Articles | Volume 15, issue 9
https://doi.org/10.5194/bg-15-2873-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-2873-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Short-term fate of intertidal microphytobenthos carbon under enhanced nutrient availability: a 13C pulse-chase experiment
Centre for Coastal Biogeochemistry, Southern Cross University, P.O. Box
157, Lismore, NSW, 2480, Australia
now at: NIOZ Royal Netherlands Institute for Sea
Research, Department of Marine Microbiology and Biogeochemistry, P.O. Box 59,
1790AB Den Burg, the Netherlands
Joanne M. Oakes
Centre for Coastal Biogeochemistry, Southern Cross University, P.O. Box
157, Lismore, NSW, 2480, Australia
Bradley D. Eyre
Centre for Coastal Biogeochemistry, Southern Cross University, P.O. Box
157, Lismore, NSW, 2480, Australia
Related authors
No articles found.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Michelle N. Simone, Kai G. Schulz, Joanne M. Oakes, and Bradley D. Eyre
Biogeosciences, 18, 1823–1838, https://doi.org/10.5194/bg-18-1823-2021, https://doi.org/10.5194/bg-18-1823-2021, 2021
Short summary
Short summary
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the global C cycle, but it is unknown how this will change in the future. DOC fluxes from unvegetated sediments were investigated ex situ subject to conditions of warming and ocean acidification. The future climate shifted sediment fluxes from a slight DOC source to a significant sink, with global coastal DOC export decreasing by 80 %. This has global implications for C cycling and long-term C storage.
Cited articles
Alsterberg, C., Sundback, K., and Hulth, S.: Functioning of a shallow-water
sediment system during experimental warming and nutrient enrichment, Plos
One, 7, e51503, https://doi.org/10.1371/journal.pone.0051503, 2012.
Andersson, J. H., Woulds, C., Schwartz, M., Cowie, G. L., Levin, L. A.,
Soetaert, K., and Middelburg, J. J.: Short-term fate of phytodetritus in
sediments across the Arabian Sea Oxygen Minimum Zone, Biogeosciences, 5,
43–53, https://doi.org/10.5194/bg-5-43-2008, 2008.
Armitage, A. R. and Fong, P.: Upward cascading effects of nutrients: shifts
in a benthic microalgal community and a negative herbivore response,
Oecologia, 139, 560–567, 2004.
Arnosti, C.: Microbial extracellular enzymes and the marine carbon cycle,
Ann. Rev. Mar. Sci., 3, 401–425, 2011.
Banta, G. T., Giblin, A. E., Hobbie, J. E., and Tucker., J.: Benthic
respiration and nitrogen release in Buzzards Bay, Massachusetts, J. Mar.
Res., 53, 107–135, 1995.
Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S.,
and Regnier, P. G.: The changing carbon cycle of the coastal ocean, Nature,
504, 61–70, 2013.
Bellinger, B. J., Underwood, G. J. C., Ziegler, S. E., and Gretz, M. R.:
Significance of diatom-derived polymers in carbon flow dynamics within
estuarine biofilms determined through isotopic enrichment, Aquat. Microb.
Ecol., 55, 169–187, 2009.
Bianchi, T. S.: The role of terrestrially derived organic carbon in the
coastal ocean: A changing paradigm and the priming effect, P. Natl. Acad.
Sci. USA, 108, 19473–19481, 2011.
Brinch-Iversen, J. and King, G. M.: Effects of substrate concentration,
growth state, and oxygen availability on relationships among bacterial
carbon, nitrogen and phospholipid content, FEMS Microb. Ecol., 74, 345–356,
1990.
Cloern, J. E.: Our evolving conceptual model of the coastal eutrophication
problem, Mar. Ecol. Prog. Ser., 210, 223–253, 2001.
Cook, P., Van Oevelen, D., Soetaert, K., and Middelburg, J.: Carbon and
nitrogen cycling on intertidal mudflats of a temperate Australian estuary,
IV, Inverse model analysis and synthesis, Mar. Ecol.-Prog. Ser., 394, 35–48,
2009.
