Articles | Volume 14, issue 23
https://doi.org/10.5194/bg-14-5571-2017
https://doi.org/10.5194/bg-14-5571-2017
Research article
 | 
08 Dec 2017
Research article |  | 08 Dec 2017

Isoprene emission potentials from European oak forests derived from canopy flux measurements: an assessment of uncertainties and inter-algorithm variability

Ben Langford, James Cash, W. Joe F. Acton, Amy C. Valach, C. Nicholas Hewitt, Silvano Fares, Ignacio Goded, Carsten Gruening, Emily House, Athina-Cerise Kalogridis, Valérie Gros, Richard Schafers, Rick Thomas, Mark Broadmeadow, and Eiko Nemitz

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (Editor review) (22 Aug 2017) by Georg Wohlfahrt
AR by Ben Langford on behalf of the Authors (17 Oct 2017)  Author's response   Manuscript 
ED: Publish as is (20 Oct 2017) by Georg Wohlfahrt
AR by Ben Langford on behalf of the Authors (25 Oct 2017)
Download
Short summary
Isoprene flux measurements made above five European oak forests were reviewed to generate new emission potentials. Six variations of the Guenther algorithms were inverted to back out time series of isoprene emission potential, and then an “average” emission potential was determined using one of four commonly used approaches. Our results show that emission potentials can vary by up to a factor of 4 and highlight the need for the community to now harmonize their approach to reduce uncertainty.
Altmetrics
Final-revised paper
Preprint