Articles | Volume 15, issue 5
https://doi.org/10.5194/bg-15-1515-2018
https://doi.org/10.5194/bg-15-1515-2018
Research article
 | 
14 Mar 2018
Research article |  | 14 Mar 2018

Over-calcified forms of the coccolithophore Emiliania huxleyi in high-CO2 waters are not preadapted to ocean acidification

Peter von Dassow, Francisco Díaz-Rosas, El Mahdi Bendif, Juan-Diego Gaitán-Espitia, Daniella Mella-Flores, Sebastian Rokitta, Uwe John, and Rodrigo Torres

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (22 Jan 2018) by Lennart de Nooijer
AR by Peter von Dassow on behalf of the Authors (25 Jan 2018)
ED: Publish as is (07 Feb 2018) by Lennart de Nooijer
AR by Peter von Dassow on behalf of the Authors (16 Feb 2018)  Manuscript 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Coccolithophores are microalgae which produce much of the calcium carbonate in the ocean, important to making organic carbon sink to great depths, and they may be negatively affected by the decline in ocean pH as CO2 rises. Can these important microbes adapt? This study found that coccolithophores inhabiting waters naturally low in pH may have already reached the limit of their ability to adapt. This suggests that how the ocean's biota sequester carbon will be strongly affected in the future.
Altmetrics
Final-revised paper
Preprint