Articles | Volume 15, issue 9
https://doi.org/10.5194/bg-15-2873-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-2873-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Short-term fate of intertidal microphytobenthos carbon under enhanced nutrient availability: a 13C pulse-chase experiment
Centre for Coastal Biogeochemistry, Southern Cross University, P.O. Box
157, Lismore, NSW, 2480, Australia
now at: NIOZ Royal Netherlands Institute for Sea
Research, Department of Marine Microbiology and Biogeochemistry, P.O. Box 59,
1790AB Den Burg, the Netherlands
Joanne M. Oakes
Centre for Coastal Biogeochemistry, Southern Cross University, P.O. Box
157, Lismore, NSW, 2480, Australia
Bradley D. Eyre
Centre for Coastal Biogeochemistry, Southern Cross University, P.O. Box
157, Lismore, NSW, 2480, Australia
Related authors
No articles found.
Michelle N. Simone, Kai G. Schulz, Joanne M. Oakes, and Bradley D. Eyre
Biogeosciences, 18, 1823–1838, https://doi.org/10.5194/bg-18-1823-2021, https://doi.org/10.5194/bg-18-1823-2021, 2021
Short summary
Short summary
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the global C cycle, but it is unknown how this will change in the future. DOC fluxes from unvegetated sediments were investigated ex situ subject to conditions of warming and ocean acidification. The future climate shifted sediment fluxes from a slight DOC source to a significant sink, with global coastal DOC export decreasing by 80 %. This has global implications for C cycling and long-term C storage.
Zhuo-Yi Zhu, Joanne Oakes, Bradley Eyre, Youyou Hao, Edwin Sien Aun Sia, Shan Jiang, Moritz Müller, and Jing Zhang
Biogeosciences, 17, 2473–2485, https://doi.org/10.5194/bg-17-2473-2020, https://doi.org/10.5194/bg-17-2473-2020, 2020
Short summary
Short summary
Samples were collected in August 2016 in the Rajang River and its estuary, with tropical forest in the river basin and peatland in the estuary. Organic matter composition was influenced by transportation in the river basin, whereas peatland added clear biodegraded parts to the fluvial organic matter, which implies modification of the initial lability and/or starting points in the subsequent degradation and alternation processes after the organic matter enters the sea.
Denise Müller-Dum, Thorsten Warneke, Tim Rixen, Moritz Müller, Antje Baum, Aliki Christodoulou, Joanne Oakes, Bradley D. Eyre, and Justus Notholt
Biogeosciences, 16, 17–32, https://doi.org/10.5194/bg-16-17-2019, https://doi.org/10.5194/bg-16-17-2019, 2019
Short summary
Short summary
Southeast Asian peat-draining rivers are potentially strong sources of carbon to the atmosphere due to the large amounts of organic carbon stored in those ecosystems. We present the first assessment of CO2 emissions from the Rajang River, the largest peat-draining river in Malaysia. The peatlands’ influence on the CO2 emissions from the Rajang River was smaller than expected, probably due to their proximity to the coast. Therefore, the Rajang was only a moderate source of CO2 to the atmosphere.
Georgina Robinson, Thomas MacTavish, Candida Savage, Gary S. Caldwell, Clifford L. W. Jones, Trevor Probyn, Bradley D. Eyre, and Selina M. Stead
Biogeosciences, 15, 1863–1878, https://doi.org/10.5194/bg-15-1863-2018, https://doi.org/10.5194/bg-15-1863-2018, 2018
Short summary
Short summary
This study examined the effect of adding carbon to a sediment-based effluent treatment system to treat nitrogen-rich aquaculture waste. The research was conducted in incubation chambers to measure the exchange of gases and nutrients across the sediment–water interface and examine changes in the sediment microbial community. Adding carbon increased the amount of nitrogen retained in the treatment system, thereby reducing the levels of nitrogen needing to be discharged to the environment.
Coulson A. Lantz, Kai G. Schulz, Laura Stoltenberg, and Bradley D. Eyre
Biogeosciences, 14, 5377–5391, https://doi.org/10.5194/bg-14-5377-2017, https://doi.org/10.5194/bg-14-5377-2017, 2017
Short summary
Short summary
This study examined the combined effect of seawater warming and organic matter enrichment on coral reef sediment metabolism. Sediments under control conditions were net autotrophic and net calcifying. Warming shifted the sediment to net heterotrophy and net dissolution, while organic matter enrichment increased net production and net calcification. When combined, the effects of each treatment were counterbalanced and sediment metabolism did not significantly differ from control treatments.
Perran Louis Miall Cook, Adam John Kessler, and Bradley David Eyre
Biogeosciences, 14, 4061–4069, https://doi.org/10.5194/bg-14-4061-2017, https://doi.org/10.5194/bg-14-4061-2017, 2017
Short summary
Short summary
Nitrogen is the key nutrient that typically limits productivity in coastal waters. One of the key controls on the amount of bioavailable nitrogen is the process of denitrification, which converts nitrate (bioavailable) into nitrogen gas. Previous studies suggest high rates of denitrification may take place within carbonate sediments, and one explanation for this is that this process may take place within the sand grains. Here we show evidence to support this hypothesis.
Hilton B. Swan, Graham B. Jones, Elisabeth S. M. Deschaseaux, and Bradley D. Eyre
Biogeosciences, 14, 229–239, https://doi.org/10.5194/bg-14-229-2017, https://doi.org/10.5194/bg-14-229-2017, 2017
Short summary
Short summary
We measured the sulfur gas dimethylsulfide (DMS) in marine air at a coral cay on the Great Barrier Reef. DMS is well known to be released from the world's oceans, but environmental evidence of coral reefs releasing DMS has not been clearly demonstrated. We showed the coral reef can sometimes release DMS to the air, which was seen as spikes above the DMS released from the ocean. The DMS from the reef supplements the DMS from the ocean to assist formation of clouds that influence local climate.
J. M. Oakes and B. D. Eyre
Biogeosciences, 11, 1927–1940, https://doi.org/10.5194/bg-11-1927-2014, https://doi.org/10.5194/bg-11-1927-2014, 2014
B. D. Eyre, I. R. Santos, and D. T. Maher
Biogeosciences, 10, 2601–2615, https://doi.org/10.5194/bg-10-2601-2013, https://doi.org/10.5194/bg-10-2601-2013, 2013
T. Cyronak, I. R. Santos, D. V. Erler, and B. D. Eyre
Biogeosciences, 10, 2467–2480, https://doi.org/10.5194/bg-10-2467-2013, https://doi.org/10.5194/bg-10-2467-2013, 2013
Related subject area
Biogeochemistry: Stable Isotopes & Other Tracers
Permafrost degradation and nitrogen cycling in Arctic rivers: insights from stable nitrogen isotope studies
Neodymium budget in the Mediterranean Sea: evaluating the role of atmospheric dusts using a high-resolution dynamical-biogeochemical model
Nitrate isotope investigations reveal future impacts of climate change on nitrogen inputs and cycling in Arctic fjords: Kongsfjorden and Rijpfjorden (Svalbard)
Mineralization of autochthonous particulate organic carbon is a fast channel of organic matter turnover in Germany's largest drinking water reservoir
Carbon isotopic ratios of modern C3 and C4 vegetation on the Indian peninsula and changes along the plant–soil–river continuum – implications for vegetation reconstructions
Controls on nitrite oxidation in the upper Southern Ocean: insights from winter kinetics experiments in the Indian sector
Tracing the source of nitrate in a forested stream showing elevated concentrations during storm events
Intra-skeletal variability in phosphate oxygen isotope composition reveals regional heterothermies in marine vertebrates
Isotopic differences in soil–plant–atmosphere continuum composition and control factors of different vegetation zones on the northern slope of the Qilian Mountains
An analysis of the variability in δ13C in macroalgae from the Gulf of California: indicative of carbon concentration mechanisms and isotope discrimination during carbon assimilation
Determination of respiration and photosynthesis fractionation coefficients for atmospheric dioxygen inferred from a vegetation-soil-atmosphere analog of the terrestrial biosphere in closed chambers
Summertime productivity and carbon export potential in the Weddell Sea, with a focus on the waters adjacent to Larsen C Ice Shelf
Particulate biogenic barium tracer of mesopelagic carbon remineralization in the Mediterranean Sea (PEACETIME project)
Hydrogen and carbon isotope fractionation factors of aerobic methane oxidation in deep-sea water
Host-influenced geochemical signature in the parasitic foraminifera Hyrrokkin sarcophaga
Comparing modified substrate-induced respiration with selective inhibition (SIRIN) and N2O isotope approaches to estimate fungal contribution to denitrification in three arable soils under anoxic conditions
How are oxygen budgets influenced by dissolved iron and growth of oxygenic phototrophs in an iron-rich spring system? Initial results from the Espan Spring in Fürth, Germany
Stable isotope ratios in seawater nitrate reflect the influence of Pacific water along the northwest Atlantic margin
High-resolution 14C bomb peak dating and climate response analyses of subseasonal stable isotope signals in wood of the African baobab – a case study from Oman
Geographic variability in freshwater methane hydrogen isotope ratios and its implications for global isotopic source signatures
Seasonality of nitrogen sources, cycling, and loading in a New England river discerned from nitrate isotope ratios
Evaluating the response of δ13C in Haloxylon ammodendron, a dominant C4 species in Asian desert ecosystems, to water and nitrogen addition as well as the availability of its δ13C as an indicator of water use efficiency
Modern silicon dynamics of a small high-latitude subarctic lake
Radium-228-derived ocean mixing and trace element inputs in the South Atlantic
Nitrogen isotopic fractionations during nitric oxide production in an agricultural soil
Silicon uptake and isotope fractionation dynamics by crop species
Barium stable isotopes as a fingerprint of biological cycling in the Amazon River basin
Bottomland hardwood forest growth and stress response to hydroclimatic variation: evidence from dendrochronology and tree ring Δ13C values
N2O isotope approaches for source partitioning of N2O production and estimation of N2O reduction – validation with the 15N gas-flux method in laboratory and field studies
Technical note: Single-shell δ11B analysis of Cibicidoides wuellerstorfi using femtosecond laser ablation MC-ICPMS and secondary ion mass spectrometry
Biogeochemical evidence of anaerobic methane oxidation and anaerobic ammonium oxidation in a stratified lake using stable isotopes
Effects of 238U variability and physical transport on water column 234Th downward fluxes in the coastal upwelling system off Peru
Do degree and rate of silicate weathering depend on plant productivity?
