res., 25, 693–714, 2010.
Ouyang, S., Xiang, W. H., Wang, X. P., Zeng, Y. L., Lei, P. F., Deng, X. W., and Peng, C. H.: Significant effects of biodiversity on forest biomass during the succession of subtropical forest in south China, Forest Ecol. Manag., 372, 291–302, 2016.
R Development Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2015.
Rich, P. M.: Characterizing plant canopies with hemispherical photographs, Remote Sens. Rev., 5, 13–29, 1990.
Richardson, J., Moskal, L. M., and Kim H.: Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR, Agr. Forest Meteorol., 149, 1152–1160, 2009.
Rossi, R. E., Mulla, D. J., Journel, Á. G., and Franz, E. H.: Geostatistical tools for modeling and interpreting ecological spatial dependence, Ecol. Monogr., 62, 277–314, 1992.
Ryu, Y., Nilson, T., Kobayashi, H., Sonnentag, O., Law, B. E., and Baldocchi, D. D.: On the correct estimation of effective leaf area index: dose it reveal information on clumping effects, Agr. Forest Meteorol., 150, 463–472, 2010.
Shao, P. and Zeng, X. D.: Spatiotemporal relationship of leaf area index simulated by CLM3.0-DGVM and climatic factors, Acta Ecol. Sinica, 16, 4725–4731, 2011 (in Chinese with English abstract).
Shen, C. C., Lei, X. D., Liu, H. Y., Wang, L., and Liang, W. J.: Potential impacts of regional climate change on site productivity of Larix olgensis plantations in northeast China, iForest-Biogeosci. Forest., 8, 642–651, 2015.
Smith, H.: Light quality as an ecological factor, in: Plants under their atmospheric environment, edited by: Grace, J., Ford, E. D., and Jarvis, P. G., Blackwell, Oxford, 93–110, 1981.
Sprintsin, M., Karnieli, A., Berliner, P., Rotenberg, E., Yakir, D., and Cohen, S.: The effect of spatial resolution on the accuracy of leaf area index estimation for a forest planted in the desert transition zone, Remote Sens. Environ., 109, 416–428, 2007.
Tian, Y., Dickinson, R. E., Zhou, L., Zeng, X., Dai, Y., Myneni, R. B., Knyazikhin, Y., Zhang, X., Friedl, M., Yu, H., Wu, W., and Shaikh, M.: Comparison of seasonal and spatial variations of leaf area index and fraction of absorbed photosynthetically active radiation from moderate resolution imaging spectroradiometer (MODIS) and common land model, J. Geophys. Res, 109, 19–34, 2004.
Tobin, B., Black, K., Osborne, B., Reidy, B., Bolger, T., and Nieuwenhuis, M.: Assessment of allometric algorithms for estimating leaf biomass, leaf area index and litter fall in different- aged Sitka spruce forests, Forestry, 79, 453–465, 2006.
Vitasse, Y., Delzon, S., Dufrêne, E., Pontailler, J. Y., Louvet, J. M., Kremer, A., and Michalet, R.: Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses, Agr. Forest Meteorol., 149, 735–744, 2009.
Wood, S.: Generalized Additive Models: An introduction with R, Chapman & Hall, CRC, Boca Raton, FL, USA, 8–15, 2006.
Woodgate, W., Jones, S. D., Suarez, L., Hill, M. J., Armston, J. D., Wilkes, P., Soto-Berelov, M., Haywood, A., and Mellor, A.: Understanding the variability in ground-based methods for retrieving canopy openness, gap fraction, and leaf area index in diverse forest systems, Agr. Forest Meteorol., 205, 83–95, 2015.
Xiang, W., Fan, G., Lei, P., Zeng, Y., Tong, J., Fang, X., Deng, X., and Peng, C.: Fine root interactions in subtropical mixed forests in China depend on tree species composition, Plant Soil, 395, 335–349, 2015.
Xiang, W. H., Hou, Y. N., Ouyang, S., Zhang, S. L., Lei, P. F., and Li, J. X.: Development of allometric equations for estimating tree component biomass of seven subtropical species in southern China, Eur. J. For. Res., in review, 2016.
Yao, D. D., Lei, X. D., Yu, L., Lu, J., Fu, L. Y., and Yu, R. G.: Spatial heterogeneity of leaf area index of mixed spruce-fir-deciduous stands in northeast China, Acta Ecol. Sinica, 1, 71–79, 2015 (in Chinese with English abstract).
Short summary
We used hemispherical photography to measure LAI values in three subtropical forests from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs), respectively. Our results showed that LAI values differed greatly in three forests and their seasonal variations were consistent with plant phenology. Stand characters significantly affected the spatial variations in LAI values.
We used hemispherical photography to measure LAI values in three subtropical forests from April...
Altmetrics
Final-revised paper
Preprint