Cook, P. L. M., Veuger, B., Boer, S., and Middelburg, J. J.: Effect of
nutrient availability on carbon and nitrogen and flows through benthic algae
and bacteria in near-shore sandy sediment, Aquat. Microb. Ecol., 49,
165–180, 2007.
Decho, A. W.: Microbial biofilms in intertidal systems: an overview, Cont.
Shelf Res., 20, 1257–1273, 2000.
Drenovsky, R. E., Elliott, G. N., Graham, K. J., and Scow, K. M.: Comparison
of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters
(TSFAME) for characterizing soil microbial communities, Soil Biol. Biochem.,
36, 1793–1800, 2004.
Drescher, K., Nadell, C. D., Stone, H. A., Wingreen, N. S., and Bassler, B.
L.: Solutions to the public goods dilemma in bacterial biofilms, Curr. Biol.,
24, 50–55, 2014.
Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine
vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8,
https://doi.org/10.5194/bg-2-1-2005, 2005.
Edlund, A., Nichols, P. D., Roffey, R., and White, D. C.: Extractable and
lipopolysaccharide fatty acid and hydroxy acid profiles from
Desulfovibrio species, J. Lipid Res., 26, 982–988, 1985.
Evrard, V., Huettel, M., Cook, P. L. M., Soetaert, K., Heip, C. H. R., and
Middelburg, J. J.: Importance of phytodetritus and microphytobenthos for
heterotrophs in a shallow subtidal sandy sediment, Mar. Ecol.-Prog. Ser.,
455, 13–31, 2012.
Eyre, B. D.: Water quality changes in an episodically flushed sub-tropical
Australian estuary: A 50 year perspective, Mar. Chem., 59, 177–187, 1997.
Eyre, B. D.: Regional evaluation of nutrient transformation and phytoplankton
growth in nine river-dominated sub-tropical east Australian estuaries, Mar.
Ecol. Progr. Ser., 205, 61–83, 2000.
Eyre, B. D. and Ferguson, A. J. P.: Benthic Metabolism and Nitrogen Cycling
in a Subtropical East Australian Estuary (Brunswick): Temporal Variability
and Controlling Factors, Limnol. Oceanogr., 50, 81–96, 2005.
Eyre, B. D., Glud, R. N., and Patten, N.: Mass coral spawning: A natural
large-scale nutrient addition experiment, Limnol. Oceanogr., 53, 997–1013,
2008.
Eyre, B. D., Ferguson A. J. P., Webb, A., Maher, D., and Oakes, J. M.:
Metabolism of different benthic habitats and their contribution to the carbon
budget of a shallow oligotrophic sub-tropical coastal system (southern
Moreton Bay, Australia), Biogeochemistry, 102, 87–110, 2011.
Eyre, B. D., Oakes, J. M., and Middelburg, J. J.: Fate of microphytobenthos
nitrogen in subtropical sediments: A 15N pulse-chase study, Limnol.
Oceanogr., 61, 1144–1156, 2016a.
Eyre, B. D., Maher, D. T., and Sanders, C.: The contribution of
denitrification and burial to the nitrogen budgets of three geomorphically
distinct Australian estuaries: Importance of seagrass habitats, Limnol.
Oceanogr., 61, 1144–1156, 2016b.
Ferguson, A. and Eyre, B. D.: Interaction of benthic microalgae and
macrofauna in the control of benthic metabolism, nutrient fluxes and
denitrification in a shallow sub-tropical coastal embayment (western Moreton
Bay, Australia), Biogeochemistry, 112, 423–440, 2013.
Ferguson, A., Eyre, B., and Gay, J.: Organic matter and benthic metabolism in
euphotic sediments along shallow sub-tropical estuaries, northern New South
Wales, Australia, Aquat. Microb. Ecol., 33, 137–154, 2003.
Ferguson, A., Eyre, B., and Gay, J.: Benthic nutrient fluxes in euphotic
sediments along shallow sub-tropical estuaries, northern New South Wales,
Australia, Aquat. Microb. Ecol., 37, 219–235, 2004.