Alpine Holocene tree-ring dataset: age-related trends in the stable isotopes of cellulose show species-specific patterns
Ideas and perspectives: The same carbon behaves like different elements – an insight into position-specific isotope distributions
Seasonal dynamics of the COS and CO2 exchange of a managed temperate grassland
Leaf-scale quantification of the effect of photosynthetic gas exchange on Δ17O of atmospheric CO2
The stable carbon isotope signature of methane produced by saprotrophic fungi
Understanding the effects of early degradation on isotopic tracers: implications for sediment source attribution using compound-specific isotope analysis (CSIA)
Oxygen isotope composition of waters recorded in carbonates in strong clumped and oxygen isotopic disequilibrium
Isotopic evidence for alteration of nitrous oxide emissions and producing pathways' contribution under nitrifying conditions
Trace element composition of size-fractionated suspended particulate matter samples from the Qatari Exclusive Economic Zone of the Arabian Gulf: the role of atmospheric dust
Benthic carbon fixation and cycling in diffuse hydrothermal and background sediments in the Bransfield Strait, Antarctica
Changes in gross oxygen production, net oxygen production, and air-water gas exchange during seasonal ice melt in Whycocomagh Bay, a Canadian estuary in the Bras d'Or Lake system
Plants or bacteria? 130 years of mixed imprints in Lake Baldegg sediments (Switzerland), as revealed by compound-specific isotope analysis (CSIA) and biomarker analysis
Commercial traceability of Arapaima spp. fisheries in the Amazon basin: can biogeochemical tags be useful?
Distribution of Fe isotopes in particles and colloids in the salinity gradient along the Lena River plume, Laptev Sea
Early season N2O emissions under variable water management in rice systems: source-partitioning emissions using isotope ratios along a depth profile
Evolution of 231Pa and 230Th in overflow waters of the North Atlantic
Southern Ocean controls of the vertical marine δ13C gradient – a modelling study
Adam Francis, Raja S. Ganeshram, Robyn E. Tuerena, Robert G. M. Spencer, Robert M. Holmes, Jennifer A. Rogers, and Claire Mahaffey
Biogeosciences, 20, 365–382, https://doi.org/10.5194/bg-20-365-2023, https://doi.org/10.5194/bg-20-365-2023, 2023
Short summary
Short summary
Climate change is causing extensive permafrost degradation and nutrient releases into rivers with great ecological impacts on the Arctic Ocean. We focused on nitrogen (N) release from this degradation and associated cycling using N isotopes, an understudied area. Many N species are released at degradation sites with exchanges between species. N inputs from permafrost degradation and seasonal river N trends were identified using isotopes, helping to predict climate change impacts.
Mohamed Ayache, Jean-Claude Dutay, Kazuyo Tachikawa, Thomas Arsouze, and Catherine Jeandel
Biogeosciences, 20, 205–227, https://doi.org/10.5194/bg-20-205-2023, https://doi.org/10.5194/bg-20-205-2023, 2023
Short summary
Short summary
The neodymium (Nd) is one of the most useful tracers to fingerprint water mass provenance. However, the use of Nd is hampered by the lack of adequate quantification of the external sources. Here, we present the first simulation of dissolved Nd concentration and Nd isotopic composition in the Mediterranean Sea using a high-resolution model. We aim to better understand how the various external sources affect the Nd cycle and particularly assess how it is impacted by atmospheric inputs.
Marta Santos-Garcia, Raja S. Ganeshram, Robyn E. Tuerena, Margot C. F. Debyser, Katrine Husum, Philipp Assmy, and Haakon Hop
Biogeosciences, 19, 5973–6002, https://doi.org/10.5194/bg-19-5973-2022, https://doi.org/10.5194/bg-19-5973-2022, 2022
Short summary
Short summary
Terrestrial sources of nitrate are important contributors to the nutrient pool in the fjords of Kongsfjorden and Rijpfjorden in Svalbard during the summer, and they sustain most of the fjord primary productivity. Ongoing tidewater glacier retreat is postulated to favour light limitation and less dynamic circulation in fjords. This is suggested to encourage the export of nutrients to the middle and outer part of the fjord system, which may enhance primary production within and in offshore areas.
Marlene Dordoni, Michael Seewald, Karsten Rinke, Kurt Friese, Robert van Geldern, Jakob Schmidmeier, and Johannes A. C. Barth
Biogeosciences, 19, 5343–5355, https://doi.org/10.5194/bg-19-5343-2022, https://doi.org/10.5194/bg-19-5343-2022, 2022
Short summary
Short summary
Organic matter (OM) turnover into dissolved inorganic carbon (DIC) was investigated by means of carbon isotope mass balances in Germany's largest water reservoir. This includes a metalimnetic oxygen minimum (MOM). Autochthonous particulate organic carbon (POC) was the main contributor to DIC, with rates that were highest for the MOM. Generally low turnover rates outline the environmental fragility of this water body in the case that OM loads increase due to storm events or land use changes.
Frédérique M. S. A. Kirkels, Hugo J. de Boer, Paulina Concha Hernández, Chris R. T. Martes, Marcel T. J. van der Meer, Sayak Basu, Muhammed O. Usman, and Francien Peterse
Biogeosciences, 19, 4107–4127, https://doi.org/10.5194/bg-19-4107-2022, https://doi.org/10.5194/bg-19-4107-2022, 2022
Short summary
Short summary
The distinct carbon isotopic values of C3 and C4 plants are widely used to reconstruct past hydroclimate, where more C3 plants reflect wetter and C4 plants drier conditions. Here we examine the impact of regional hydroclimatic conditions on plant isotopic values in the Godavari River basin, India. We find that it is crucial to identify regional plant isotopic values and consider drought stress, which introduces a bias in C3 / C4 plant estimates and associated hydroclimate reconstructions.
Mhlangabezi Mdutyana, Tanya Marshall, Xin Sun, Jessica M. Burger, Sandy J. Thomalla, Bess B. Ward, and Sarah E. Fawcett
Biogeosciences, 19, 3425–3444, https://doi.org/10.5194/bg-19-3425-2022, https://doi.org/10.5194/bg-19-3425-2022, 2022
Short summary
Short summary
Nitrite-oxidizing bacteria in the winter Southern Ocean show a high affinity for nitrite but require a minimum (i.e., "threshold") concentration before they increase their rates of nitrite oxidation significantly. The classic Michaelis–Menten model thus cannot be used to derive the kinetic parameters, so a modified equation was employed that also yields the threshold nitrite concentration. Dissolved iron availability may play an important role in limiting nitrite oxidation.
