Articles | Volume 16, issue 16
https://doi.org/10.5194/bg-16-3283-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-3283-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet)
Alexandra T. Holland
CORRESPONDING AUTHOR
Bristol Glaciology Centre, School of Geographical Sciences, University
of Bristol, Bristol, BS8 1HB, UK
Christopher J. Williamson
Bristol Glaciology Centre, School of Geographical Sciences, University
of Bristol, Bristol, BS8 1HB, UK
School of Biological Sciences, University of Bristol, 24 Tyndall
Avenue, Bristol, BS8 1TQ, UK
Fotis Sgouridis
School of Geographical Sciences, University of Bristol, Bristol, BS8
1RL, UK
Andrew J. Tedstone
Bristol Glaciology Centre, School of Geographical Sciences, University
of Bristol, Bristol, BS8 1HB, UK
Jenine McCutcheon
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT,
UK
Joseph M. Cook
Department of Geography, University of Sheffield, Winter Street,
Sheffield, S3 7ND, UK
Ewa Poniecka
School of Earth and Ocean Sciences, Cardiff University, Main Building,
Park Place, Cardiff, CF10 3AT, UK
Marian L. Yallop
School of Biological Sciences, University of Bristol, 24 Tyndall
Avenue, Bristol, BS8 1TQ, UK
Martyn Tranter
Bristol Glaciology Centre, School of Geographical Sciences, University
of Bristol, Bristol, BS8 1HB, UK
Alexandre M. Anesio
Bristol Glaciology Centre, School of Geographical Sciences, University
of Bristol, Bristol, BS8 1HB, UK
Department of Environmental Science, Aarhus University, Roskilde,
4000, Denmark
The Black & Bloom Group
A full list of authors and their affiliations appears at the end of the paper.
Data sets
Dissolved nutrient, carbon and algal abundance in the Dark Zone (Greenland Ice Sheet), July–August 2016 A. Holland, C. Williamson, M. Tranter, and A. Anesio https://doi.org/10.5285/d8369a2f-8b50-4711-b492-ae773bfafd95
Short summary
This paper provides a preliminary data set for dissolved nutrient abundance in the Dark Zone of the Greenland Ice Sheet. This 15-year marked darkening has since been attributed to glacier algae blooms, yet has not been accounted for in current melt rate models. We conclude that the dissolved organic phase dominates surface ice environments and that factors other than macronutrient limitation control the extent and magnitude of the glacier algae blooms.
This paper provides a preliminary data set for dissolved nutrient abundance in the Dark Zone of...
Altmetrics
Final-revised paper
Preprint