Ferguson, A., Eyre, B., Gay, J., Emtage, N., and Brooks, L.: Benthic
metabolism and nitrogen cycling in a sub-tropical coastal embayment: spatial
and seasonal variation and controlling factors, Aquat. Microb. Ecol., 48,
175–195, 2007.
Fouilland, E., Tolosa, I., Bonnet, D., Bouvier, C., Bouvier, T., Bouvy, M.,
Got, P., Le Floc'h, E., Mostajir, B., Roques, C., Sempéré, R.,
Sime-Ngando, T., and Vidussi, F.: Bacterial carbon dependence on freshly
produced phytoplankton exudates under different nutrient availability and
grazing pressure conditions in coastal marine waters, FEMS Microb. Ecol., 87,
757–769, 2014.
Fry, B., Justić, D., Riekenberg, P., Swenson, E. M., Turner, R. E., Wang,
L., Pride, L. Rabalais, N. N., Kurtz, J. C., Lehrter, J. C. Murrell, M. C.,
Shadwick, E. H., and Boyd, B.: Carbon dynamics on the Louisiana continental
shelf and cross-shelf feeding of hypoxia, Estuar Coast, 38, 703–721, 2015.
Glud, R. N.: Oxygen dynamics of marine sediments, Mar. Biol. Res., 4,
243–289, 2008.
Glud, R. N., Eyre, B. D., and Patten, N.: Biogeochemical responses to mass
coral spawning at the Great Barrier Reef: Effects on respiration and primary
production, Limnol. Oceanogr., 53, 1014–1024, 2008.
Goto, N., Kawamura, T., Mitamura, O., and Terai, H.: Importance of
extracellular organic carbon production in the total primary production by
tidal-flat diatoms in comparison to phytoplankton, Mar. Ecol.-Prog. Ser.,
190, 289–295, 1999.
Hardison, A., Anderson, I., Canuel, E., Tobias, C., and Veuger, B.: Carbon
and nitrogen dynamics in shallow photic systems: Interactions between
macroalgae, microalgae, and bacteria, Limnol. Oceanogr., 56, 1489–1503,
2011.
Hardison, A. K., Canuel, E. A., Anderson, I. C., Tobias, C. R., Veuger, B.,
and Waters, M. N.: Microphytobenthos and benthic macroalgae determine
sediment organic matter composition in shallow photic sediments,
Biogeosciences, 10, 5571–5588, https://doi.org/10.5194/bg-10-5571-2013,
2013.
Hedges, J. I., Eglinton, G., Hatcher, P. G., Kirchman, D. L., Arnosti, C.,
Derenne, S., Evershed, R. P., Kögel-Knabner, I., de Leeuw, J. W., Littke,
R., Michaelis, W., and Rullkötter, J.: The molecularly-uncharacterized
component of nonliving organic matter in natural environments, Org. Geochem.,
31, 945–958, 2000.
Hillebrand, H. and Kahlert, M.: Effect of grazing and water column nutrient
supply on biomass and nutrient content of sediment microalgae, Aquat. Bot.,
72, 143–159, 2002.
Huettel, M., Berg, P., and Kostka, J.: Benthic Exchange and Biogeochemical
Cycling in Permeable Sediments, Ann. Rev. Mar. Sci., 6, 23–51, 2014.
Jian, S. Li, J., Chen, J., Wang, G., Mayes, M. A., Dzantor, K. E., Hui, D.,
and Luo, Y.: Soil extracellular enzyme activities, soil carbon and nitrogen
storage under nitrogen fertilization: A meta-analysis, Soil Biol. Biochem.,
101, 32–43, 2016.
Lorenzen, C.: Determinations of chlorophyll and phaeopigments:
spectrophotometric equations, Limnol. Oceanogr., 12, 343–346, 1967.
Macreadie, P. I., Allen, K., Kelaher, B. P., Ralph, P. J., and Skilbeck, C.
G.: Paleoreconstruction of estuarine sediments reveal human-induced weakening
of coastal carbon sinks, Glob. Change Biol., 18, 891–901, 2012.
Maher, D. and Eyre, B. D.: Benthic carbon metabolism in southeast Australian
estuaries: Habitat importance, driving forces, and application of artificial
neural network models, Mar. Ecol.-Prog. Ser., 439, 97–115, 2011.