Weitian Ding, Urumu Tsunogai, Fumiko Nakagawa, Takashi Sambuichi, Hiroyuki Sase, Masayuki Morohashi, and Hiroki Yotsuyanagi
Biogeosciences, 19, 3247–3261, https://doi.org/10.5194/bg-19-3247-2022, https://doi.org/10.5194/bg-19-3247-2022, 2022
Short summary
Short summary
Excessive leaching of nitrate from forested catchments during storm events degrades water quality and causes eutrophication in downstream areas. Thus, tracing the source of nitrate increase during storm events in forested streams is important for sustainable forest management. Based on the isotopic compositions of stream nitrate, including Δ17O, this study clarifies that the source of stream nitrate increase during storm events was soil nitrate in the riparian zone.
Nicolas Séon, Romain Amiot, Guillaume Suan, Christophe Lécuyer, François Fourel, Fabien Demaret, Arnauld Vinçon-Laugier, Sylvain Charbonnier, and Peggy Vincent
Biogeosciences, 19, 2671–2681, https://doi.org/10.5194/bg-19-2671-2022, https://doi.org/10.5194/bg-19-2671-2022, 2022
Short summary
Short summary
We analysed the oxygen isotope composition of bones and teeth of four marine species possessing regional heterothermies. We observed a consistent link between oxygen isotope composition and temperature heterogeneities recorded by classical methods. This opens up new perspectives on the determination of the thermoregulatory strategies of extant marine vertebrates where conventional methods are difficult to apply, but also allows us to investigate thermophysiologies of extinct vertebrates.
Yuwei Liu, Guofeng Zhu, Zhuanxia Zhang, Zhigang Sun, Leilei Yong, Liyuan Sang, Lei Wang, and Kailiang Zhao
Biogeosciences, 19, 877–889, https://doi.org/10.5194/bg-19-877-2022, https://doi.org/10.5194/bg-19-877-2022, 2022
Short summary
Short summary
We took the water cycle process of soil–plant–atmospheric precipitation as the research objective. In the water cycle of soil–plant–atmospheric precipitation, precipitation plays the main controlling role. The main source of replenishment for alpine meadow plants is precipitation and alpine meltwater; the main source of replenishment for forest plants is soil water; and the plants in the arid foothills mainly use groundwater.
Roberto Velázquez-Ochoa, María Julia Ochoa-Izaguirre, and Martín Federico Soto-Jiménez
Biogeosciences, 19, 1–27, https://doi.org/10.5194/bg-19-1-2022, https://doi.org/10.5194/bg-19-1-2022, 2022
Short summary
Short summary
Our research is the first approximation to understand the δ13C macroalgal variability in one of the most diverse marine ecosystems in the world, the Gulf of California. The life-form is the principal cause of δ13C macroalgal variability, mainly taxonomy. However, changes in habitat characteristics and environmental conditions also influence the δ13C macroalgal variability. The δ13C macroalgae is indicative of carbon concentration mechanisms and isotope discrimination during carbon assimilation.
Clémence Paul, Clément Piel, Joana Sauze, Nicolas Pasquier, Frédéric Prié, Sébastien Devidal, Roxanne Jacob, Arnaud Dapoigny, Olivier Jossoud, Alexandru Milcu, and Amaëlle Landais
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-324, https://doi.org/10.5194/bg-2021-324, 2021
Revised manuscript accepted for BG
Short summary
Short summary
To improve the interpretation of the δ18Oatm and Δ17O of O2 in air bubbles in ice core, we need to better quantify the oxygen fractionation coefficients associated with biological processes. We performed a simplified analog of the terrestrial biosphere in a closed chamber. We found a respiration fractionation in agreement with the previous estimates at the micro-organism scale. And a terrestrial photosynthetic fractionation was found. This has an impact on the estimation of the Dole effect.
Raquel F. Flynn, Thomas G. Bornman, Jessica M. Burger, Shantelle Smith, Kurt A. M. Spence, and Sarah E. Fawcett
Biogeosciences, 18, 6031–6059, https://doi.org/10.5194/bg-18-6031-2021, https://doi.org/10.5194/bg-18-6031-2021, 2021
Short summary
Short summary
Biological activity in the shallow Weddell Sea affects the biogeochemistry of recently formed deep waters. To investigate the drivers of carbon and nutrient export, we measured rates of primary production and nitrogen uptake, characterized the phytoplankton community, and estimated nutrient depletion ratios across the under-sampled western Weddell Sea in mid-summer. Carbon export was highest at the ice shelves and was determined by a combination of physical, chemical, and biological factors.
Stéphanie H. M. Jacquet, Christian Tamburini, Marc Garel, Aurélie Dufour, France Van Vambeke, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 5891–5902, https://doi.org/10.5194/bg-18-5891-2021, https://doi.org/10.5194/bg-18-5891-2021, 2021
Short summary
Short summary
We compared carbon remineralization rates (MRs) in the western and central Mediterranean Sea in late spring during the PEACETIME cruise, as assessed using the barium tracer. We reported higher and deeper (up to 1000 m depth) MRs in the western basin, potentially sustained by an additional particle export event driven by deep convection. The central basin is the site of a mosaic of blooming and non-blooming water masses and showed lower MRs that were restricted to the upper mesopelagic layer.
Shinsuke Kawagucci, Yohei Matsui, Akiko Makabe, Tatsuhiro Fukuba, Yuji Onishi, Takuro Nunoura, and Taichi Yokokawa
Biogeosciences, 18, 5351–5362, https://doi.org/10.5194/bg-18-5351-2021, https://doi.org/10.5194/bg-18-5351-2021, 2021
Short summary
Short summary
Hydrogen and carbon isotope ratios of methane as well as the relevant biogeochemical parameters and microbial community compositions in hydrothermal plumes in the Okinawa Trough were observed. We succeeded in simultaneously determining hydrogen and carbon isotope fractionation factors associated with aerobic oxidation of methane in seawater (εH = 49.4 ± 5.0 ‰, εC = 5.2 ± 0.4 ‰) – the former being the first of its kind ever reported.
Nicolai Schleinkofer, David Evans, Max Wisshak, Janina Vanessa Büscher, Jens Fiebig, André Freiwald, Sven Härter, Horst R. Marschall, Silke Voigt, and Jacek Raddatz
Biogeosciences, 18, 4733–4753, https://doi.org/10.5194/bg-18-4733-2021, https://doi.org/10.5194/bg-18-4733-2021, 2021
Short summary
Short summary
We have measured the chemical composition of the carbonate shells of the parasitic foraminifera Hyrrokkin sarcophaga in order to test if it is influenced by the host organism (bivalve or coral). We find that both the chemical and isotopic composition is influenced by the host organism. For example strontium is enriched in foraminifera that grew on corals, whose skeleton is built from aragonite, which is naturally enriched in strontium compared to the bivalves' calcite shell.
Lena Rohe, Traute-Heidi Anderson, Heinz Flessa, Anette Goeske, Dominika Lewicka-Szczebak, Nicole Wrage-Mönnig, and Reinhard Well
Biogeosciences, 18, 4629–4650, https://doi.org/10.5194/bg-18-4629-2021, https://doi.org/10.5194/bg-18-4629-2021, 2021
Short summary
Short summary
This is the first experimental setup combining a complex set of methods (microbial inhibitors and isotopic approaches) to differentiate between N2O produced by fungi or bacteria during denitrification in three soils. Quantifying the fungal fraction with inhibitors was not successful due to large amounts of uninhibited N2O production. All successful methods suggested a small or missing fungal contribution. Artefacts occurring with microbial inhibition to determine N2O fluxes are discussed.
Inga Köhler, Raul E. Martinez, David Piatka, Achim J. Herrmann, Arianna Gallo, Michelle M. Gehringer, and Johannes A. C. Barth
Biogeosciences, 18, 4535–4548, https://doi.org/10.5194/bg-18-4535-2021, https://doi.org/10.5194/bg-18-4535-2021, 2021
Short summary
Short summary
We investigated how high Fe(II) levels influence the O2 budget of a circum-neutral Fe(II)-rich spring and if a combined study of dissolved O (DO) and its isotopic composition can help assess this effect. We showed that dissolved Fe(II) can exert strong effects on the δ18ODO even though a constant supply of atmospheric O2 occurs. In the presence of photosynthesis, direct effects of Fe oxidation become masked. Critical Fe(II) concentrations indirectly control the DO by enhancing photosynthesis.
Owen A. Sherwood, Samuel H. Davin, Nadine Lehmann, Carolyn Buchwald, Evan N. Edinger, Moritz F. Lehmann, and Markus Kienast
Biogeosciences, 18, 4491–4510, https://doi.org/10.5194/bg-18-4491-2021, https://doi.org/10.5194/bg-18-4491-2021, 2021
Short summary
Short summary
Pacific water flowing eastward through the Canadian Arctic plays an important role in redistributing nutrients to the northwest Atlantic Ocean. Using samples collected from northern Baffin Bay to the southern Labrador Shelf, we show that stable isotopic ratios in seawater nitrate reflect the fraction of Pacific to Atlantic water. These results provide a new framework for interpreting patterns of nitrogen isotopic variability recorded in modern and archival organic materials in the region.
Franziska Slotta, Lukas Wacker, Frank Riedel, Karl-Uwe Heußner, Kai Hartmann, and Gerhard Helle
Biogeosciences, 18, 3539–3564, https://doi.org/10.5194/bg-18-3539-2021, https://doi.org/10.5194/bg-18-3539-2021, 2021
Short summary
Short summary
The African baobab is a challenging climate and environmental archive for its semi-arid habitat due to dating uncertainties and parenchyma-rich wood anatomy. Annually resolved F14C data of tree-ring cellulose (1941–2005) from a tree in Oman show the annual character of the baobab’s growth rings but were up to 8.8 % lower than expected for 1964–1967. Subseasonal δ13C and δ18O patterns reveal years with low average monsoon rain as well as heavy rainfall events from pre-monsoonal cyclones.
Peter M. J. Douglas, Emerald Stratigopoulos, Sanga Park, and Dawson Phan
Biogeosciences, 18, 3505–3527, https://doi.org/10.5194/bg-18-3505-2021, https://doi.org/10.5194/bg-18-3505-2021, 2021
Short summary
Short summary
Hydrogen isotopes could be a useful tool to help resolve the geographic distribution of methane emissions from freshwater environments. We analyzed an expanded global dataset of freshwater methane hydrogen isotope ratios and found significant geographic variation linked to water isotopic composition. This geographic variability could be used to resolve changing methane fluxes from freshwater environments and provide more accurate estimates of the relative balance of global methane sources.
Veronica R. Rollinson, Julie Granger, Sydney C. Clark, Mackenzie L. Blanusa, Claudia P. Koerting, Jamie M. P. Vaudrey, Lija A. Treibergs, Holly C. Westbrook, Catherine M. Matassa, Meredith G. Hastings, and Craig R. Tobias
Biogeosciences, 18, 3421–3444, https://doi.org/10.5194/bg-18-3421-2021, https://doi.org/10.5194/bg-18-3421-2021, 2021
Short summary
Short summary
We measured nutrients and the naturally occurring nitrogen (N) and oxygen (O) stable isotope ratios of nitrate discharged from a New England river over an annual cycle, to monitor N loading and identify dominant sources from the watershed. We uncovered a seasonality to loading and sources of N from the watershed. Seasonality in the nitrate isotope ratios also informed on N cycling, conforming to theoretical expectations of riverine nutrient cycling.
Zixun Chen, Xuejun Liu, Xiaoqing Cui, Yaowen Han, Guoan Wang, and Jiazhu Li
Biogeosciences, 18, 2859–2870, https://doi.org/10.5194/bg-18-2859-2021, https://doi.org/10.5194/bg-18-2859-2021, 2021
Short summary
Short summary
δ13C in plants is a sensitive long-term indicator of physiological acclimatization. The present study suggests that precipitation change and increasing atmospheric N deposition have little impact on δ13C of H. ammodendron, a dominant plant in central Asian deserts, but affect its gas exchange. In addition, this study shows that δ13C of H. ammodendron could not indicate its water use efficiency (WUE), suggesting that whether δ13C of C4 plants indicates WUE is species-specific.
Petra Zahajská, Carolina Olid, Johanna Stadmark, Sherilyn C. Fritz, Sophie Opfergelt, and Daniel J. Conley
Biogeosciences, 18, 2325–2345, https://doi.org/10.5194/bg-18-2325-2021, https://doi.org/10.5194/bg-18-2325-2021, 2021
Short summary
Short summary
The drivers of high accumulation of single-cell siliceous algae (diatoms) in a high-latitude lake have not been fully characterized before. We studied silicon cycling of the lake through water, radon, silicon, and stable silicon isotope balances. Results showed that groundwater brings 3 times more water and dissolved silica than the stream inlet. We demonstrate that groundwater discharge and low sediment deposition have driven the high diatom accumulation in the studied lake in the past century.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Zhongjie Yu and Emily M. Elliott
Biogeosciences, 18, 805–829, https://doi.org/10.5194/bg-18-805-2021, https://doi.org/10.5194/bg-18-805-2021, 2021
Short summary
Short summary
In this study, we demonstrated distinct nitrogen isotope effects for nitric oxide (NO) production from major microbial and chemical NO sources in an agricultural soil. These results highlight characteristic bond-forming and breaking mechanisms associated with microbial and chemical NO production and implicate that simultaneous isotopic analyses of NO and nitrous oxide (N2O) can lead to unprecedented insights into the sources and processes controlling NO and N2O emissions from agricultural soils.
Daniel A. Frick, Rainer Remus, Michael Sommer, Jürgen Augustin, Danuta Kaczorek, and Friedhelm von Blanckenburg
Biogeosciences, 17, 6475–6490, https://doi.org/10.5194/bg-17-6475-2020, https://doi.org/10.5194/bg-17-6475-2020, 2020
Short summary
Short summary
Silicon is taken up by some plants to increase structural stability and to develop stress resistance and is rejected by others. To explore the underlying mechanisms, we used the stable isotopes of silicon that shift in their relative abundance depending on the biochemical transformation involved. On species with a rejective (tomato, mustard) and active (wheat) uptake mechanism, grown in hydroculture, we found that the transport of silicic acid is controlled by the precipitation of biogenic opal.
Quentin Charbonnier, Julien Bouchez, Jérôme Gaillardet, and Éric Gayer
Biogeosciences, 17, 5989–6015, https://doi.org/10.5194/bg-17-5989-2020, https://doi.org/10.5194/bg-17-5989-2020, 2020
Short summary
Short summary
The abundance and isotope composition of the trace metal barium (Ba) allows us to track and quantify nutrient cycling throughout the Amazon Basin. In particular, we show that the Ba biological fingerprint evolves from that of a strong net nutrient uptake in the mountainous area of the Andes towards efficient nutrient recycling on the plains of the Lower Amazon. Our study highlights the fact that the geochemical signature of rock-derived nutrients transported by the Amazon is scarred by life.
Ajinkya G. Deshpande, Thomas W. Boutton, Ayumi Hyodo, Charles W. Lafon, and Georgianne W. Moore
Biogeosciences, 17, 5639–5653, https://doi.org/10.5194/bg-17-5639-2020, https://doi.org/10.5194/bg-17-5639-2020, 2020
Short summary
Short summary
Wetland forests in the southern USA are threatened by changing climate and human-induced pressures. We used tree ring widths and C isotopes as indicators of forest growth and physiological stress, respectively, and compared these to past climate data. We observed that vegetation growing in the drier patches is susceptible to stress, while vegetation growth and physiology in wetter patches is less sensitive to unfavorable environmental conditions, highlighting the importance of optimal wetness.
Dominika Lewicka-Szczebak, Maciej Piotr Lewicki, and Reinhard Well
Biogeosciences, 17, 5513–5537, https://doi.org/10.5194/bg-17-5513-2020, https://doi.org/10.5194/bg-17-5513-2020, 2020
Short summary
Short summary
We present the first validation of N2O isotopic approaches for estimating N2O source pathways and N2O reduction. These approaches are widely used for tracing soil nitrogen cycling, but the results of these estimations are very uncertain. Here we report the results from parallel treatments allowing for precise validation of these approaches, and we propose the best strategies for results interpretation, including the new idea of an isotope model integrating three isotopic signatures of N2O.
Markus Raitzsch, Claire Rollion-Bard, Ingo Horn, Grit Steinhoefel, Albert Benthien, Klaus-Uwe Richter, Matthieu Buisson, Pascale Louvat, and Jelle Bijma
Biogeosciences, 17, 5365–5375, https://doi.org/10.5194/bg-17-5365-2020, https://doi.org/10.5194/bg-17-5365-2020, 2020
Short summary
Short summary
The isotopic composition of boron in carbonate shells of marine unicellular organisms is a popular tool to estimate seawater pH. Usually, many shells need to be dissolved and measured for boron isotopes, but the information on their spatial distribution is lost. Here, we investigate two techniques that allow for measuring boron isotopes within single shells and show that they yield robust mean values but provide additional information on the heterogeneity within and between single shells.