McGlathery, K. J., Sundbäck, K., and Anderson, I. C.: Eutrophication in
shallow coastal bays and lagoons: The role of plants in the coastal filter,
Mar. Ecol.-Prog. Ser., 348, 1–18, 2007.
McKee, L. J., Eyre, B. D., and Hossain, S.: Transport and retention of
nitrogen and phosphorus in the sub-tropical Richmond River estuary,
Australia: A budget approach, Biogeochemistry, 50, 241–278, 2000.
Middelburg, J. J., Barranguet, C., Boschker, H. T. S., Herman, M. J., Moens,
T., and Heip, C.: The fate of intertidal microphytobenthos carbon: An in situ
13C-labeling study, Limnol. Oceanogr., 45, 1224–1225, 2000.
Miyatake, T., Moerdijk-Poortvliet, T. C. W., Stal, L. J., and Boschker, H. T.
S.: Tracing carbon flow from microphytobenthos to major bacterial groups in
an intertidal marine sediment by using an in situ 13C pulse-chase
method, Limnol. Oceanogr., 59, 1275–1287, 2014.
Nordström, M. C., Currin, C. A., Talley, T. S., Whitcraft, C. R., and
Levin, L. A.: Benthic food-web succession in a developing salt marsh, Mar.
Ecol.-Prog. Ser., 500, 43–55, 2014.
Oakes, J. M., Eyre, B. D., Middelburg, J. J., and Boschker, H. T. S.:
Composition, production, and loss of carbohydrates in subtropical shallow
subtidal sandy sediments: Rapid processing and long-term retention revealed
by 13C-labeling, Limnol. Oceanogr., 55, 2126–2138, 2010a.
Oakes, J. M. and Eyre, B. D.: Transformation and fate of microphytobenthos
carbon in subtropical, intertidal sediments: potential for long-term carbon
retention revealed by 13C-labeling, Biogeosciences, 11, 1927–1940,
https://doi.org/10.5194/bg-11-1927-2014, 2014.
Oakes, J. M., Eyre, B. D., Ross, D. J., and Turner, S. D.: Stable isotopes
trace estuarine transformations of carbon and nitrogen from primary- and
secondary-treated paper and pulp mill effluent, Environ. Sci. Technol., 44,
7411–7417, 2010b.
Oakes, J. M., Eyre, B. D., and Middelburg, J. J.: Transformation and fate of
microphytobentos carbon in subtropical shallow subtidal sands: A
13C-labeling study, Limnol. Oceanogr., 57, 1846–1856, 2012.
Oakes, J. M., Rysgaard, S., Glud, R. N., and Eyre, B. D.: The transformation
and fate of sub-Arctic microphytobenthos carbon revealed through
13C-labeling, Limnol. Oceanogr., 61, 2296–2308, 2016.
Pascal, P. Y., Fleeger, J. W., Boschker, H. T. S., Mitwally, H. M., and
Johnson, D. S.: Response of the benthic food web to short- and long-term
nutrient enrichment in saltmarsh mudflats, Mar. Ecol. Prog. Ser., 474,
27–41, 2013.
Piehler, M. F., Currin, C. A., and Hall, N. S.: Estuarine intertidal sandflat
benthic microalgal responses to in situ and mesocosm nitrogen additions, J.
Exp. Mar. Biol. Ecol., 390, 99–105, 2010.
Rajendran, N., Suwa, Y., and Urushigawa, Y.: Distribution of phospholipid
ester-linked fatty acid biomarkers for bacteria in the sediment of Ise Bay,
Japan, Mar. Chem., 42, 39–56, 1993.
Rajendran, N., Matsuda, O., Urushigawa, Y., and Simidu, U.: Characterization
of microbial community structure in the surface sediment of Osaka Bay, Japan,
by phospholipid fatty acid analysis, Appl. Environ. Microb., 60, 248–257,
1994.