Florian Einsiedl, Anja Wunderlich, Mathieu Sebilo, Ömer K. Coskun, William D. Orsi, and Bernhard Mayer
Biogeosciences, 17, 5149–5161, https://doi.org/10.5194/bg-17-5149-2020, https://doi.org/10.5194/bg-17-5149-2020, 2020
Short summary
Short summary
Nitrate pollution of freshwaters and methane emissions into the atmosphere are crucial factors in deteriorating the quality of drinking water and in contributing to global climate change. Here, we report vertical concentration and stable isotope profiles of CH4, NO3-, NO2-, and NH4+ in the water column of Fohnsee (southern Bavaria, Germany) that may indicate linkages between nitrate-dependent anaerobic methane oxidation and the anaerobic oxidation of ammonium.
Ruifang C. Xie, Frédéric A. C. Le Moigne, Insa Rapp, Jan Lüdke, Beat Gasser, Marcus Dengler, Volker Liebetrau, and Eric P. Achterberg
Biogeosciences, 17, 4919–4936, https://doi.org/10.5194/bg-17-4919-2020, https://doi.org/10.5194/bg-17-4919-2020, 2020
Short summary
Short summary
Thorium-234 (234Th) is widely used to study carbon fluxes from the surface ocean to depth. But few studies stress the relevance of oceanic advection and diffusion on the downward 234Th fluxes in nearshore environments. Our study in offshore Peru showed strong temporal variations in both the importance of physical processes on 234Th flux estimates and the oceanic residence time of 234Th, whereas salinity-derived seawater 238U activities accounted for up to 40 % errors in 234Th flux estimates.
Ralf A. Oeser and Friedhelm von Blanckenburg
Biogeosciences, 17, 4883–4917, https://doi.org/10.5194/bg-17-4883-2020, https://doi.org/10.5194/bg-17-4883-2020, 2020
Short summary
Short summary
We present a novel strategy to decipher the relative impact of biogenic and abiotic drivers of weathering. We parameterized the nutrient fluxes in four ecosystems along a climate and vegetation gradient situated on the Chilean Coastal Cordillera. We investigated how nutrient demand by plants drives weathering. We found that the increase in biomass nutrient demand is accommodated by faster nutrient recycling rather than an increase in the weathering–release rates.
Tito Arosio, Malin M. Ziehmer, Kurt Nicolussi, Christian Schlüchter, and Markus Leuenberger
Biogeosciences, 17, 4871–4882, https://doi.org/10.5194/bg-17-4871-2020, https://doi.org/10.5194/bg-17-4871-2020, 2020
Short summary
Short summary
Stable isotopes in tree-ring cellulose are tools for climatic reconstructions, but interpretation is challenging due to nonclimate trends. We analyzed the tree-age trends in tree-ring isotopes of deciduous larch and evergreen cembran pine. Samples covering the whole Holocene were collected at the tree line in the Alps. For cambial ages over 100 years, we prove the absence of age trends in δD, δ18O, and δ13C for both species. For lower cambial ages, trends differ for each isotope and species.
Yuyang He, Xiaobin Cao, and Huiming Bao
Biogeosciences, 17, 4785–4795, https://doi.org/10.5194/bg-17-4785-2020, https://doi.org/10.5194/bg-17-4785-2020, 2020
Short summary
Short summary
Different carbon sites in a large organic molecule have different isotope compositions. Different carbon sites may not have the chance to exchange isotopes at all. The lack of appreciation of this notion might be blamed for an unsettled debate on the thermodynamic state of an organism. Here we demonstrate using minerals, N2O, and acetic acid that the dearth of exchange among different carbon sites renders them as independent as if they were different elements in organic molecules.
Felix M. Spielmann, Albin Hammerle, Florian Kitz, Katharina Gerdel, and Georg Wohlfahrt
Biogeosciences, 17, 4281–4295, https://doi.org/10.5194/bg-17-4281-2020, https://doi.org/10.5194/bg-17-4281-2020, 2020
Short summary
Short summary
Carbonyl sulfide (COS) can be used as a proxy for plant photosynthesis on an ecosystem scale. However, the relationships between COS and CO2 fluxes and their dependence on daily to seasonal changes in environmental drivers are still poorly understood. We examined COS and CO2 ecosystem fluxes above an agriculturally used mountain grassland for 6 months. Harvesting of the grassland disturbed the otherwise stable COS-to-CO2 uptake ratio. We even found the canopy to release COS during those times.
Getachew Agmuas Adnew, Thijs L. Pons, Gerbrand Koren, Wouter Peters, and Thomas Röckmann
Biogeosciences, 17, 3903–3922, https://doi.org/10.5194/bg-17-3903-2020, https://doi.org/10.5194/bg-17-3903-2020, 2020
Short summary
Short summary
We measured the effect of photosynthesis, the largest flux in the carbon cycle, on the triple oxygen isotope composition of atmospheric CO2 at the leaf level during gas exchange using three plant species. The main factors that limit the impact of land vegetation on the triple oxygen isotope composition of atmospheric CO2 are identified, characterized and discussed. The effect of photosynthesis on the isotopic composition of CO2 is commonly quantified as discrimination (ΔA).
Moritz Schroll, Frank Keppler, Markus Greule, Christian Eckhardt, Holger Zorn, and Katharina Lenhart
Biogeosciences, 17, 3891–3901, https://doi.org/10.5194/bg-17-3891-2020, https://doi.org/10.5194/bg-17-3891-2020, 2020
Short summary
Short summary
Fungi have recently been identified to produce the greenhouse gas methane. Here, we investigated the stable carbon isotope values of methane produced by saprotrophic fungi. Our results show that stable isotope values of methane from fungi are dependent on the fungal species and the metabolized substrate. They cover a broad range and overlap with stable carbon isotope values of methane reported for methanogenic archaea, the thermogenic degradation of organic matter, and other eukaryotes.
Pranav Hirave, Guido L. B. Wiesenberg, Axel Birkholz, and Christine Alewell
Biogeosciences, 17, 2169–2180, https://doi.org/10.5194/bg-17-2169-2020, https://doi.org/10.5194/bg-17-2169-2020, 2020
Short summary
Short summary
Sediment input into water bodies is a prominent threat to freshwater ecosystems. We tested the stability of tracers employed in freshwater sediment tracing based on compound-specific isotope analysis during early degradation in soil. While bulk δ13C values showed no stability, δ13C values of plant-derived fatty acids and n-alkanes were stably transferred to the soil without soil particle size dependency after an early degradation in organic horizons, thus indicating their suitability as tracers.
Caroline Thaler, Amandine Katz, Magali Bonifacie, Bénédicte Ménez, and Magali Ader
Biogeosciences, 17, 1731–1744, https://doi.org/10.5194/bg-17-1731-2020, https://doi.org/10.5194/bg-17-1731-2020, 2020
Short summary
Short summary
Paleoenvironment reconstructions, retrieved from δ18O and Δ47 values measured in carbonate, are compromised when crystallization occurs in isotopic disequilibrium. We show that some paleoenvironmental information can still be retrieved from these paired disequilibrium Δ47 and δ18O values. The possibility of retrieving information on paleowaters, sediments' interstitial waters, or organisms' body water at the carbonate precipitation loci will help understand past Earth and life evolution.
Guillaume Humbert, Mathieu Sébilo, Justine Fiat, Longqi Lang, Ahlem Filali, Véronique Vaury, Mathieu Spérandio, and Anniet M. Laverman
Biogeosciences, 17, 979–993, https://doi.org/10.5194/bg-17-979-2020, https://doi.org/10.5194/bg-17-979-2020, 2020
Short summary
Short summary
Mitigating emissions of the greenhouse gas N2O requires understanding of the relative contribution of its producing processes in response to environmental variables. We show, using isotopic analysis, that N2O emissions from a nitrifying system were sensitive to oxygenation, temperature and NH4+ concentrations with nitrite reduction being the main N2O source. Temperature appears to be the main control on N2O production, due to its dissimilar effects on ammonium and nitrite oxidizing activities.
Oguz Yigiterhan, Ebrahim Mohd Al-Ansari, Alex Nelson, Mohamed Alaa Abdel-Moati, Jesse Turner, Hamood Abdulla Alsaadi, Barbara Paul, Ibrahim Abdullatif Al-Maslamani, Mehsin Abdulla Al-Ansi Al-Yafei, and James W. Murray
Biogeosciences, 17, 381–404, https://doi.org/10.5194/bg-17-381-2020, https://doi.org/10.5194/bg-17-381-2020, 2020
Short summary
Short summary
We analyze net-tow samples of plankton and associated particulate matter from the Exclusive Economic Zone, Qatar, Arabian Gulf, using net tows with mesh sizes of 50 and 200 μm to examine the composition of plankton populations. We also focus on the role and composition of the atmospheric dust, representative of terrigenous material, deposited in the Gulf. We concluded that Al, Fe, Cr, Co, Mn, Ni, Pb, and Li are of dust origin and As, Cd, Cu, Mo, Zn, and Ca are of anthropogenic/biogenic origin.
Clare Woulds, James B. Bell, Adrian G. Glover, Steven Bouillon, and Louise S. Brown
Biogeosciences, 17, 1–12, https://doi.org/10.5194/bg-17-1-2020, https://doi.org/10.5194/bg-17-1-2020, 2020
Short summary
Short summary
Sedimented hydrothermal vents occur where heated, mineral-rich (hydrothermal) water seeps through seafloor sediments. They host chemosynthetic microbes, which use chemical energy to fix dissolved carbon dioxide into sugars (chemosynthesis). We conducted carbon tracing experiments, and observed chemosynthesis at both vent and non-vent sites. Thus, chemosynthesis occurred over a much larger area than expected, suggesting it is more widespread than previously thought.
Cara C. Manning, Rachel H. R. Stanley, David P. Nicholson, Brice Loose, Ann Lovely, Peter Schlosser, and Bruce G. Hatcher
Biogeosciences, 16, 3351–3376, https://doi.org/10.5194/bg-16-3351-2019, https://doi.org/10.5194/bg-16-3351-2019, 2019
Short summary
Short summary
We measured rates of biological activity and gas exchange in a Canadian estuary during ice melt. We quantified gas exchange using inert, deliberately released tracers and found that the gas transfer rate at > 90 % ice cover was 6 % of the rate for nearly ice-free conditions. We measured oxygen concentration and isotopic composition and used the data to detect changes in the rates of photosynthesis and respiration (autotrophy and heterotrophy) as the ice melted.
Marlène Lavrieux, Axel Birkholz, Katrin Meusburger, Guido L. B. Wiesenberg, Adrian Gilli, Christian Stamm, and Christine Alewell
Biogeosciences, 16, 2131–2146, https://doi.org/10.5194/bg-16-2131-2019, https://doi.org/10.5194/bg-16-2131-2019, 2019
Short summary
Short summary
A fingerprinting approach using compound-specific stable isotopes was applied to a lake sediment core to reconstruct erosion processes over the past 150 years in a Swiss catchment. Even though the reconstruction of land use and eutrophication history was successful, the observation of comparatively low δ13C values of plant-derived fatty acids in the sediment suggests their alteration within the lake. Thus, their use as a tool for source attribution in sediment cores needs further investigation.
Luciana A. Pereira, Roberto V. Santos, Marília Hauser, Fabrice Duponchelle, Fernando Carvajal, Christophe Pecheyran, Sylvain Bérail, and Marc Pouilly
Biogeosciences, 16, 1781–1797, https://doi.org/10.5194/bg-16-1781-2019, https://doi.org/10.5194/bg-16-1781-2019, 2019
Short summary
Short summary
This study presents the first step for a chemical origin certification of pirarucu fishery in the Amazon. A preliminary isotopic tool to improve the actual tracking system integrates ecological, social, and economic aspects of Amazon dynamics. The geographic origin validation of farmed and wild fishes contributes to environmental and social practices, secures food and income to communities, helps manage endangered species, reinforces aquaculture, and combats illegal fisheries.
Sarah Conrad, Johan Ingri, Johan Gelting, Fredrik Nordblad, Emma Engström, Ilia Rodushkin, Per S. Andersson, Don Porcelli, Örjan Gustafsson, Igor Semiletov, and Björn Öhlander
Biogeosciences, 16, 1305–1319, https://doi.org/10.5194/bg-16-1305-2019, https://doi.org/10.5194/bg-16-1305-2019, 2019
Short summary
Short summary
Iron analysis of the particulate, colloidal, and truly dissolved fractions along the Lena River freshwater plume showed that the particulate iron dominates close to the coast. Over 99 % particulate and about 90 % colloidal iron were lost, while the truly dissolved phase was almost constant. Iron isotopes suggest that the shelf acts as a sink for particles and colloids with negative iron isotope values, while colloids with positive iron isotope values travel further out into the Arctic Ocean.
Elizabeth Verhoeven, Matti Barthel, Longfei Yu, Luisella Celi, Daniel Said-Pullicino, Steven Sleutel, Dominika Lewicka-Szczebak, Johan Six, and Charlotte Decock
Biogeosciences, 16, 383–408, https://doi.org/10.5194/bg-16-383-2019, https://doi.org/10.5194/bg-16-383-2019, 2019
Short summary
Short summary
This study utilized state-of-the-art measurements of nitrogen isotopes to evaluate nitrogen cycling and to assess the biological sources of the potent greenhouse gas, N2O, in response to water-saving practices in rice systems. Water-saving practices did emit more N2O, and high N2O production had a lower 15N isotope signature. Modeling and visual interpretation indicate that these emissions mostly came from denitrification or nitrifier denitrification, controlled upstream by nitrification rates.
Feifei Deng, Gideon M. Henderson, Maxi Castrillejo, Fiz F. Perez, and Reiner Steinfeldt
Biogeosciences, 15, 7299–7313, https://doi.org/10.5194/bg-15-7299-2018, https://doi.org/10.5194/bg-15-7299-2018, 2018
Short summary
Short summary
To better use Pa / Th to reconstruct deep water ventilation rate, we assessed controls on 230Th and 231Pa in the northern North Atlantic. With extended optimum multi-parameter analysis and CFC-based water-mass age, we found the imprint of young overflow water on Th and Pa and enhanced scavenging near the seafloor. A significantly higher advective loss of Pa to the south relative to Th in the Atlantic was estimated, supporting the use of Pa / Th for assessing basin-scale meridional transport.
Anne L. Morée, Jörg Schwinger, and Christoph Heinze
Biogeosciences, 15, 7205–7223, https://doi.org/10.5194/bg-15-7205-2018, https://doi.org/10.5194/bg-15-7205-2018, 2018
Short summary
Short summary
Changes in the distribution of the carbon isotope 13C can be used to study the climate system if the governing processes (ocean circulation and biogeochemistry) are understood. We show the Southern Ocean importance for the global 13C distribution and that changes in 13C can be strongly influenced by biogeochemistry. Interpretation of 13C as a proxy for climate signals needs to take into account the effects of changes in biogeochemistry in addition to changes in ocean circulation.
Cited articles
Alsterberg, C., Sundback, K., and Hulth, S.: Functioning of a shallow-water
sediment system during experimental warming and nutrient enrichment, Plos
One, 7, e51503, https://doi.org/10.1371/journal.pone.0051503, 2012.
Andersson, J. H., Woulds, C., Schwartz, M., Cowie, G. L., Levin, L. A.,
Soetaert, K., and Middelburg, J. J.: Short-term fate of phytodetritus in
sediments across the Arabian Sea Oxygen Minimum Zone, Biogeosciences, 5,
43–53, https://doi.org/10.5194/bg-5-43-2008, 2008.
Armitage, A. R. and Fong, P.: Upward cascading effects of nutrients: shifts
in a benthic microalgal community and a negative herbivore response,
Oecologia, 139, 560–567, 2004.
Arnosti, C.: Microbial extracellular enzymes and the marine carbon cycle,
Ann. Rev. Mar. Sci., 3, 401–425, 2011.
Banta, G. T., Giblin, A. E., Hobbie, J. E., and Tucker., J.: Benthic
respiration and nitrogen release in Buzzards Bay, Massachusetts, J. Mar.
Res., 53, 107–135, 1995.
Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S.,
and Regnier, P. G.: The changing carbon cycle of the coastal ocean, Nature,
504, 61–70, 2013.
Bellinger, B. J., Underwood, G. J. C., Ziegler, S. E., and Gretz, M. R.:
Significance of diatom-derived polymers in carbon flow dynamics within
estuarine biofilms determined through isotopic enrichment, Aquat. Microb.
Ecol., 55, 169–187, 2009.