Riekenberg, P. M., Oakes, J. M., and Eyre, B. D.: Uptake of dissolved organic
and inorganic nitrogen in microalgae-dominated sediment: Comparing dark and
light in situ and ex situ additions of 15N, Mar. Ecol.-Prog. Ser., 571, 29–42, 2017.
Rysgaard, S., Thamdrup, B., Risgaard-Petersen, N., Fossing, H., Berg, P.,
Christensen, P. B., and Dalsgaard, T.: Seasonal carbon and nutrient
mineralization in a high-Arctic coastal marine sediment, Young Sound,
Northeast Greenland, Mar. Ecol.-Prog. Ser., 175, 261–276, 1998.
Saburova, M. A. and Polikarpov, I. G.: Diatom activity within soft sediments:
behavioural and physiological processes, Mar. Ecol.-Prog. Ser., 251,
115–126, 2003.
Schimel, J. P. and Bennett, J.: Nitrogen mineralization: Challenges of a
changing paradigm, Ecology, 85, 591–602, 2004.
Spivak, A. C.: Benthic biogeochemical responses to changing estuary trophic
state and nutrient availability: A paired field and mesocosm experiment
approach, Limnol. Oceanogr., 60, 3–21, 2015.
Spivak, A. C. and Ossolinski, J.: Limited effects of nutrient enrichment on
bacterial carbon sources in salt marsh tidal creek sediments, Mar. Ecol.-Prog. Ser., 544, 107–130, 2016.
Stal, L. J.: Microphytobenthos as a biogeomorphological force in intertidal
sediment stabilization, Ecol. Eng., 36, 236–245, 2010.
Tang, M. and Kristensen, E.: Impact of microphytobenthos and macroinfauna on
temporal variation of benthic metabolism in shallow coastal sediments, J.
Exp. Mar. Biol. Ecol., 349, 99–112, 2007.
Thornton, D. C. O., Kopac, S. M., and Long, R. A.: Production and enzymatic
hydrolysis of carbohydrates in intertidal sediment, Aquat. Microb. Ecol., 60,
109–125, 2010.
Underwood, G. J. C. and Kromkamp, J.: Primary production by phytoplankton and
microphytobenthos in estuaries, Adv. Ecol. Res., 29, 93–153, 1999.
Underwood, G. J. C. and Paterson, D. M.: The importance of extracellular
carbohydrate production by marine epipelic diatoms, Adv. Bot. Res., 40,
183–240, 2003.
Van den Meersche, K, Middelburg, J. J., Soetaert, K., van Rijswijk, P.,
Boschker, H. T. S., and Heip, C.: Carbon-nitrogen coupling and
algal-bacterial interactions during an experimental bloom: Modeling a
13C tracer experiment, Limnol. Oceangr., 49, 862–878, 2004.
Van Nugteren, P., Moodley, L., Brummer, G.-J., Heip, C. H. R., Herman, P. M.
J., and Middelburg, J. J.: Seafloor ecosystem functioning: the importance of
organic matter priming, Mar. Biol., 156, 2277–2287, 2009.
Van Oevelen, D., Middelburg, J. J., Soetaert, K., and Moodley, L.: The fate
of bacterial carbon in an intertidal sediment: Modeling an in situ isotope
tracer experiment, Limnol. Oceanogr., 51, 1302–1314, 2006.
Veuger, B., Van Oevelen, D., and Middelburg, J. J.: Fate of microbial
nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids
in sediment, Geochim. Cosmochim. Acta, 83, 217–233, 2012.
Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I., and Garland,
C. D.: Fatty acid and lipid composition of 10 species of microalgae used in
mariculture, J. Exp. Mar. Biol. Ecol., 128, 219–240, 1989.
Short summary
Shallow coastal waters are increasingly experiencing increased nutrient loading. Sediment algae within these systems are responsible for a large portion of C production, but we have limited knowledge of what happens to sediment microbial processing of MPB-C under increased nutrient conditions. This work examines how C-processing pathways change after increased short-term nutrient exposure, finding shifts in processing between microbial groups and increased export of algal C from the sediment.
Shallow coastal waters are increasingly experiencing increased nutrient loading. Sediment algae...
Altmetrics
Final-revised paper
Preprint