Bianchi, T. S.: The role of terrestrially derived organic carbon in the
coastal ocean: A changing paradigm and the priming effect, P. Natl. Acad.
Sci. USA, 108, 19473–19481, 2011.
Brinch-Iversen, J. and King, G. M.: Effects of substrate concentration,
growth state, and oxygen availability on relationships among bacterial
carbon, nitrogen and phospholipid content, FEMS Microb. Ecol., 74, 345–356,
1990.
Cloern, J. E.: Our evolving conceptual model of the coastal eutrophication
problem, Mar. Ecol. Prog. Ser., 210, 223–253, 2001.
Cook, P., Van Oevelen, D., Soetaert, K., and Middelburg, J.: Carbon and
nitrogen cycling on intertidal mudflats of a temperate Australian estuary,
IV, Inverse model analysis and synthesis, Mar. Ecol.-Prog. Ser., 394, 35–48,
2009.
Cook, P. L. M., Veuger, B., Boer, S., and Middelburg, J. J.: Effect of
nutrient availability on carbon and nitrogen and flows through benthic algae
and bacteria in near-shore sandy sediment, Aquat. Microb. Ecol., 49,
165–180, 2007.
Decho, A. W.: Microbial biofilms in intertidal systems: an overview, Cont.
Shelf Res., 20, 1257–1273, 2000.
Drenovsky, R. E., Elliott, G. N., Graham, K. J., and Scow, K. M.: Comparison
of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters
(TSFAME) for characterizing soil microbial communities, Soil Biol. Biochem.,
36, 1793–1800, 2004.
Drescher, K., Nadell, C. D., Stone, H. A., Wingreen, N. S., and Bassler, B.
L.: Solutions to the public goods dilemma in bacterial biofilms, Curr. Biol.,
24, 50–55, 2014.
Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine
vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8,
https://doi.org/10.5194/bg-2-1-2005, 2005.
Edlund, A., Nichols, P. D., Roffey, R., and White, D. C.: Extractable and
lipopolysaccharide fatty acid and hydroxy acid profiles from
Desulfovibrio species, J. Lipid Res., 26, 982–988, 1985.
Evrard, V., Huettel, M., Cook, P. L. M., Soetaert, K., Heip, C. H. R., and
Middelburg, J. J.: Importance of phytodetritus and microphytobenthos for
heterotrophs in a shallow subtidal sandy sediment, Mar. Ecol.-Prog. Ser.,
455, 13–31, 2012.
Eyre, B. D.: Water quality changes in an episodically flushed sub-tropical
Australian estuary: A 50 year perspective, Mar. Chem., 59, 177–187, 1997.
Eyre, B. D.: Regional evaluation of nutrient transformation and phytoplankton
growth in nine river-dominated sub-tropical east Australian estuaries, Mar.
Ecol. Progr. Ser., 205, 61–83, 2000.
Eyre, B. D. and Ferguson, A. J. P.: Benthic Metabolism and Nitrogen Cycling
in a Subtropical East Australian Estuary (Brunswick): Temporal Variability
and Controlling Factors, Limnol. Oceanogr., 50, 81–96, 2005.
Eyre, B. D., Glud, R. N., and Patten, N.: Mass coral spawning: A natural
large-scale nutrient addition experiment, Limnol. Oceanogr., 53, 997–1013,
2008.
Eyre, B. D., Ferguson A. J. P., Webb, A., Maher, D., and Oakes, J. M.:
Metabolism of different benthic habitats and their contribution to the carbon
budget of a shallow oligotrophic sub-tropical coastal system (southern
Moreton Bay, Australia), Biogeochemistry, 102, 87–110, 2011.
Eyre, B. D., Oakes, J. M., and Middelburg, J. J.: Fate of microphytobenthos
nitrogen in subtropical sediments: A 15N pulse-chase study, Limnol.
Oceanogr., 61, 1144–1156, 2016a.
Eyre, B. D., Maher, D. T., and Sanders, C.: The contribution of
denitrification and burial to the nitrogen budgets of three geomorphically
distinct Australian estuaries: Importance of seagrass habitats, Limnol.
Oceanogr., 61, 1144–1156, 2016b.
Ferguson, A. and Eyre, B. D.: Interaction of benthic microalgae and
macrofauna in the control of benthic metabolism, nutrient fluxes and
denitrification in a shallow sub-tropical coastal embayment (western Moreton
Bay, Australia), Biogeochemistry, 112, 423–440, 2013.
Ferguson, A., Eyre, B., and Gay, J.: Organic matter and benthic metabolism in
euphotic sediments along shallow sub-tropical estuaries, northern New South
Wales, Australia, Aquat. Microb. Ecol., 33, 137–154, 2003.
Ferguson, A., Eyre, B., and Gay, J.: Benthic nutrient fluxes in euphotic
sediments along shallow sub-tropical estuaries, northern New South Wales,
Australia, Aquat. Microb. Ecol., 37, 219–235, 2004.
Ferguson, A., Eyre, B., Gay, J., Emtage, N., and Brooks, L.: Benthic
metabolism and nitrogen cycling in a sub-tropical coastal embayment: spatial
and seasonal variation and controlling factors, Aquat. Microb. Ecol., 48,
175–195, 2007.
Fouilland, E., Tolosa, I., Bonnet, D., Bouvier, C., Bouvier, T., Bouvy, M.,
Got, P., Le Floc'h, E., Mostajir, B., Roques, C., Sempéré, R.,
Sime-Ngando, T., and Vidussi, F.: Bacterial carbon dependence on freshly
produced phytoplankton exudates under different nutrient availability and
grazing pressure conditions in coastal marine waters, FEMS Microb. Ecol., 87,
757–769, 2014.
Fry, B., Justić, D., Riekenberg, P., Swenson, E. M., Turner, R. E., Wang,
L., Pride, L. Rabalais, N. N., Kurtz, J. C., Lehrter, J. C. Murrell, M. C.,
Shadwick, E. H., and Boyd, B.: Carbon dynamics on the Louisiana continental
shelf and cross-shelf feeding of hypoxia, Estuar Coast, 38, 703–721, 2015.
Glud, R. N.: Oxygen dynamics of marine sediments, Mar. Biol. Res., 4,
243–289, 2008.
Glud, R. N., Eyre, B. D., and Patten, N.: Biogeochemical responses to mass
coral spawning at the Great Barrier Reef: Effects on respiration and primary
production, Limnol. Oceanogr., 53, 1014–1024, 2008.
Goto, N., Kawamura, T., Mitamura, O., and Terai, H.: Importance of
extracellular organic carbon production in the total primary production by
tidal-flat diatoms in comparison to phytoplankton, Mar. Ecol.-Prog. Ser.,
190, 289–295, 1999.
Hardison, A., Anderson, I., Canuel, E., Tobias, C., and Veuger, B.: Carbon
and nitrogen dynamics in shallow photic systems: Interactions between
macroalgae, microalgae, and bacteria, Limnol. Oceanogr., 56, 1489–1503,
2011.
Hardison, A. K., Canuel, E. A., Anderson, I. C., Tobias, C. R., Veuger, B.,
and Waters, M. N.: Microphytobenthos and benthic macroalgae determine
sediment organic matter composition in shallow photic sediments,
Biogeosciences, 10, 5571–5588, https://doi.org/10.5194/bg-10-5571-2013,
2013.
Hedges, J. I., Eglinton, G., Hatcher, P. G., Kirchman, D. L., Arnosti, C.,
Derenne, S., Evershed, R. P., Kögel-Knabner, I., de Leeuw, J. W., Littke,
R., Michaelis, W., and Rullkötter, J.: The molecularly-uncharacterized
component of nonliving organic matter in natural environments, Org. Geochem.,
31, 945–958, 2000.
Hillebrand, H. and Kahlert, M.: Effect of grazing and water column nutrient
supply on biomass and nutrient content of sediment microalgae, Aquat. Bot.,
72, 143–159, 2002.
Huettel, M., Berg, P., and Kostka, J.: Benthic Exchange and Biogeochemical
Cycling in Permeable Sediments, Ann. Rev. Mar. Sci., 6, 23–51, 2014.
Jian, S. Li, J., Chen, J., Wang, G., Mayes, M. A., Dzantor, K. E., Hui, D.,
and Luo, Y.: Soil extracellular enzyme activities, soil carbon and nitrogen
storage under nitrogen fertilization: A meta-analysis, Soil Biol. Biochem.,
101, 32–43, 2016.
Lorenzen, C.: Determinations of chlorophyll and phaeopigments:
spectrophotometric equations, Limnol. Oceanogr., 12, 343–346, 1967.
Macreadie, P. I., Allen, K., Kelaher, B. P., Ralph, P. J., and Skilbeck, C.
G.: Paleoreconstruction of estuarine sediments reveal human-induced weakening
of coastal carbon sinks, Glob. Change Biol., 18, 891–901, 2012.
Maher, D. and Eyre, B. D.: Benthic carbon metabolism in southeast Australian
estuaries: Habitat importance, driving forces, and application of artificial
neural network models, Mar. Ecol.-Prog. Ser., 439, 97–115, 2011.
McGlathery, K. J., Sundbäck, K., and Anderson, I. C.: Eutrophication in
shallow coastal bays and lagoons: The role of plants in the coastal filter,
Mar. Ecol.-Prog. Ser., 348, 1–18, 2007.
McKee, L. J., Eyre, B. D., and Hossain, S.: Transport and retention of
nitrogen and phosphorus in the sub-tropical Richmond River estuary,
Australia: A budget approach, Biogeochemistry, 50, 241–278, 2000.
Middelburg, J. J., Barranguet, C., Boschker, H. T. S., Herman, M. J., Moens,
T., and Heip, C.: The fate of intertidal microphytobenthos carbon: An in situ
13C-labeling study, Limnol. Oceanogr., 45, 1224–1225, 2000.
Miyatake, T., Moerdijk-Poortvliet, T. C. W., Stal, L. J., and Boschker, H. T.
S.: Tracing carbon flow from microphytobenthos to major bacterial groups in
an intertidal marine sediment by using an in situ 13C pulse-chase
method, Limnol. Oceanogr., 59, 1275–1287, 2014.
Nordström, M. C., Currin, C. A., Talley, T. S., Whitcraft, C. R., and
Levin, L. A.: Benthic food-web succession in a developing salt marsh, Mar.
Ecol.-Prog. Ser., 500, 43–55, 2014.
Oakes, J. M., Eyre, B. D., Middelburg, J. J., and Boschker, H. T. S.:
Composition, production, and loss of carbohydrates in subtropical shallow
subtidal sandy sediments: Rapid processing and long-term retention revealed
by 13C-labeling, Limnol. Oceanogr., 55, 2126–2138, 2010a.
Oakes, J. M. and Eyre, B. D.: Transformation and fate of microphytobenthos
carbon in subtropical, intertidal sediments: potential for long-term carbon
retention revealed by 13C-labeling, Biogeosciences, 11, 1927–1940,
https://doi.org/10.5194/bg-11-1927-2014, 2014.
Oakes, J. M., Eyre, B. D., Ross, D. J., and Turner, S. D.: Stable isotopes
trace estuarine transformations of carbon and nitrogen from primary- and
secondary-treated paper and pulp mill effluent, Environ. Sci. Technol., 44,
7411–7417, 2010b.
Oakes, J. M., Eyre, B. D., and Middelburg, J. J.: Transformation and fate of
microphytobentos carbon in subtropical shallow subtidal sands: A
13C-labeling study, Limnol. Oceanogr., 57, 1846–1856, 2012.
Oakes, J. M., Rysgaard, S., Glud, R. N., and Eyre, B. D.: The transformation
and fate of sub-Arctic microphytobenthos carbon revealed through
13C-labeling, Limnol. Oceanogr., 61, 2296–2308, 2016.
Pascal, P. Y., Fleeger, J. W., Boschker, H. T. S., Mitwally, H. M., and
Johnson, D. S.: Response of the benthic food web to short- and long-term
nutrient enrichment in saltmarsh mudflats, Mar. Ecol. Prog. Ser., 474,
27–41, 2013.
Piehler, M. F., Currin, C. A., and Hall, N. S.: Estuarine intertidal sandflat
benthic microalgal responses to in situ and mesocosm nitrogen additions, J.
Exp. Mar. Biol. Ecol., 390, 99–105, 2010.
Rajendran, N., Suwa, Y., and Urushigawa, Y.: Distribution of phospholipid
ester-linked fatty acid biomarkers for bacteria in the sediment of Ise Bay,
Japan, Mar. Chem., 42, 39–56, 1993.
Rajendran, N., Matsuda, O., Urushigawa, Y., and Simidu, U.: Characterization
of microbial community structure in the surface sediment of Osaka Bay, Japan,
by phospholipid fatty acid analysis, Appl. Environ. Microb., 60, 248–257,
1994.
Riekenberg, P. M., Oakes, J. M., and Eyre, B. D.: Uptake of dissolved organic
and inorganic nitrogen in microalgae-dominated sediment: Comparing dark and
light in situ and ex situ additions of 15N, Mar. Ecol.-Prog. Ser., 571, 29–42, 2017.
Rysgaard, S., Thamdrup, B., Risgaard-Petersen, N., Fossing, H., Berg, P.,
Christensen, P. B., and Dalsgaard, T.: Seasonal carbon and nutrient
mineralization in a high-Arctic coastal marine sediment, Young Sound,
Northeast Greenland, Mar. Ecol.-Prog. Ser., 175, 261–276, 1998.
Saburova, M. A. and Polikarpov, I. G.: Diatom activity within soft sediments:
behavioural and physiological processes, Mar. Ecol.-Prog. Ser., 251,
115–126, 2003.
Schimel, J. P. and Bennett, J.: Nitrogen mineralization: Challenges of a
changing paradigm, Ecology, 85, 591–602, 2004.
Spivak, A. C.: Benthic biogeochemical responses to changing estuary trophic
state and nutrient availability: A paired field and mesocosm experiment
approach, Limnol. Oceanogr., 60, 3–21, 2015.
Spivak, A. C. and Ossolinski, J.: Limited effects of nutrient enrichment on
bacterial carbon sources in salt marsh tidal creek sediments, Mar. Ecol.-Prog. Ser., 544, 107–130, 2016.
Stal, L. J.: Microphytobenthos as a biogeomorphological force in intertidal
sediment stabilization, Ecol. Eng., 36, 236–245, 2010.
Tang, M. and Kristensen, E.: Impact of microphytobenthos and macroinfauna on
temporal variation of benthic metabolism in shallow coastal sediments, J.
Exp. Mar. Biol. Ecol., 349, 99–112, 2007.
Thornton, D. C. O., Kopac, S. M., and Long, R. A.: Production and enzymatic
hydrolysis of carbohydrates in intertidal sediment, Aquat. Microb. Ecol., 60,
109–125, 2010.
Underwood, G. J. C. and Kromkamp, J.: Primary production by phytoplankton and
microphytobenthos in estuaries, Adv. Ecol. Res., 29, 93–153, 1999.
Underwood, G. J. C. and Paterson, D. M.: The importance of extracellular
carbohydrate production by marine epipelic diatoms, Adv. Bot. Res., 40,
183–240, 2003.
Van den Meersche, K, Middelburg, J. J., Soetaert, K., van Rijswijk, P.,
Boschker, H. T. S., and Heip, C.: Carbon-nitrogen coupling and
algal-bacterial interactions during an experimental bloom: Modeling a
13C tracer experiment, Limnol. Oceangr., 49, 862–878, 2004.
Van Nugteren, P., Moodley, L., Brummer, G.-J., Heip, C. H. R., Herman, P. M.
J., and Middelburg, J. J.: Seafloor ecosystem functioning: the importance of
organic matter priming, Mar. Biol., 156, 2277–2287, 2009.
Van Oevelen, D., Middelburg, J. J., Soetaert, K., and Moodley, L.: The fate
of bacterial carbon in an intertidal sediment: Modeling an in situ isotope
tracer experiment, Limnol. Oceanogr., 51, 1302–1314, 2006.
Veuger, B., Van Oevelen, D., and Middelburg, J. J.: Fate of microbial
nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids
in sediment, Geochim. Cosmochim. Acta, 83, 217–233, 2012.
Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I., and Garland,
C. D.: Fatty acid and lipid composition of 10 species of microalgae used in
mariculture, J. Exp. Mar. Biol. Ecol., 128, 219–240, 1989.
Short summary
Shallow coastal waters are increasingly experiencing increased nutrient loading. Sediment algae within these systems are responsible for a large portion of C production, but we have limited knowledge of what happens to sediment microbial processing of MPB-C under increased nutrient conditions. This work examines how C-processing pathways change after increased short-term nutrient exposure, finding shifts in processing between microbial groups and increased export of algal C from the sediment.
Shallow coastal waters are increasingly experiencing increased nutrient loading. Sediment algae...
Altmetrics
Final-revised paper
Preprint